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PROJECTIVE J-REPRESENTATIONS ASSOCIATED WITH

PROJECTIVE u-COVARIANT (α)-COMPLETELY POSITIVE

LINEAR MAPS AND THEIR CORRESPONDING ρ-MAPS

Tania-Luminiţa Costache1

In this paper we construct a Krein space, a J-representation and a

projective J-unitary representation associated with a unital projective J-covariant

completely positive linear map. We also find a Krein space representation for a

unital projective (θ, u)-covariant α-completely positive linear map. For a given

projective unital (θ, u)-covariant α-completely positive linear map ρ and a projec-

tive (τ, σ, u)-covariant ρ-map we construct a projective covariant J-representation

of a C∗-dynamical system. We form projective J-unitary representations associ-

ated to a projective (u, u′)-covariant completely positive ρ-maps. Also, we prove

that there is a projective covariant representation associated with a projective co-

variant α-completely positive linear map on an S-module.
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1. Introduction

Krein spaces as indefinite generalization of Hilbert spaces were first used in

the quantum field theory by Dirac [6] and Pauli [17] and then formally defined by

Ginzburg [7]. Krein spaces arise naturally in situations where the indefinite inner

product has an analitically useful property (such as Lorentz invariance) which the

Hilbert inner product lacks. Motivated by the physical fact that in massless quan-

tum field theory the state space may be a space with an indefinite metric, many

authors extended the GNS construction to Krein spaces. Heo, Hong, Ji [9] pro-

vided a KSGNS type representation on a Krein C∗-module for a C∗-algebra and a

∗-algebra introducing the notion of α-completely positive map as a generalization

of a completely positive map. Moreover, Heo and Ji [10] constructed a Stinespring

type covariant representation for a pair of a covariant completely positive map ρ and

a covariant ρ-map. In [13], Heo introduced the notion of a covariant α-completely

positive map of a topological group into a (locally) C∗-algebra, which is a counter-

part of a covariant α-completely positive linear map between (locally) C∗-algebra

[9], [11] and constructed a covariant KSGNS type representation of a group on a
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Krein module over a (locally) C∗-algebra, which is associated to a covariant α-

completely positive map of a group system. In [16], M. S. Moslehian, M. Joiţa and

U. C. Ji proved a KSGNS type theorem for α-completely positive maps on Hilbert

C∗-modules and showed that the minimal KSGNS construction is unique up to uni-

tary equivalence and studied a covariant version of the KSGNS type theorem for

a covariant α-completely positive map. S. Dey and H. Trivedi introduced in [5]

S-modules, generalizing the notion of Krein C∗-modules, where a fixed unitary re-

places the symmetry of Krein C∗-modules and proved a KSGNS construction for

α-completely positive maps in the context of S-modules.

In this paper we construct a Krein space, a J-representation and a projec-

tive J-unitary representation associated with a unital projective J-covariant com-

pletely positive linear map. We also find a Krein space representation for a uni-

tal projective (θ, u)-covariant α-completely positive linear map. For a given pro-

jective unital (θ, u)-covariant α-completely positive linear map ρ and a projective

(τ, σ, u)-covariant ρ-map we construct a projective covariant J-representation of a

C∗-dynamical system. We form projective J-unitary representations associated to

a projective (u, u′)-covariant completely positive ρ-maps. Also, we prove that there

is a projective covariant representation associated with a projective covariant α-

completely positive linear map on an S-module.

First we remind and introduce some notions and definitions that we’ll use in

what follows.

Definition 1.1. [9] Let H be a Hilbert space with the inner product (·|·) which is

linear in the second variable and conjugate linear in the first variable. A fundamental

symmetry J on H (i.e. J = J∗, J2 = I sau J = J∗ = J−1) induces an indefinite

inner product [x, y]J := (Jx|y) (x, y ∈ H) and the pair (H,J) is called Krein space

or J-space.

