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A NEW THREE-STEP ITERATIVE ALGORITHM FOR SOLVING THE

SPLIT FEASIBILITY PROBLEM

Meiling Feng1, Luoyi Shi2, Rudong Chen3

In this paper, we propose a new three-step iterative algorithm for solving the

split feasibility problem in Hilbert space. Under proper assumptions, the sequence gen-

erated by the new iterative algorithm converges strongly to a solution of the SFP. Con-

vergence rate of our algorithm is faster than previously existing iterative algorithms. To

illustrate the effectiveness of our algorithm, we provide some numerical results.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces, C and Q be closed, convex, and nonempty

subsets of H1 and H2, respectively. And let A : H1 → H2 be a bounded and linear operator.

The split feasibility problem (abbreviate SFP) can be mathematically described by finding

a point x in C such that

x ∈ C, Ax ∈ Q. (1.1)

The SFP was first proposed by Censor and Elfving [5] for solving a class of inverse prob-

lems. Recently, since the SFP is widely applied in medical image reconstruction [9, 10],

the intensity-modulated radiation therapy [6, 7] and signal processing [3], it has gained

extremely attention.

There are various algorithms to solve the SFP, see [3, 4, 6, 13, 18, 19] and the references

therein. Particularly, Byrne [4] presented a CQ-algorithm, for which the iterative step xk is

formulated as follows:

xk+1 = PC [I − γA∗(I − PQ)A]xk, k ≥ 0, (1.2)

where 0 < γ < 2
∥A∥2 , PC and PQ denote the projections onto sets C and Q, respectively,

and A∗ : H∗
2 → H∗

1 is the adjoint of A. Due to the CQ-algorithm’s own virtues—simple

calculation, it has become a practical tool to solve the SFP, and various versions of the

CQ-algorithm have been applied in many literature, such as [13, 18], etc.
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The three-step iterative was first introduced by Noor to consider the approximate

solutions of variation inclusions in Hilbert space [11]. It is more valid than one-step and two-

step iterative methods for solving the problems of pure and applied sciences [2]. Recently,

three-step iterative has been used to solve the SFP, and it has gained great efficiency, such

as Dang’s [8]. He introduced the following three-step iterative algorithm:
ωn = (1− αn)xn + αnPC [(1− λn)U ]xn,

υn = (1− βn)xn + βnPC [(1− λn)U ]ωn,

xn+1 = (1− γn)xn + γnPC [(1− λn)U ]υn,

(1.3)

where U = I − γA∗(I − PQ)A, and {αn}, {βn}, {γn}, {λn} are real sequences in (0,1). In

addition, Mihai [15] introduced a new three-step iterative method for finding fixed points of

nonexpansive mapping.

Inspired by the above works, we combine the idea of Mihai’s three-step iterative with

Byrne’s CQ-algorithm for solving the SFP (1.1). This is the core part of this paper. The

structure of the present paper is as follows. In Section 2, we provide some concepts and

lemmas that will be very useful for our convergence analysis. In Section 3, we propose the

three-step iterative method and prove its convergent results. In Section 4, we illustrate that

our algorithm is effective by some numerical results. In the last part, we summarize this

paper.

2. Preliminaries

For the sake of convenience, we present some notations used in this paper. Let

H be a real Hilbert space, its inner product and norm are denoted by ⟨·, ·⟩ and ∥ · ∥,
respectively. I denotes the identity operator in H. F (T ) denotes the fixed points of T , i.e.,

F (T ) = {x ∈ H : Tx = x}. xn ⇀ x and xn → x denote sequence {xn} converges weakly

and strongly to x, respectively. In this paper, we assume that the solution set Ω of the SFP

(1.1) is nonempty, let

Ω = {x ∈ C : Ax ∈ Q} = C ∩A−1Q,

then, Ω is closed, convex, and nonempty set.

In addition, let C be a closed, convex, and nonempty subset of Hilbert space H, for

x ∈ H, PC and d(x,C) denote the orthogonal projection from x onto C and metric distance

from x onto C, respectively, which are defined by

PC(x) := argmin
y∈C

∥x− y∥ and d(x,C) := inf{∥x− y∥ : y ∈ C}.

The following lemma presents some important properties of the orthogonal projection

operator, in which (i) is taken from [1, theorem 3.14]; (ii) and (iii) from [1, proposition 4.8].

