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STREAMER - A TOOL FOR CLUSTERING
CONVERSATIONS IN SOCIAL NETWORKS

Andrei OPREA!, Costin-Gabriel CHIRU?

In this paper, we present Streamer, a search application running over
streams of Twitter messages. As opposed to most services that only do simple text
search over conversations, Streamer aims to cluster messages together in order to
simplify analyzing a large number of messages from similar topics. The novelty of
Streamer is that, unlike most applications that use fixed corpus or categories when
clustering, it works with streaming data that may debate about any number of
topics: Twitter messages are continuously retrieved and the clusters are updated as
more data comes in. The running time and clustering quality of the application were
evaluated using purity and Silhouette coefficient.
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1. Introduction

Social media platforms are no longer an emerging field, they have become
well established and millions of messages are exchanged daily by people globally.
A variety of application clients and services try to keep up with this surge of
information by offering users information about popular topics or highlights about
the events that are happening around them. They are promoting popular content,
determined either by number of clicks, views, favorites or other metrics, and
although this is effective for controversial topics, it does little to highlight other
subjects of conversation.

In this paper, we present a study on the clustering of messages from the
Twitter platform, also known as tweets, inspired by the website's Trends category,
which presents the most popular subjects either worldwide or in a certain
geographical region. The aim of our paper is to facilitate the exploration of less
popular subjects with the same easiness as exploring the hot ones. The developed
application is equipped with a query option to allow searching for conversations
on different topics and based on this option, it extracts and cluster the matching
discussions. The messages provided by the website's APl already provide a
filtering option: one can specify keywords that he/she wants to be part of the
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messages he/she receives. This might provide some indication on the conversation
topic, but getting an overview of the different conversations on the same subject is
not a trivial task because messages have no obvious order. The purpose of the
clustering is to offer a detailed view of the different conversations taking place on
the same topic, trending or not, and to be able to gain a high-level overview of the
conversations taking place around a certain subject.

1.1. Twitter Overview

Before getting into application's details, we will first offer a short
description of Twitter - an online micro blogging platform and social networking
website. On Twitter, users communicate through short messages (having at most
140 characters) called tweets. To ease the communication, people use mentions:
the @ character followed by a person's name. This is a way to involve another
user into the conversation. Another feature is the hashtag (the # sign) followed by
a word. This is used to highlight key parts of the message. The most frequent
hashtags are included in the Trends, popular subjects automatically extracted from
tweets taking place worldwide or in a certain region. Exploring a topic reveals a
very large number of messages with just as more coming in every second.

Users can also favorite a tweet - a public way of adding a particular
message written by another user to a personal list of favorites -, and retweet it,
meaning that they share it with the people who follow them while still attributing
the message to the original author. These two options contribute to the overall
popularity of a tweet: according to Twitter website, there are 500 million tweets
sent daily by its 320 million monthly active users with a record of 143,199 tweets
per second [1]. People usually turn to Twitter during major natural events,
sporting events, award ceremonies and so on. With such a high amount of
information coming in every second it is almost impossible to keep track of
everything that is discussed.

The purpose of Streamer is to provide close to real-time clustering of
conversations that take place on Twitter and to offer an overview for
conversations spanning over the topics the user provided as input.

The paper continues with the discussion of the related work in the field,
implemented solutions that deal with Twitter conversations or scientific papers
written on this subject. We then provide an overview of the system architecture.
The next section goes into details regarding testing and the obtained results, while
the last part will present the discussions and conclusions that can be drawn based
on these results.
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2. Related Work

There are many services and applications that are in some way dependent
on Twitter data, whether they simply archive or actually parse and analyze public
users' streams. In the same time a lot of academic papers are concerned with the
content of tweets because of the large number of messages exchanged daily. This
section will focus on providing insights in the current state of both existing client
applications and academic papers regarding the subject of Twitter conversations.

2.1. Existing Solutions

A big category of services that provide information regarding Twitter data
are analytics services. Most of them are offering information about the
engagement of followers with the created content. Their goal is to help increase
the visibility of tweets for different companies, and therefore the metrics are
related to the followers and focus less on exploring the content. This is the
solution offered by the Twitter analytics. Another such example is SproutSocial
[2], which allows one to publish content from their application to Twitter, and
then monitors it for engagement and offers analytics on the users who interacted
with this content. An application that tries to solve a similar problem to Streamer
is TweetArchivist [3]. Using it, one is able to query specific time frames and see
top users and words related to certain search terms, as well as the most shared
URLSs and the most influential users that have send messages. Influential users are
the users with a large number of followers, their messages reaching a large
number of people, get viewed, re-tweeted and shared by thousands of other users.