For each T ∈ L(H), there is an operator T J ∈ L(H) such that [Tξ, η]J =

= [ξ, T Jη]J , ξ, η ∈ H and then T J is called the J-adjoint of T . It can be easily

seen that T J = JT ∗J .

Let B be a C∗-algebra and let (H, J) be a Krein space. We denote by UJ(H)

the set of all J-unitary operators in L(H), i.e for each s ∈ G, uJs us = usu
J
s = I,

which is equivalent to u∗s = Jus−1J or uJs = us−1 . UJ(H) is called the J-unitary

group.

Definition 1.2. A projective J-unitary representation of a locally compact

group G into the J-unitary group UJ(H) is a map u : G→ UJ(H) that satisfies the

following properties:

(i) u∗s = Jus−1J or uJs = us−1 ;

(ii) ust = ω(s, t)usut for all s, t ∈ G

Definition 1.3. Let (G,A, θ) be a C∗-dynamical system and let u be a projective

J-unitary representation of G on a Krein space (H, J). We say that a completely
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positive linear map ρ from A to L(H) is projective J-covariant with respect to

the C∗-dynamical system (G,A, θ) if ρ(θs(a)) = usρ(a)u
J
s for all a ∈ A and s ∈ G.

Definition 1.4. ([8]) Let A be a C∗-algebra and let (H,J) be a Krein space. A rep-

resentation π : A→ L(H) of A on the Hilbert space H is called a J-representation

on the Krein space (H, J) if π is a representation of A on the Hilbert space H and

π(a∗) = π(a)J = Jπ(a)∗J, a ∈ A.

Definition 1.5. A projective covariant J-representation of a C∗- dynami-

cal system (G,A, θ) on a Krein space (H, J) is a triple (π, u, (H, J)), where π

is a J-representation of A on (H, J) and u is a projective J-unitary representa-

tion of G into UJ(H) such that the (θ, u)-covariance property holds: π(θs(a)) =

usπ(a)u
J
s for all a ∈ A and s ∈ G.

2. Main results

Following the results in [4] , we rewrite and prove them for Krein spaces.

Theorem 2.1. Let (G,A, θ) be a unital C∗-dynamical system such that θ2s = IA(=the

identity map on A), for all s ∈ G, (H, J) a Krein space and u a projective J-unitary

representation of G on H with the normalized multiplier ω. If ρ : A→ L(H) is a uni-

tal projective J-covariant completely positive linear map, then there are a Krein space

(K,J), a J-representation π of A on the Krein space (K,J), a projective J-unitary

representation v of G into UJ(K) with multiplier ω and an isometry V : H → K

such that:

i) ρ(a) = V ∗π(a)V for all a ∈ A;

ii) us = V ∗vsV for all s ∈ G;

iii) π(θs(a)) = vsπ(a)v
J
s , for all a ∈ A and s ∈ G.

Proof. Following the proof of Stinespring’s Theorem (Th.1.1.1, [1]), we form the

algebraic tensor product A⊗algH and endow it with a pre-inner product by setting

⟨a⊗ ξ, b⊗ η⟩A⊗algH
= (ξ|ρ(θs(a∗)b)η)H . To obtain K we divide A ⊗alg H by the

kernel N =
{
z ∈ A⊗algH|⟨z, z⟩A⊗algH = 0

}
of ⟨·, ·⟩A⊗algH

and complete. K becomes

a Hilbert space with respect to the inner product given by ⟨x1 +N, x2 +N⟩K =

= ⟨x1, x2⟩A⊗algH
, x1, x2 ∈ A⊗alg H.

The map θ induces a linear involution J on the quotient space A⊗algH/N by

J(a⊗ ξ +N) = θs(a)⊗ ξ +N.