Lemma 2.1. ([1]) Let C be a closed, convex, and nonempty subset of H, then for any

x, y ∈ H and z ∈ C,

(i) ⟨x− PCx, z − PCx⟩ ≤ 0;

(ii) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩;
(iii) ∥PCx− z∥2 ≤ ∥x− z∥2 − ∥PCx− x∥2.
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Definition 2.1. Let T : H → H be an operator, then

(i) T is nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀ x, y ∈ H;

(ii) T is averaged if

T = (1− α)I + αS,

where α ∈ (0, 1), and S : H → H is nonexpansive;

(iii) T is ν-inverse strongly monotone(ν-ism), with ν > 0, if

⟨x− y, Tx− Ty⟩ ≥ ν∥Tx− Ty∥2, ∀ x, y ∈ H;

(iv) T is λ-Lipschitz continuous, with λ > 0, if

∥Tx− Ty∥ ≤ λ∥x− y∥, ∀ x, y ∈ H;

(v) T is firmly nonexpensive, if

⟨x− y, Tx− Ty⟩ ≥ ∥Tx− Ty∥2, ∀ x, y ∈ H.

Lemma 2.2. (Lemma 2.1, [3]) An operator U is averaged if and only if its complement

V = I − U is ν-ism with ν > 1
2 .

Lemma 2.3. (Lemma 1, [12]) Let {xn} be a sequence of Hilbert space H. If {xn} converges

weakly to x, then for any y ∈ H and y ̸= x, we have lim
n→∞

inf ∥xn − x∥ < lim
n→∞

inf ∥xn − y∥.

Lemma 2.4. (Demiclosed principle)(Lemma 2, [12]) Let C be a closed, convex, and

nonempty subset of real Hilbert space H, and T : C → C be a nonexpansive mapping.

Then I − T is demiclosed at zero, i.e., if xk ⇀ x ∈ C and xk − Txk → 0, then x = Tx.

Lemma 2.5. (Lemma 1.3, [14]) Let X be a uniformly convex Banach space and 0 < p ≤ tn ≤
q < 1 for all n ∈ N . Let {xn} and {yn} be two sequences of X such that lim

n→∞
sup ∥xn∥ ≤ r,

lim
n→∞

sup ∥yn∥ ≤ r and lim
n→∞

sup ∥tnxn + (1 − tn)yn∥ = r hold for some r ≥ 0. Then

lim
n→∞

∥xn − yn∥ = 0.

3. The three-step iterative algorithm and its convergence analysis

Now, we propose our three-step iterative algorithm.

Algorithm 3.1. For an arbitrarily initial point x0 ∈ H1, the sequence {xn} is generated by
un = (1− αn)xn + αnTxn,

vn = (1− βn)un + βnTun,

xn+1 = (1− γn)Tun + γnTvn,

(3.1)

where T = PC [I − γA∗(I − PQ)A], and {αn}, {βn}, {γn} are three real sequences in (0, 1).

Remark 3.1. Since the solution set of the SFP (1.1) is nonempty, it is not hard to find

that x∗ ∈ C solves (1.1) if and only if it solves the fixed point equation:

PC [I − γA∗(I − PQ)A]x = x, x ∈ C.

Then, the solution set of the SFP (1.1) is equal to fixed points of T , i.e., F (T ) = Ω =

C ∩A−1Q ̸= ∅. Concrete detail can be found in [16, 17].
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Lemma 3.1. Let operator T = PC [I − γA∗(I − PQ)A], where 0 < γ < 2
∥A∥2 . Then T is

nonexpansive.

Proof. Let U = A∗(I − PQ)A. Firstly, we prove that U is L-Lipschitz continuous

with L = ∥A∥2. In fact, for ∀ x, y ∈ C, we have

∥Ux− Uy∥2 =∥A∗(I − PQ)Ax−A∗(I − PQ)Ay∥2

≤L∥(I − PQ)Ax− (I − PQ)Ay∥2

=L∥Ax−Ay − (PQAx− PQAy)∥2

=L(∥Ax−Ay∥2 + ∥PQAx− PQAy∥2

− 2⟨Ax−Ay, PQAx− PQAy⟩).

By Lemma 2.1(ii), we obtain

⟨Ax−Ay, PQAx− PQAy⟩ ≥ ∥PQAx− PQAy∥2.

Therefore,

∥Ux− Uy∥2 ≤ L(∥Ax−Ay∥2 − ∥PQAx− PQAy∥2)

≤ L∥Ax−Ay∥2

≤ L2∥x− y∥2.

Then, U is L-Lipschitz continuous, which means that U is 1
L -ism. Hence, γU is 1

L -ism.