TweetMotif [4] retrieves tweets using the Twitter API based on a user
provided query. It uses n-grams to extract a certain number of topics and groups
the messages under those topics, therefore giving an overview of what people are
saying. N-grams are continuous sequences of n items from a document (they can
be syllables, letters or words).

Another class of applications related to Twitter data are 3rd party clients
that allow filtering the content based on a particular hashtag and popularity (rated
according to favorites and number of re-tweets). This is a good alternative for
finding popular opinions: one can judge them by how popular those tweets are.

Finally, the last class of applications is represented by Twitter Trends,
which extracts a list of frequent keywords that are present in the tweets from a
certain region or worldwide. This allows real time browsing of the tweets having
those keywords. The user does not have any control over the data, so exploring it
means going through each tweet and reading it, which may be impossible.



20 Andrei Oprea, Costin-Gabriel Chiru

2.2. Related Research Topics

Similar work in the field of data mining related to Twitter conversations
and topic trends are pushing the limits regarding the information and insights one
can obtain from analyzing tweets and also how to achieve this most efficiently.

Sudhof's work [5] aimed to cluster Twitter users into groups based on the
opinions they expressed regarding a political controversy. The corpus was fixed
and contained tweets from the time when the events occurred, that were selected
based on their hashtag. Different methods were used to cluster the users. One of
them used TF-IDF [6] and term-weighting [7] to extract relevant keywords from
messages, as multiple keywords shared between tweets are an indication of how
similar they are and thus link the users together. Another method was to use
Mentions (referencing one or more users in your tweet), as this means that they
are somehow involved and relevant to your opinion. Finally, hashtags were
considered, the idea behind it being that users who send out messages using the
same hashtags share similar opinions [8]. Again, the assumption is that the more
hashtags users share, the more similar they must be.

Rosa et al. [8] tried to classify tweets into different categories that were
predefined and the corpus was fixed, composed of selected tweets that covered the
predefined topics. They considered hashtags to be an approximate indication of
the message's topic and used it to improve the clustering results. First of all, the
messages were pre-processed: tokenization, removal of rare terms, conversion to
lowercase, etc. Both unsupervised (K-Means [9] in combination with TF-1DF) and
supervised (Rocchio classifier [6]) methods were used for clustering. Their
observations based on the obtained results were that simple normalization rules
such as removing terms with very low frequency did not improve clustering but
did help reduce dimensionality; TF-IDF similarity based ranking proved effective
in discovering representative tweets; and training sets quickly become obsolete if
attempting to use supervised clustering for real time data.

Similar approaches were tried in order to extract and assign tweets to
different categories using a number of predefined templates that were updated
through automatic learning [10] or by creating clusters defined by their topic [11].

Compared to these approaches, our application doesn't have predefined
topics or corpora, trying to cluster the tweets as they are posted (attempting online
clustering), without any prior knowledge about their topics.

O’Connor, Krieger and Ahn's TweetMotif [4] fetches tweets from Twitter
Search API, generates 2-3 words topics from the newly formed corpus and
associates messages to these topics. Its interface allows for a recursive detailing of
the topics, the goal being to offer a concise summary of the generated topics.
Topic generation is achieved using n-grams with certain heuristics such as
disregarding unigrams that are function words, or bigrams, trigrams that cross
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syntactic boundaries. Topics are merged and their sets of messages are combined.
Our research is different than this one as although we want to offer an overview
for different conversations, we don't aim to summarize them.

Another paper by Sahami and Heilman [12] handles the issue of
measuring similarity for short sentences (e.g. search queries), which might not
share any terms (e.g. A.l. and Artificial Intelligence, refer to the same thing but it
Is not trivial to find this). The proposed solution was to use the terms to query the
web for documents and therefore provide context on it. These are called context
vectors. Thus, even though the terms Al and Artificial Intelligence would yield a
cosine similarity of 0, gathering a number of documents on these terms would
help improve the context and compute a much better similarity for the two. This
paper was helpful for the evaluation part of our research, when we had to assess
the quality of clustering. Thus, instead of the context vectors we used the most
frequent words from a cluster to provide its context and to decide whether a tweet
is correctly placed in that cluster or not.