We define an indefinite inner product [·, ·]J on the quotient space A⊗algH/N

by [a⊗ ξ +N, b⊗ η +N ]J = (ξ|ρ(a∗b)η)H .
We have ⟨J(a⊗ ξ +N), b⊗ η +N⟩K = ⟨θs(a)⊗ ξ +N, b⊗ η +N⟩K =

= ⟨θs(a)⊗ ξ, b⊗ η⟩A⊗algH
= (ξ|ρ(θs(θs(a)∗)b)η)H = (ξ|ρ(θs(θs(a∗))b)η)H =

= (ξ|ρ(θ2s(a∗)b)η)H = (ξ|ρ(a∗b)η)H = [a⊗ ξ +N, b⊗ η +N ]J , for all a, b ∈ A, ξ, η ∈
H, s ∈ G. So (K,J) becomes a Krein space.

For all a ∈ A we define a linear map π(a) : K → K by

π(a)(b⊗ ξ +N) = (ab)⊗ ξ +N,
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for all ξ ∈ H, b ∈ A.

For a1, a2, b ∈ A, ξ, η ∈ H, we have ⟨π(b)(a1 ⊗ ξ +N), a2 ⊗ η +N⟩K =

= ⟨ba1 ⊗ ξ +N, a2 ⊗ η +N⟩K = (ξ|ρ(θs((ba1)∗a2)η)H = (ξ|ρ(θs(a∗1b∗)a2)η)H
On the other hand, ⟨a1 ⊗ ξ +N, Jπ(b∗)J(a2 ⊗ η +N)⟩K =

= ⟨a1 ⊗ ξ +N, Jπ(b∗)(θs(a2)⊗ η +N)⟩K = ⟨a1 ⊗ ξ +N, J(b∗θs(a2)⊗ η +N)⟩K =

= ⟨a1 ⊗ ξ +N, θs(b
∗θs(a2))⊗ η +N)⟩K =

⟨
a1 ⊗ ξ +N, θs(b

∗)θ2s(a2)⊗ η +N)
⟩
K

=

= ⟨a1 ⊗ ξ +N, θs(b
∗)a2 ⊗ η +N)⟩K = ⟨a1 ⊗ ξ, θs(b

∗)a2 ⊗ η⟩A⊗algH
=

= (ξ|ρ(θs(a∗1)θs(b∗)a2)η)H = (ξ|ρ(θs(a∗1b∗)a2)η)H
Hence, π(b)∗ = Jπ(b∗)J and π is a J-representation.

We define a linear map V : H → K by V ξ = 1A ⊗ ξ +N .

For ξ, η ∈ H and a ∈ A, we have ⟨V ξ, a⊗ η +N⟩K =

= ⟨1A ⊗ ξ +N, a⊗ η +N⟩K = (ξ|ρ(θs(1∗A)a)η)H = (ξ|ρ(θs(1A)a)η)H = (ξ|ρ(a)η)H
which implies that V ∗(a⊗ η +N) = ρ(a)η, so V is an isometry.

For ξ, η ∈ H and a ∈ A, we have

(ξ|V ∗π(a)V η)H = (ξ|V ∗π(a)(1A ⊗ η +N))H = (ξ|V ∗(a⊗ η +N))H =

= (ξ|ρ(a)η)H , so V ∗π(a)V = ρ(a) and i) is verified.

We define v : G→ UJ(K) by setting

vs(a⊗ ξ +N) = θs(a)⊗ usξ +N for all a ∈ A, s ∈ G, ξ ∈ H.