Next, we show that T is nonexpensive. By Lemma 2.2, V = I − γU is averaged

mapping. Then, V = (1 − t)I + tS, where t ∈ (0, 1), S : C → C is nonexpansive. Taking

x, y ∈ C, we have

∥V x− V y∥ = ∥(1− t)x+ tSx− (1− t)y − tSy∥

≤ (1− t)∥x− y∥+ t∥Sx− Sy∥

≤ (1− t)∥x− y∥+ t∥x− y∥

= ∥x− y∥.

Thus, V is nonexpensive mapping. Note that T = PCV , PC and V are both nonexpensive.

Consequently, T is nonexpansive mapping. The proof is completed.

Lemma 3.2. Let {xn} be the sequence generated by Algorithm 3.1. Then, lim
n→∞

∥xn − x∗∥
exists for any x∗ ∈ F (T ).

Proof. Taking a point x∗ ∈ F (T ). Since T is nonexpensive, by (3.1), for all n ∈ N ,

we have

∥un − x∗∥ = ∥(1− αn)xn + αnTxn − x∗∥

≤ (1− αn)∥xn − x∗∥+ αn∥Txn − x∗∥

≤ (1− αn)∥xn − x∗∥+ αn∥xn − x∗∥

= ∥xn − x∗∥,

i.e.,

∥un − x∗∥ ≤ ∥xn − x∗∥. (3.2)
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Similarly, we obtain

∥vn − x∗∥ ≤ ∥xn − x∗∥. (3.3)

Combining (3.2) and (3.3), we get

∥xn+1 − x∗∥ = ∥(1− γn)Tun + γnTvn − x∗∥

≤ (1− γn)∥Tun − x∗∥+ γn∥Tvn − x∗∥

≤ (1− γn)∥un − x∗∥+ γn∥vn − x∗∥

≤ (1− γn)∥xn − x∗∥+ γn∥xn − x∗∥

= ∥xn − x∗∥.

Since x∗ is chosen arbitrarily in F (T ), one deduces that {∥xn − x∗∥}n is decreasing, then

lim
n→∞

∥xn − x∗∥ exists for any x∗ ∈ F (T ). The proof is completed.

Lemma 3.3. Let {xn} be the sequence generated by Algorithm 3.1. Then lim
n→∞

∥xn−Txn∥ =

0.

Proof. By Lemma 3.2, lim
n→∞

∥xn − x∗∥ exists for any x∗ ∈ F (T ). Suppose that

lim
n→∞

∥xn − x∗∥ = a(a ≥ 0). (3.4)

By (3.2) and (3.3), we have

lim
n→∞

sup ∥un − x∗∥ ≤ a, (3.5)

and

lim
n→∞

sup ∥vn − x∗∥ ≤ a. (3.6)

Since T is nonexpensive mapping, we obtain

∥Txn − x∗∥ ≤ ∥xn − x∗∥, ∥Tun − x∗∥ ≤ ∥un − x∗∥, ∥Tvn − x∗∥ ≤ ∥vn − x∗∥.

Taking the superior limit on both sides, we get

lim
n→∞

sup ∥Txn − x∗∥ ≤ a, (3.7)

lim
n→∞

sup ∥Tun − x∗∥ ≤ a, (3.8)

and

lim
n→∞

sup ∥Tvn − x∗∥ ≤ a. (3.9)

Since

a = lim
n→∞

∥xn+1 − x∗∥ = lim
n→∞

∥(1− γn)(Tun − x∗) + γn(Tvn − x∗)∥, (3.10)

combining (3.8), (3.9) and (3.10), from Lemma 2.5, we infer that

lim
n→∞

∥Tun − Tvn∥ = 0.

Now

∥xn+1 − x∗∥ = ∥(1− γn)(Tun − x∗) + γn(Tvn − x∗)∥

≤ ∥Tun − x∗∥+ γn∥Tun − Tvn∥,

which implies that

a ≤ lim
n→∞

inf ∥Tun − x∗∥. (3.11)
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From (3.8) and (3.11), we obtain

lim
n→∞

∥Tun − x∗∥ = a.

Moreover,

∥Tun − x∗∥ ≤ ∥Tun − Tvn∥+ ∥Tvn − x∗∥

≤ ∥Tun − Tvn∥+ ∥vn − x∗∥,

which implies that

a ≤ lim
n→∞

inf ∥vn − x∗∥. (3.12)

Combining (3.6) and (3.12), we obtain

lim
n→∞

∥vn − x∗∥ = a.

Since T is nonexpensive, by Lemma 2.4, we get

lim
n→∞

∥un − Tun∥ = 0.

