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ON THE KLEIN-GORDON EQUATION IN GRAVITATIONAL
FIELD OF A MASSIVE POINT

S. ZARRINKAMARY", H. HASSANABADI? and M. HASHEMZADEH?

We consider for the Klein-Gordon equation in gravitational field of massive
point source in general relativity. Using the D’Alembert operator and separation of
variables, we work on the complicated differential equation governing the radial
component. We report the quasi-exact analytical solutions by working on a
corresponding Riccati differential equation. We also provide the numerical solutions
via the Galerkin method.

Keywords: Klein-Gordon equation, gravitational field, quasi-exact solution,
Galerkin method.

1. Introduction

Finding an acceptable consistent unification of theories of gravity and
quantum mechanics has been an outstanding challenge in theoretical physics [1,2].
Although the related studies began many years ago, we have not been yet
provided with a solid theory. Nevertheless, there have been motivating clues
which connect the two theories. Perhaps, the most simple and primary example
which might come into mind is the effect of gravitational field on the spectrum of
a quantum particle [3,4]. The possible quantum effects on neutrons in earth’s
gravitational field were analyzed in Refs. [5,6]. Till now, various equations of
guantum mechanics, both in nonrelativistic and relativistic regimes, have been
considered in this field [1,2,7]. In particular, the study of Klein-Gordon equation
in the gravitational field of a massive point was done in the interesting and
instructive paper of Fiziev et al. [8] where they reported novel discrete spectra for
Klein-Gordon test particles in the gravitational field of massive point. In our
work, we first review the essential formulae from the work of Fiziev et al. [8] to
preserve the continuity of the manuscript. Next, to solve the resulting radial
equation and instead of working on the numerical basis, we introduce a quasi-
exact solution.
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2. The Klein-Gordon Equation is Gravitational Field of a Massive Point

The regular solutions for the gravitational field outside of the massive point
source can be obtained from [8]

dr? .
ds? =e?% | dt? — — p(r)?*(d@* +sin” ad ¢* ), 1
O o #) o
where the radial variable lies in the interval r € (0,0) and
G M
@ (M M) =~ . (2)

r+GyM /In(M /M)’

is the modified Newton potential and

N () =(20) " (e** -1). 3)

The Hilbert luminosity variablemm is defined via [8]

G,M r+G M /In(M,/M) @

1-e2% N (r) ’

where G, is the gravitational constant. In Hilbert space, for the outside region, the

solution possesses the form

g:gﬁ(p):1_pG/p’gpp(p):1_1/gtt(p)7 ®)

where p, =2G,M denotes the Schwarzschild radius. We have to stress that the

presence of the matter source forces us to consider this form of the solution only

on the physical interval of the luminosity variable, i.e. p € (p,,%) , where

P =26yM [ (1-1°) > g, (6)

where i’ is the squared mass ratio. We can now write
dg? +d«92 +sin® 6d ¢

g(1-9)°  (1-g)

On the other hand, the 4-dimensional D’Alembert operator possesses the form

[7.8]

p(r)=

ds? = gdt® - o2

(7)

=970t - pi((1-9) 0, (90, )+ (1-9)" Ay, ®)
where
Ay, =sinT 60, (sin0, ) +sin™ 603, 9)

and the Klein-Gordon equation is neatly written as
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(970 - p*((1-9)"0, (90, )+ (1-9)"sin 00, (sin 6, ) +sin* 00} )

+m?’d =0. (10)
Introducing [7,8]

O(t,g.0,¢)=", (t.9)Y,, (6.9), (11
where Y, (6,¢)are the standard hyperspherical harmonics satisfying
Ao (0,¢)=—1(l +1)Y|',Z (6,9), 12)
with 1=0,1,2,...and I, =-,...,0,...,1, the angular components are separated and
we have

g oMW, — pi? {(1—g )0, (90,9, )+[1(1+1)(2-g) +m? |, } - 0. (13)
As the final step, we use the well-known solution

¥, (t.9)=e""R,(9), (14)
and write the radial equation in the form [8]

d?R, 1dR, & 1 L (1+1) ]

S+ T T - IR, =0, gelg,. 1 @s)

dg® g dg Lz(l—g) 9(1-9)" g(t-g) |

With gand u respectively being the dimensionless total energy and the mass of the
particle. It should be noted that we have been working in units where c=7%=1 and
|=L/mp,. Alsog, =i’ >0. The point g =1 corresponds to the physical infinity
(with respect to the variables r,or p).