For a, b ∈ A and ξ, η ∈ H, we have ⟨vs(a⊗ ξ +N), b⊗ η +N⟩K =

= ⟨θs(a)⊗ usξ +N, b⊗ η +N⟩K = ⟨θs(a)⊗ usξ, b⊗ η⟩A⊗algH
=

= (usξ|ρ(θs(θs(a)∗)b)η)H = (usξ|ρ(θs(θs(a∗))b)η)H = (usξ|ρ(θ2s(a∗)b)η)H =

= (usξ|ρ(a∗b)η)H
On the other hand, we have ⟨a⊗ ξ +N, Jvs−1J(b⊗ η +N)⟩K =

= ⟨a⊗ ξ +N, Jvs−1(θs(b)⊗ η +N)⟩K = ⟨a⊗ ξ +N, J(θs−1(θs(b))⊗ us−1η +N)⟩K =

= ⟨a⊗ ξ +N, J(b⊗ us−1η +N)⟩K = ⟨a⊗ ξ +N, θs(b)⊗ us−1η +N⟩K =

= (ξ|ρ(θs(a∗)θs(b))us−1η)H = (ξ|ρ(θs(a∗b))us−1η)H = (ξ|u∗sρ(a∗b)η)H = (usξ|ρ(a∗b)η)H
Therefore, v∗s = Jvs−1J , which means that vs is a J-unitary representation.

We show now that v is a projective representation with multiplier ω. Let

a ∈ A, s, t ∈ G, ξ ∈ H. Since θ is a group homomorphism and u is a projective

representation with the multiplier ω, we have vst(a⊗ ξ +N) =

= θst(a)⊗ ustξ +N = θs(a)θt(a)⊗ ω(s, t)usutξ +N =

= ω(s, t)θs(θt(a))⊗ us(utξ) +N = ω(s, t)vs(θt(a)⊗ utξ +N) =

= ω(s, t)vsvt(a⊗ ξ +N).

We verify now condition ii). Let s ∈ G and ξ ∈ H. We have V ∗vsV ξ =

= V ∗vs(1A ⊗ ξ +N) = V ∗(θs(1A)⊗ usξ +N) = V ∗(1A ⊗ usξ +N) = ρ(1A)usξ =

= IHusξ = usξ, because ρ is unital.

We prove condition iii). Let a, b ∈ A, s ∈ G, ξ ∈ H.

Then vsπ(a)v
J
s (b⊗ ξ +N) = vsπ(a)vs−1(b⊗ ξ +N) =

= vsπ(a)(θs−1(b)⊗ us−1ξ +N) = vs(aθs−1(b)⊗ us−1ξ +N) =

= θs(aθs−1(b))⊗ usus−1ξ +N) = θs(a)θs(θs−1(b))⊗ ω(s, s−1)uss−1ξ +N =

= θs(a)b⊗ IHξ +N = θs(a)b⊗ ξ +N = π(θs(a))(b⊗ ξ +N). �
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Definition 2.1. Let (G,A, θ) be a C∗-dynamical system and let u be a projective

unitary representation of G on a Hilbert space H. We say that an α-completely

positive linear map φ from A to L(H) is projective (θ, u)-covariant with respect

to the C∗-dynamical system (G,A, θ) if φ(αs(a)) = usφ(a)u
∗
s for all a ∈ A and

s ∈ G.

Theorem 2.2. Let (G,A, θ) be a unital C∗-dynamical system such that θ2s = IA, let

u be a projective unitary representation of G on a Hilbert space H with the normalized

multiplier ω. If ρ : A → L(H) is a unital projective (θ, u)-covariant α-completely

positive linear map, where θ and α are equivariant, then there are a Krein space

(K,J), a J-representation π of A on the Krein space (K,J), a projective J-unitary

representation v of G into UJ(K) with multiplier ω and an isometry V : H → K

such that:

i) ρ(a) = V ∗π(a)V for all a ∈ A;

ii) us = V ∗vsV for all s ∈ G;

iii) π(θs(a)) = vsπ(a)v
J
s , for all a ∈ A and s ∈ G.

Proof. Following the proof of Theorem 2.1 and endow the algebraic tensor product

A⊗alg H with a pre-inner product by setting

⟨a⊗ ξ, b⊗ η⟩A⊗algH
= (ξ|ρ(α(a∗)b)η)H .

We divide A⊗algH by the kernel N =
{
z ∈ A⊗algH|⟨z, z⟩A⊗algH = 0

}
of ⟨·, ·⟩A⊗algH

and complete and thus we obtain K, which becomes a Hilbert space with respect to

the inner product given by ⟨x1 +N,x2 +N⟩K = ⟨x1, x2⟩A⊗algH
, x1, x2 ∈ A⊗alg H.