Due to

∥vn − x∗∥ = ∥(1− βn)un + βnTun − x∗∥

= ∥(un − x∗) + βn(Tun − un)∥

≤ ∥un − x∗∥+ βn∥Tun − un∥,

we have

a ≤ lim
n→∞

inf ∥un − x∗∥. (3.13)

According to (3.5) and (3.13), we obtain

lim
n→∞

∥un − x∗∥ = a,

hence,

a = lim
n→∞

∥un − x∗∥

= lim
n→∞

∥(1− αn)xn + αnTxn − x∗∥

= lim
n→∞

∥(1− αn)(xn − x∗) + αn(Txn − x∗)∥,

that is,

lim
n→∞

∥(1− αn)(xn − x∗) + αn(Txn − x∗)∥ = a. (3.14)

Combining (3.4), (3.7) and (3.14), from Lemma 2.5, we have

lim
n→∞

∥xn − Txn∥ = 0.

The proof is completed.

Theorem 3.1. Let {xn} be the sequence generated by Algorithm 3.1. Then {xn} converges

weakly to a point in Ω.
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Proof. By Remark 3.1, Ω = F (T ) ̸= ∅. Hence, we only need to show that the

sequence {xn} converges weakly to a point in F (T ).

Taking x∗ ∈ F (T ), by Lemma 3.2, lim
n→∞

∥xn − x∗∥ exists.

First, we show that the subsequences of {xn} only have a weak limit in F (T ). Let

{xni
} and {xnj

} be two subsequences of {xn}, the weak limits of {xni
} and {xnj

} are

denoted by u and v, respectively. By Lemma 3.3, we have lim
n→∞

∥xni
− Txni

∥ = 0. By

Lemma 2.4, I − T is demiclosed at zero. Hence, we gain Tu = u, i.e., u ∈ F (T ). Similarly,

we can prove that v ∈ F (T ).

Next, we show the uniqueness of weak limit. Since T = PC [I − γA∗(I − PQ)A] is

nonexpansive mapping, by Lemma 3.2, lim
n→∞

∥xn−x∗∥ exists. Suppose that u ̸= v, according

to Lemma 2.3, we have

lim
n→∞

∥xn − u∥ = lim
ni→∞

∥xni − u∥ < lim
ni→∞

∥xni − v∥

= lim
n→∞

∥xn − v∥ = lim
nj→∞

∥xnj
− v∥

< lim
nj→∞

∥xnj
− u∥ = lim

n→∞
∥xn − u∥.

This is clearly contradictory, hence, u = v. Therefore, {xn} converges weakly to a point in

F (T ), that is, the sequence {xn} converges weakly to a point in Ω. The proof is completed.

Theorem 3.2. Let {xn} be the sequence defined by Algorithm 3.1. Then {xn} converges to

a point in Ω if and only if lim
n→∞

inf d(xn,Ω) = 0.

Proof. Obviously, necessity is true. We only need to prove sufficiency.

Since lim
n→∞

inf d(xn,Ω) = 0. From Remark 3.1, we have F (T ) = Ω ̸= ∅. Hence

lim
n→∞

inf d(xn, F (T )) = 0. For any x∗ ∈ F (T ), lim
n→∞

∥xn − x∗∥ exists by Lemma 3.2, thus,

lim
n→∞

d(xn, F (T )) exists and lim
n→∞

d(xn, F (T )) = 0.

Next, we prove that {xn} is a Cauchy sequence in C. Since lim
n→∞

d(xn, F (T )) = 0, for

any ε > 0, there exists n0 ∈ N such that for all n ≥ n0, d(xn, F (T )) < ε
2 . Meanwhile,

inf{∥xn0 − x∗∥ : x∗ ∈ F (T )} <
ε

2
,

therefore, there exists x ∈ F (T ) such that ∥xn0
− x∥ < ε

2 . For m,n ≥ n0, we have

∥xn − xm∥ ≤ ∥xn − x∥+ ∥xm − x∥.

In addition, from the proof of Lemma 3.2, we know that ∥xn − x∗∥ is decreasing for n, then

∥xn − xm∥ ≤ 2∥xn0
− x∥ < ε,

which yields that {xn} is a Cauchy sequence in C.

Note that C is a closed subset in H1, hence, there exists x̂ ∈ C such that xn → x̂.

From lim
n→∞

d(xn, F (T )) = 0, one deduces that d(x̂, F (T )) = 0. Since F (T ) is closed set, we

have x̂ ∈ F (T ). Again, using F (T ) = Ω, we obtain x̂ ∈ Ω. Hence, {xn} converges to a point

in Ω. The proof is completed.