3. The Quasi-Exact Analytical Solution

As Eq. (15) has not analytically solved before, we intend to provide the problem
with a quasi-exact analytical solution which provides us with a better insight into
the solutions. As the first ste p, let us introduce the gauge transformation

R =g 2U, (9), (16)
to remove the first order derivative;
UI”( ) &2 ,U2 | (I +1) 1 u, (g):O. an

g)+ - - +
9°(1-9)" 9(1-9)° g(-g)° 49’
We now use the simple idea of decomposition of fractions and write
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U, (9)=0. (18)

R

At this stage, we review the simple but powerful quasi-exact ansatz technique
which is based on proposing a solution of the form [9,10]

U, (g) =h(g)exp(H (9)), (19-a)
with

1 for n=0
h(g) =1 : (19-b)

[I@-a), for n>1

i=1
The ansatz technique has provided us with analytical solutions to various
differential equations of mathematical physics including the Schrédinger, semi-
relativistic spinless Salpeter, and relativistic Dirac, Klein-Gordon and Duffin-
Kemmer-Petiau (DKP) equations [9, 10] in many examples where powerful
techniques such as supersymmetry quantum mechanics (SUSY), factorization,
Nikiforov-Uvarov (NU) and Lie groups cannot help us. As the first part of the
solution, we consider the case of h(g)=1. In this case, the resulting Riccati

equation gives the term in the exponent as
H=alng+pIn(1-g)+——, (20)

1-9)

—~

which yields
Ul”(g)B[—Za(ﬂ—y)}+glz[a(a—l)}

1 1

+®[—2a(ﬂ—y)1+m[ﬁ(ﬂ+l)+20:7]
L o))t 2)|. 21
(1—9)3[ 7(:3 )J (1—g)4 (7 )] ( )

Equating the corresponding powers of Eqgs. (21) and (18), gives
4g — 1 =1 (1+1) =2a(B-7),

3¢ — 1 —1(1+1) =-B(B+1)-2ay,

28" — 1 =2y (B+1),

2 2

gz_ﬂ ==7,
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g —%z—a(a—l).

(22)

which can be solved to deter mine the unknown coefficients.

We can obtain the coefficients in term &, zand | as

2

a 2%(1ix/§\/1—252 )> 0; B=

2

2Ju —¢

_ 2
ﬂ_282_1; y=—Ji—&% <0

(23)

Here 1> & and we take o = %(1+ V21— 267 ) . We have the restriction relations

on the coefficients ¢, ¢, # and y .Due to these restrictions connection of the
coefficients, we can plot & in term one of the coefficients (here g coefficient),

where it is shown in Fig (1).
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Fig. 1. ¢vs. 8

For the first excited-state, we have

”n 14 ! 2Hf ! f”
U, (g)—[H +H 2+f—+}uI (g)=0,

which corresponds to

H=alng+pIn(1-g)+ 4

(1-9)’

f =g —0{11 ,
Substitution of the above terms in Eq. (18) gives

(24)

(25)

(26)
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(9-ai)uy(g)+

{(g—aﬂ{ [2a(-)]+ Hatay]e s -2a(0-7)]

~[B(B+1) +2ay}+ [ 27 (B+1)]+ a ! ()

(1— -9)'
L2 28 2y —0.
9 (1-9) (1—9)2]U'(g) ’ 0

Making a comparison between the latter and Eq. (18) gives the set of equations
4¢” — 1 —1(1+1)+ 2 =2a(B-7),

4o + o 1’ + gl (1 +1)+(gZ —%) =20 f+20ay +a—a’,
4¢? — 1 -1(141) =2a(B-7),

4%y + o il + ol (1+1) - 28 = 200, f+ 20037,

3e? — 1 —1(1+1) =-B(B+1) - 2ay,

=3’aq + a1’ + gl (141)+ 2y = Bag + fog + 25,

28" — 1 =2y (B+1),

g’ —Z:—a(a—l). (28)
which can determine the spectrum of the system.