The map α induces a linear involution J on the quotient space A ⊗alg H/N

by J(a⊗ ξ +N) = α(a)⊗ ξ +N.

We define an indefinite inner product [·, ·]J on the quotient space

A⊗alg H/N by [a⊗ ξ +N, b⊗ η +N ]J = (ξ|ρ(a∗b)η)H .
We have ⟨J(a⊗ ξ +N), b⊗ η +N⟩K = ⟨α(a)⊗ ξ +N, b⊗ η +N⟩K =

= ⟨α(a)⊗ ξ, b⊗ η⟩A⊗algH
= (ξ|ρ(α(α(a)∗)b)η)H = (ξ|ρ(α2(a∗)b)η)H =

= (ξ|ρ(a∗b)η)H = [a⊗ξ+N, b⊗η+N ]J , for all a, b ∈ A, ξ, η ∈ H. So (K,J) becomes

a Krein space.

We define a linear map π(a) : A⊗algH → A⊗algH as in the proof of Theorem

2.1: π(a)(b⊗ ξ) = (ab)⊗ ξ for all a, b ∈ A and ξ ∈ H.

We have ⟨π(a)(b⊗ ξ), π(a)(b⊗ ξ)⟩A⊗algH
= ⟨(ab)⊗ ξ, (ab)⊗ ξ⟩A⊗algH

=

= (ξ|ρ(α((ab)∗)ab)ξ)H = (ξ|ρ(α(ab)∗ab)ξ)H ≤ c(a)(ξ|ρ(α(b)∗b)ξ)H =

= c(a) ⟨b⊗ ξ, b⊗ ξ⟩A⊗algH

Therefore π(a) leaves N -invariant and naturally define a linear transformation

on A ⊗alg H/N . Since π(a) is bounded, π(a) extends to a bounded linear operator

on K and it is denoted also by π(a).

We prove that π is a J-representation. Let a1, a2, b ∈ A and ξ, η ∈ H. We

have ⟨π(b)(a1 ⊗ ξ +N), a2 ⊗ η +N⟩K = ⟨ba1 ⊗ ξ +N, a2 ⊗ η +N⟩K =

= (ξ|ρ(α((ba1)∗)a2)η)H = (ξ|ρ(α(a∗1b∗)a2)η)H .
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On the other hand, ⟨a1 ⊗ ξ +N, Jπ(b∗)J(a2 ⊗ η +N)⟩K =

= ⟨a1 ⊗ ξ +N, Jπ(b∗)(α(a2)⊗ η +N)⟩K = ⟨a1 ⊗ ξ +N, J(b∗α(a2)⊗ η +N)⟩K =

= ⟨a1 ⊗ ξ +N,α(b∗α(a2))⊗ η +N)⟩K =
⟨
a1 ⊗ ξ +N,α(b∗)α2(a2)⊗ η +N)

⟩
K

=

= ⟨a1 ⊗ ξ +N,α(b∗)a2 ⊗ η +N)⟩K = (ξ|ρ(α(a∗1)α(b∗)a2)η)H = (ξ|ρ(α(a∗1b∗)a2)η)H .

This means that π(b)∗ = Jπ(b∗)J .

We define V as in Theorem 2.1 and prove i) as in the proof of Theorem 2.1.

We define v : G→ UJ(K) by setting

vs(a⊗ ξ +N) = θs(a)⊗ usξ +N for all a ∈ A, s ∈ G, ξ ∈ H.