Chen, Nikolov, Shah [13] proposed a method for an accurate estimation of
the topics that will become trending on the Twitter social platform, before they are
declared trending by the website itself. The proposed method classifies topics into
trending or not trending by using a nearest neighbor classifier employed over the
concepts time series. The results of their experiments yielded a 79% success rate
in detecting trends faster than Twitter, with a true positive rate of 95% and a false
positive rate of 4%.

Finally, other researches did sentiment analysis on tweets, evaluating the
stock market fluctuation [14], the impact of different events [15], or the elections'
outcome [16]. However, sentiment analysis is out of the current research's scope.

3. Application’s Details

At a high level, Streamer's architecture is built up of two logical parts:

1. A backend consisting of several services that communicate with the
Twitter API, retrieve tweets that match the query provided by the user, and
perform parsing and clustering. The result is a list of messages annotated
with the cluster id they belong to. This information is made available via
an HTTP server with a public endpoint. We have chosen JSON as the
format for publishing the data via the API.

2. A frontend, which is responsible for receiving the JSON and for rendering
clusters of tweets as well as providing an interface for the user to explore
the conversations. The user can see the related messages, view the original
message to get the context and the replies, and visit the user's profile.

The backend is in turn composed by 3 main modules: data acquisition,
data processing and data clustering. Data acquisition is responsible for fetching
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Twitter messages (tweets) using the Twitter4j library and stores them in a queue
provided by Apache Kafka. The reason for using queues between intermediary
steps is that they allow for the modules to operate at different frequencies,
completely decoupling them. As the Twitter API gives access to public data either
from individual users or a percentage of all data going through the platform, we
opted out to use the public message streams, which return real time tweets.

Data processing parses the raw tweets and converts them into shorter
messages containing key terms. Messages are read from the queue filled in by the
previous module and then all the non-alphanumerical characters are removed. The
next step is to parse the tweets using StanfordNLP library, thus each word being
annotated with its own part-of-speech tag. Afterwards, the words are filtered out
based on these tags, some of them (personal pronouns, possessive pronouns,
prepositions, conjunctions) being removed as they are non-informative and might
decrease the accuracy of the clustering algorithm. Also, the extra information
would increase the amount of time required for clustering. The processed tweets
are written to a new queue, thus decoupling this module from the next one.

Data clustering is responsible for clustering the messages based on the
keywords generated in the previous step. A clustering algorithm groups a set of
documents (tweets, in our case) into subsets called clusters. The goal is to
generate clusters with high intra-cluster similarity (having a sufficient number of
coherent documents) and low inter-cluster similarity (being given any two distinct
clusters, they should be different enough from each other). Usually in clustering
algorithms the key metric is the distance between points (e.g. the Euclidian
distance for points in a two-dimensional space). The algorithm used for this step
was K-Means (MacQueen [17]) clustering and the chosen distance function was
the cosine similarity between tweets.

The K-Means algorithm works by starting with a seed consisting of
randomly selected points (in our case messages that constitute different centroids).
The algorithm then proceeds to assign the remaining messages to the existing
centroids using the distance function (cosine similarity). After each step, the
centroid is re-computed as the average of the messages that have been assigned to
the cluster it defined. These steps are repeated until a stopping criterion is reached.

The algorithm’s objective is to minimize the average distance between a
point and its centroid. Thus, if we define residual sum of squares (RSS) as in (1)
(where K is the number of clusters, x is a point from cluster wg and p(w) is the
centroid of cluster wg), the purpose of K-Means is to minimize this value.

RSS =Y Y|X - (W )r (1)

k=1 xewy

Starting from this purpose, a couple of termination criteria could be used:

when the RSS value falls below a certain value €; when the centroids remain the
same between 2 consecutive iterations; when the assignments of points to clusters
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do not change over iterations or once a fixed number of iterations have been. This
upper bound is added to ensure that the algorithm halts if it fails to reach
convergence, but it might also affect the quality of the obtained results.