The coefficients are determined as

:1(1+\/§\/1—252) a>0: gt 4. i Lo
2 2y —¢&°
1 23 _

al: =

208 —4s® —2ay +1 (I +1)+,u2

2 2
u—2e
ol 14 H 28
_ [ 2\,#2_52]
2_282 '
g% 41 (1 +1 +,uz—2(1+\/2\/1—2$2) y2—52—2(1+\/2\/1—2£2) g M2
(1+1) J NN

(29)
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Here 4> ¢ and we take« =%(1+ ﬁ\/1—252). Finally, we have depicted the

radial  wavefunction and probability density by  subsisting the
coefficients, # and ¥ in the Eq. (15) in terms of g for the ground state and the

first excited-state in Figs. (2) and (3).
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Fig. 2. radial component for ground and first excited state
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Fig. 3. probcability densities for ground and first excited state
4. Numerical solution

Let us now check the validity of the result by a numerical solution. The
eigenvalue problems are described by equation of the type [11]
LR(g9) = AMR(9), (30)

where L and M are the differential operators. The problem is to determine the
eigenvalues A and corresponding eigenfunctions R(g) . Comparing Egs. (15) and

(30), one can easily find that L, M and A can be chosen as
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d? d
L=—0g°0-9)'—-9@-9) —+x*g+1(1+)g(@-9g)°,
dg dg
M =1,
A=eg. (31)

In order to solve Eq. (30), R(g) is usually assumed as
N

R(g)zzaiui! (32)
i=1

where u, are functions which satisfy the boundary conditions and a, are
constants. Substituting Eq. (32) into Eq. (30), we have

iai Lu, :}tiai Mu, , (33)
i=1 i=1

Choosing the weighting functions w; and taking the inner product of Eq. (33)
with each w; , we obtain

N N
Zl:[<wj,Lui > -4 <w;,Mu; >Ja, :Zl:(Aji - B )X, =0, (34)

where A; =<w;,Lu; >, B;; =<w,;,Mu; > and X; =a;. However in order to have
nontrivial X. solutions, the coefficients determinant must be zero, i.e.,

|[A]-A[B]|=0. By solving this equation, N approximate eigenvalues can be
computed. Using the Galerkin method, w; =u;, and choosing u, =g(1-g"),
which satisfy the boundary conditions, A; and B can be easily obtained as

L8 0D (4D AG+D 104D BG+D’ +2(1+D)

BT105 0 40 30 047 i+6 i+5
4(i+1)2+,u2+|(|+1)+(i+1)2+ 1 _4+I(I+1)+2(3+I(I+1))_
i+4 i+3  j+7 j+6 j+5
4+,L12+I(I+l)+ 1 (i+1? +4(i+1)2+l(l+1)_6(i+l)2+2l(l+1)+
j+4 J+3 i+ j+7 i+]+6 i+j+5
AG+D° + 12 +1(1+1)  (i+1)?

i+j+4 i+ j+3’
ji(i+ j+6)

Bji = N . . . (35)
3(j+3)([+3)(i+j+3)

ChoosingN =4, ¢ and R(g) can be achieved as follows:
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£=0.92, R(g)=0.77g+4.83g2 +3.229° —14.17¢g* +5.35¢°,
£=1.09, R(g)=2.13g+6.39g2+17.74g° —76.81g* +50.560°,
£=10.64, R(g)=13.18g —21.25g° —42.5g° +87.13g* — 36.559°. (36)

It should be noted that all three above relations are normalized, E| R(9)|*=1.

Another important point is that the solutions have a degeneracy for £ =1.09. In

Figs. (4)-(6), R(g) and |R(g)|* are plotted as a function of g for three different
energies.
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Fig. 4. radial component and probability density for £ =0.92..
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Fig. 5. radial component and probability density for £ =1.09.
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Fig. 6. radial component and probability density for £ =10.64 .
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5. Conclusion

We solved the Klein-Gordon equation in the gravitational field of massive point
source in general relativity. The arising equation, which was obtained in the
interesting paper of Fiziev et al., to our very best knowledge, has not been
analytically solved before. Therefore, the authors worked on the equation in
numerical background. Here, however, we introduced a quasi-exact analytical
solution by using the ansatz technique, which is based on finding the solution of a
Riccati-like differential equation. It should be noted that, although we obtained
the solution for the first two states, the higher states can be simply obtained by the

same token via choosing h(g) as, (g — a7 )(g —«?) for the first node, second node,

etc. Nevertheless, this idea, just like any other quasi-exact technique, does have its
limitations. In particular, finding the solution of the set of obtained equations
becomes much complicated in higher states. At the last section, we provided the
numerical counterparts obtained from Galerkin method to check the validity of
analytical solutions.
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