Let a, b ∈ A, s ∈ G and ξ, η ∈ H. We have ⟨vs(a⊗ ξ +N), b⊗ η +N)⟩K =

= ⟨θs(a)⊗ usξ +N, b⊗ η +N)⟩K = (usξ|ρ(α(θs(a)∗)b)η)H =

= (usξ|ρ(α(θs(a∗)b)η)H = (usξ|ρ(α(θs(a∗))α(α(b)))η)H =

= (usξ|ρ(α(θs(a∗)α(b)))η)H = (usξ|ρ(θs(a∗)α(b))η)H =

= (ξ|us−1ρ(θs(a
∗)α(b))η)H = (ξ|us−1ρ(α(θs(a

∗)α(b)))η)H =

= (ξ|us−1ρ(α(θs(a
∗))α(α(b))))η)H = (ξ|us−1ρ(θs(α(a

∗))b)η)H =

= (ξ|us−1ρ(θs(α(a
∗)θs−1(b))η)H

On the other hand, ⟨a⊗ ξ +N, Jvs−1J(b⊗ η +N)⟩K =

= ⟨a⊗ ξ +N, Jvs−1(α(b)⊗ η +N)⟩K = ⟨a⊗ ξ +N, J(θs−1(α(b))⊗ us−1η +N)⟩K =

= ⟨a⊗ ξ +N,α(θs−1(α(b)))⊗ us−1η +N)⟩K = (ξ|ρ(α(a∗)α(θs−1(α(b))))us−1η)H =

= (ξ|ρ(α(a∗θs−1(α(b))))us−1η)H = (ξ|ρ(a∗θs−1(α(b)))us−1η)H =

= (ξ|ρ(a∗α(θs−1(b)))us−1η)H = (ξ|ρ(α(α(a∗))α(θs−1(b)))us−1η)H =

= (ξ|ρ(α(α(a∗)θs−1(b)))us−1η)H = (ξ|ρ(α(a∗)θs−1(b))us−1η)H
By the covariance of ρ, we get that

⟨vs(a⊗ ξ +N), b⊗ η +N)⟩K = ⟨a⊗ ξ +N, Jvs−1J(b⊗ η +N)⟩K ,

so v is a J-representation.

As in the proof of Theorem 2.1 we can prove that v is a projective represen-

tation and that ii) and iii) hold.

�

We rewrite the definition in [12] for projective unitary representations and

Krein spaces.

Definition 2.2. Let (G,A, α) be a C∗-dynamical system and let (H, JH) be a Krein

space. A group homomorphism τ from G into UJH (H) such that for any s ∈ G, a ∈ A

and ξ, ξ′ ∈ H,

i) τs(ξa) = τs(ξ)θs(a)

ii) [τs(ξ), τs(ξ
′)]JH = θs([ξ, ξ

′]JH )

is called a θ-compatible action of G on (H, JH). Let (K,JK) and (L, JL) be Krein

spaces. For a θ-compatible action τ of G on (H, JH) and a map Φ: H → L(K,L), if

there are a projective JK- unitary representation v : G → UJK (K) and a projective

JL-unitary representation σ : G → UJL(L) such that Φ(τs(ξ)) = σsΦ(ξ)v
JK
s for any

ξ ∈ H and s ∈ G, then Φ is called projective (τ, σ, v)-covariant.
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In the following theorem we construct a projective covariant representation

associated to a pair of two projective covariant maps as in [12].

Theorem 2.3. Let H,K,L be Hilbert spaces, (G,A, θ) a C∗-dynamical system such

that θ2s = IA and u : G→ U(H) a projective unitary representation with the normal-

ized multiplier ω. If ρ : A→ L(K) is a unital projective (θ, u)-covariant α-completely

positive map, where θ and α are equivariant and if Φ: H → L(K,L) is a projective

(τ, σ, v)-covariant ρ-map, then there is a pair ((π, V, (K1, J)), (Π,W,L1)) such that

i) (K1, J) is a Krein space and L1 is a Hilbert space

ii) π : A→ L(K1) is a J-representation

iii) Π: H → L(K1, L1) is a J ◦ π-map

iv) V ∈ L(K,K1) is an isometry and W ∈ L(L,L1) is a projection satisfying

conditions (i)-(iii) in Theorem 4.4, [9] and Φ(ξ) =W ∗Π(ξ)V for all ξ ∈ H.