Due to the fact that K-Means is a greedy algorithm, it might end up in a
local minima instead of converging to the global minima. Thus, to avoid this
problem, the algorithm is usually run several times with different seeds and then,
the results generating the smaller RSS are returned. However, this affects the
overall running time of the application, so a trade-off has to be made. Depending
on our goals (either speed or precision), we can choose to just rely on the first run
of the algorithm or to try multiple runs and retain the best one.

Another issue that might influence the results quality is related to choosing
the correct value of K - the number of clusters. Most papers suggest having
domain knowledge over the data that is being clustered, but in our case this is
impossible due to the fact that data is coming in real time and it is unknown what
their topic is about. Using RSS function and choosing a K value that minimizes it
cannot be done because RSS will reach its minimum for K = N (a cluster for every
tweet in the dataset). A solution to this problem was presented in [6]: start with K
= 1, compute the value of RSS and then increment K's value at each step and
compute the new values for the RSS until the optimum K is found (see (2)).

K=min (RSS,,, (K) +A*K) )

This is a generalized approach to the previous solution, as we can see that
setting A to 0 will yield the best solution for K = N. However, choosing the value
of K this way involves multiple runs of the K-Means algorithm which, in our case,
represents an impediment as the growing runtime makes real-time clustering
impossible. Thus, the value of K was chosen to be K = sqgrt(total no. of tweets / 2),
the value of RSS being used only for finding the best distribution of points in the
K clusters.

The result of the clustering algorithm as well as the tweet message and its
author are combined and converted to a JSON data structure that is saved on the
disk to be consumed by the endpoint accessing the server.

The application's frontend is responsible for data visualization, which is
rendered in the browser by reading the JSON files provided by the backend. When
new data becomes available, the frontend renders the clusters and its adjacent
nodes. The polling process continues in the background afterwards and additional
information that might appear is appended to the output.

From the user interface, one can observe the clusters and quickly identify
the interesting ones. The user is able to see all the messages that belong to a
cluster either by hovering over the nodes or by clicking the cluster and getting an
expanded view with all the messages from that cluster (see Fig. 1, where the
tweets are the blue dots, while the red on is the cluster's centroid).
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120 tweets X

@Motoma: If you were to ask me, 4 years ago, if | 4 years from now | would be running
sudo to execute Javascript, | would have shot you, #npmproblems

@javascriptd: RT @Jobs__Search: Front End Expert Needed (Javascript, Jquery Ul) | Elance
Job: hi all , | have to develop a web-app similar to ... http://??7?

@javascriptd: RT @nodenow: Node.js Foundation releases Node.js 4.0
http://t.co/P2N7cXnE5Sb #NodeJS #JavaScript

Fig. 1. Example of a cluster (red dot) with its associated tweets (blue dots) and with the menu
displaying the content of these tweets (right side of the figure)

The centroid is only used as a visual cue, making it obvious which tweets
belong together. There is no relationship or hierarchy between neighboring
clusters, but only between a centroid and the tweets associated with it. We tried to
emphasize this by drawing lines between the tweet and its centroid and by placing
centroids equally distanced from each other (see Fig. 2).

The interface presents the user a more meaningful representation of the
data: tweets that belong to the same cluster are drawn together and it is also
possible to explore the clusters and see all the messages that compose them.

200 tweets
. e o . R
L ] [ ]
-~ .
'S L 2
- ¥ ]
. . ® .
[ ..

Fig. 2. Example of a cluster with associated menu displaying the content
4. Testing and Evaluation

Much of the testing involved in the development of the application was
done on DigitalOcean (https://www.digitalocean.com/), which is a Platform as a
Service (PaaS) that offers virtual private servers. One of the most useful feature
they provide is the ability to start up, at the same time, several machines that are
capable of running the system, each with custom performance capabilities. The
servers used were equipped with 4 CPUs Intel(R) Xeon(R) CPUs and 8GB of
RAM. Using virtual machines was an ideal setup for benchmarking because even
though we used several different instances, we were able to use the same snapshot
across all of them, thus ensuring a uniform testing environment.
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The first test that we have made to benchmark Streamer was related to the
runtime performance improvements generated by its parallel implementation. In
order to do this, we have used several datasets containing from 100 to 1000
tweets. The obtained results are highlighted in Fig. 3. For the final set of data,
containing 1000 messages, the performance improvement was 588s (9,8 minutes).
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Fig. 3. Results comparison to highlight the influence of using parallelization
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Fig. 4. The impact of increasing the number of times the K-Means algorithm is run

As mentioned in the previous section, each cluster generated by the K-
Means algorithm has a different RSS value and running the algorithm multiple
times can yield better results, at the cost of the running time. In Fig. 4 we present
how using 1, 2 or 3 iterations of the K-Means algorithm impacts the running time.