Theorem 3.3. Let {xn} be the sequence generated by Algorithm 3.1. If there exists a

nondecreasing function f : [0,+∞) → [0,+∞) with f(0) = 0, f(r) > 0, for any r ∈ (0,+∞),



100 Meiling Feng, Luoyi Shi, Rudong Chen

such that ∥x − Tx∥ ≥ f(d(x, F (T )), for all x ∈ C, then {xn} converges strongly to a point

in Ω.

Proof. From Lemma 3.3, we have

lim
n→∞

∥xn − Txn∥ = 0.

According to the assumption of T , we obtain

lim
n→∞

f(d(xn, F (T )) ≤ lim
n→∞

∥xn − Txn∥ = 0.

Since f : [0,+∞) → [0,+∞) satisfies f(0) = 0, f(r) > 0, for any r ∈ (0,+∞), we can

deduce that

lim
n→∞

d(xn, F (T )) = 0,

by Remark 3.1, we have F (T ) = Ω, which implies that

lim
n→∞

d(xn,Ω) = 0.

It follows from Theorem 3.2 that {xn} converges strongly to a point in Ω. The proof is

completed.

4. Numerical experiment

In this section, we provide a concrete example including numerical results and compare

Algorithm 3.1 with Dang’s [8] algorithm (i.e., (1.3)) to declare that our algorithm is more

effective. All codes were written in Matlab 2012b.

Example 4.1. Let H1 = H2 = R3, C = {x ∈ R3 : ∥x∥ ≤ 1}, Q = {x ∈ R3 : ∥x∥ ≤ 2} and

take

A =

 −3 1 2

−1 0 1

1 2 −1

 .

Then the projections PC and PQ of x onto sets C and Q are as follows:

PC(x) =

 x, ∥x∥ ≤ 1

x
∥x∥ , ∥x∥ ≥ 1

and

PQ(x) =

 x, ∥x∥ ≤ 2

2
∥x∥x, ∥x∥ ≥ 2.

Meanwhile, choose αn = 1
3 , βn = 1

3 , γn = 1
3 , and γ = 0.01 in (1.3) and (3.1). And λn = 0.03

in Dang’s (1.3). Take an initial point x0 = {2, 1, 0}. We take ∥xn+1 − xn∥ < 10−6 as the

standard of stopping in the process of calculation.

In the following table, n, t and a = ∥xn+1 − xn∥ denote iterative steps, CPU time

and error, respectively. After the calculation, we can compare our results with Dang’s as

follows:

From the above table, we can find that, under the same conditions, the results of our

algorithm are superior to Dang’s. In short, the results of numerical experiment show that

our algorithm is more efficient than Dang’s.
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n t a

sequence (3.1) 238 0.031250 0.0000099

Dang’s (1.3) 514 0.093750 0.0000100

5. Conclusions

We propose a new three-step iterative algorithm to solve the split feasibility problem.

Under proper assumptions, our algorithm can converge strongly to a solution of the split

feasibility problem (1.1). Numerical results show the effectiveness of our algorithm.
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[10] Lorenz D.A., Schöpfer F., and Wenger S., The linearized Bregman method via split feasibility problems:

analysis and generalizations. SIAM J. Imaging Sci. 7(2), 1237-1262 (2014)

[11] Noor M.A., New approximation schemes for general variational inequalities. Journal of Mathematical

Analysis and Appl. 251, 217-229 (2000)

[12] Opial Z., Weak convergence of the sequence of successive approximations for nonexpensive mappings.

Bull. Amer. Math. Soc. 73, 591-597 (1967)

[13] Qu B., and Xiu N., A note on the CQ algotithm for the split feasibility problem. Inverse Probl. 21(5),

1655-1665 (2005)

[14] Schu J., Weak and strong convergence to fixed points of asymptotically nonexpensive mappings. Bull.

Asut. Math. Soc., 43(1), 153-159 (1991)

[15] Thakur B.S., Thakur D., and Postolache M., A new iteration scheme for approximating fixed Points of

nonexpensive mapping. Faculty of Sciences and Math. University of Nis, Serbia. 10, 2711-2720 (2016)



102 Meiling Feng, Luoyi Shi, Rudong Chen

[16] Xu H.K., A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. In-

verse Probl. 22(6), 2021-2034 (2006)

[17] Xu H.K., Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces.

Inverse Probl. 26, 105018 (2010). 17pp.

[18] Yang Q., The relaxed CQ algotithm solving the split feasibility problem. Inverse Probl. 20(4), 1261-1266

(2004)

[19] Zhao J., and Yang Q., Several solution methods for the split feasibility problem. Inverse Probl. 21(5),

1791-1799 (2005)