Moreover, there is a projective J-unitary representation v and a map

σ′ : G→ U(L1) such that

(1) (π, v, (K1, J)) is a projective covariant J-representation of (G,A, θ)

(2) Π is projective (τ, σ′, v)-covariant.

Proof. By Theorem 2.2, there are a Krein space K1, a J-representation π : A →
L(K1), a projective J-unitary representation v : G → UJ(K) and an operator V ∈
L(K,K1) such that conditions (i)-(iii) in Theorem 2.2 hold.

We prove the existence of L1,Π,W, σ
′ as in the proof of Theorem 3.2, [12]. �

We remind some notions and remarks in [2], [18] and [16].

A morphism of Hilbert C∗-modules [2] or a generalized isometry [18] is

a map ψ : E → F from a Hilbert A-module E to a Hilbert B-module F with the

property that there is a C∗-morphism φ : A→ B such that ⟨ψ(x), ψ(y)⟩ = φ(⟨x, y⟩)
for all x, y ∈ E. A map ψ : E → F is an isomorphism of Hilbert C∗-modules if

it is invertible, ψ and ψ−1 are morphisms of Hilbert C∗-modules.

Let G be a locally compact group. A continuous action of G on a full Hilbert

A-module E is a group morphism η : G→ Aut(E), where Aut(E) is the group of all

isomorphisms of Hilbert C∗-modules from E to E, such that the map (t, x) 7−→ ηt(x)

from G×E to E is continuous. The triple (G,E, η) is called a dynamical system

on Hilbert C∗-modules. Any C∗-dynamical system (G,A, θ) can be regarded

as a dynamical system on Hilbert C∗-modules. Any continuous action η of G on E

induces a unique continuous action θη of G on A such that θηs (⟨x, y⟩) = ⟨ηs(x), ηs(y)⟩
for all x, y ∈ E, s ∈ G [16].

Definition 2.3. Let u and u′ be two projective unitary representations of G on the

Hilbert spaces H and K, E a Hilbert module and (G,E, η) a dynamical system. A

ρ-map Φ: E → L(H,K) is projective (u′, u)-covariant with respect to (G,E, η) if

Φ(ηs(x)) = u′sΦ(x)u
∗
s for all x ∈ E, s ∈ G and θηs ◦ α =

= α ◦ θηs for all s ∈ G.
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Remark 2.1. Clearly, if ρ : E → L(H) is a completely positive map projective

u-covariant with respect to the C∗-dynamical system (G,A, θ), then it is projec-

tive (u, u)-covariant with respect to the dynamical system on Hilbert C∗-modules

(G,A, θ).

Remark 2.2. Let Φ: E → L(H,K) be a ρ-map. If Φ is projective (u′, u)-covariant

with respect to (G,E, η), then ρ is projective u-covariant with respect to θη, which

means that ρ(θηs (a)) = usρ(a)u
∗
s for all a ∈ A, s ∈ G.

Definition 2.4. Let (G,E, η) be a dynamical system on Hilbert C∗-modules. A

projective covariant representation of (G,E, η) is a quadruple (π, v, w,H,K)

consists of two Hilbert spaces H and K, a representation π : E → L(H,K), a pro-

jective unitary representation v of G on H, a projective unitary representation w of

G on K such that π(ηs(x)) = wsπ(x)v
∗
s for all x ∈ E, s ∈ G.

Clearly, any projective covariant representation of a C∗-dynamical system

(G,A, θ) is a projective covariant representation of (G,A, θ) regarded as dynami-

cal system on Hilbert C∗-modules.

We prove now the projective version of Theorem 3.4 in [15] in terms of Krein

spaces.

Theorem 2.4. Let E be a Hilbert C∗-module over a C∗-algebra A, (G,E, η) be a

dynamical system (H,J1) and (K,J2) two Krein spaces, u : G → L(H) a projec-

tive J1-unitary representation, u′ : G→ L(K) a projective J2-unitary representation

with the normalized multiplier ω, ρ : A → L(H) a unital projective J1-covariant

completely positive map with respect to (G,A, αη) and Φ: E → L(H,K) a unital

completely positive map projective (u, u′)-covariant ρ-map with respect to (G,E, η).