In order to also evaluate the quality of clustering, we have used two
different metrics: Purity and Silhouette coefficient. To compute Purity [6], we first
determined the valid messages from each cluster. For each of our clusters we
compiled a list with the most frequent words from the cluster and then we retained
from this list only the top €. Next, the messages were investigated in order to see
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if they contain all the words from the list and those who did not where considered
to be incorrectly clustered. € was empirically determined based on the obtained
results to have the value 5. The number of correctly clustered messages is divided
by the total number of tweets in all clusters and then these values are summed.
The output of this computation is the Purity (see (3)).

purity(C) = % * Z max; (w, N¢c,) (3)
k

For evaluation, we considered the 3 scenarios, when K-Means algorithm is
run once, twice or 3 times using datasets of different sizes (from 100 to 1000
tweets). The results are presented in Table 1.

Table 1
Purity Scores

Number or runs | Average Purity score
1 0.5890248
2 0.6177107
3 0.6280095

The Silhouette coefficient is computed using (4). Intuitively, this
coefficient evaluates the clustering by both evaluating the clusters cohesion and
the separation between clusters. The best value for this coefficient is 1 and the
worst is -1, while values close to 0 indicate overlapping clusters. Thus, a negative
value for this coefficient indicates that the message should be placed in a different
cluster.

b-a
— (4)
max(a, b)

Similar to computing the Purity, for evaluating the Silhouette coefficient
we have used 1, 2, or 3 runs of K-Means algorithm and datasets having between
100 and 1000 tweets. The results are presented in Table 2. They show that
multiple runs of K-Means algorithm lead to better scores, although some tweets
are still placed in different clusters than they should.

Silhouette score =

Table 2
Silhouette Coefficient Scores
Number or runs | Average Silhouette coefficient score
1 0.3605939
2 0.55
3 0.6068415
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5. Discussion and Conclusions

Several observations can be drawn from the results. First of all, as it can be
seen from Table 1 and 2, increasing the number of runs of K-Means algorithm
lead to obtaining better results compared to the case when only a single run was
employed, both in terms of Purity and of Silhouette score. Moreover, the
clustering obtained a high purity coefficient, regardless of the number of
iterations, its value being most of the time above 0.5 showing a strong cohesion
between the elements of a cluster. At the same time, the Silhouette coefficient,
although shows some strong clusters, also contains values close or equal to -1
which corresponds to a poor clustering. Knowing that the purity function had
positive results, the main reason for the poor values of this coefficient is the inter
cluster distance (which in this case is too small). One of the reasons for this small
distance is the fact that the data is not homogenously distributed over topics: one
or more topics requested by the user are far more popular than the others, and thus
they will have more tweets. Because the initial centroids are chosen at random, it
is likely that two or more initial centroids to belong to the same topic. During the
algorithm iterations, the clusters will compete for messages related to the same
topic and their inter-cluster distance will always be small.

Other issue that affected the results, as well as the cluster rendering in the
graphical interface, is represented by the clusters that have no tweets assigned to
them (except for the initial centroid). Since the number of clusters is chosen based
on the total number of tweets, sometimes a higher value than necessary is
considered. This affects the computation of the Silhouette coefficient because a
cluster with no messages assigned will have a silhouette coefficient of -1.

In conclusion, better results can be obtained if the total number of clusters
is adjusted. One possible way of doing this is to simply decrement the total
number of clusters if at the end of an iteration a cluster has 0 messages assigned.
In turn, the number of clusters could be increased if the purity function falls under
a certain value. This would signal that some messages than do not belong to the
current cluster and would rather either belong to another existing cluster (this
would be signaled by the cluster distance component of the Silhouette coefficient)
or would rather form a new cluster.

However, even without these adjustments, the application proved to be
successful in clustering tweets, no matter of the topics they were debating on -
some of the topics we have experimented with were movies, which received a
great deal of reviews on Twitter and programming languages, in this case the
tweets being divided in two clusters: one containing links to different tutorials and
another one with job offers.
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