Then there are two Krein spaces (HΦ, J1) and (KΦ, J2), a J1-representation π : A→
L(HΦ), v

Φ a projective J1-unitary representation of G on HΦ, w
Φ a projective J2-

unitary representation of G on KΦ, a J1 ◦π-map πΦ : E → L(HΦ,KΦ), an isometry

VΦ : H → HΦ and a coisometry WΦ : K → KΦ such that

(a) Φ(ξ) =W ∗
ΦπΦ(ξ)VΦ for all ξ ∈ E

(b) vΦs VΦ = VΦus for all s ∈ G

(c) wΦ
s WΦ =WΦu

′
s for all s ∈ G

(d) [πΦ(E)VΦH] = KΦ

(e) [πΦ(E)∗WΦK] = HΦ

Proof. By Theorem 2.1, there are a Krein space (HΦ, J1), a J1-representation π : A→
L(HΦ), a projective J1-unitary representation vΦ of G on HΦ and an isometry

VΦ : H → HΦ such that

i) ρ(a) = V ∗
Φπ(a)VΦ for all a ∈ A;

ii) uΦs = V ∗
Φv

Φ
s VΦ for all s ∈ G;

iii) π(αη
s(a)) = vΦs π(a)(v

Φ
s )

J , for all a ∈ A and s ∈ G.

By Theorem 2.1 and Theorem 2.3, following the proof of Theorem 3.4, [15], we

complete the proof. �
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Definition 2.5. ([5]) Let (E, ⟨·, ·⟩) be a Hilbert C∗-module over a C∗-algebra A and

let U be a unitary on E, i.e. U is an invertible adjointable map on E such that

U∗ = U−1. We define an A-valued sesquilinear form by [x, y] = ⟨x,Uy⟩ for all

x, y ∈ E. We say that (E,A,U) is an S-module. If U = I, then ⟨·, ·⟩ and [·, ·]
coincide for the S-module (E,A,U). When U = U∗, the S-module (E,A,U) forms

a Krein A-module.

Let (E1, B, U1) and (E2, B, U2) be two S-modules, where E1 and E2 are Hilbert

C∗-modules over a C∗-algebra B. For each T ∈ L(E1, E2) there is an operator

T ♯ ∈ L(E2, E1) such that ⟨T (x), U2y⟩ =
⟨
x,U1T

♯(y)
⟩
for all x ∈ E1, y ∈ E2. In fact

T ♯ = U∗
1T

∗U2.

Suppose A is a C∗-algebra and (E,B,U) is an S-module. A homomor-

phism π : A → L(E) is called an U-representation of A on (E,B,U) if π(a∗) =

U∗π(a)∗U = π(a)♯, i.e. [π(a)x, y] = [x, π(a∗)y] for all x, y ∈ E.

Definition 2.6. A projective U-unitary representation with the multiplier ω

of a locally compact group G into U(E) is a map v : G → U(E) that satisfies the

following properties:

i) v∗s = Uvs−1U or vUs = vs−1

ii) vst = ω(s, t)vsvt for all s, t ∈ G.

Definition 2.7. A projective covariant U-representation of a C∗- dynamical

system (G,A, θ) on an S-module (E,B,U) is a triple (π, v, (E,B,U)), where π is an

U -representation of A on (E,B,U) and v is a projective U -unitary representation

of G into U(E) such that π(θs(a)) = vsπ(a)v
U
s for all a ∈ A and s ∈ G.

Definition 2.8. Let (G,A, θ) be a C∗-dynamical system, B a C∗-algebra, (E,B,U)

an S-module and v a projective U -unitary representation of G into U(E). We say

that a completely positive linear map ρ from A to L(E) is projective U-covariant

with respect to the C∗-dynamical system (G,A, θ) if ρ(θs(a)) = vsρ(a)v
U
s for all

a ∈ A and s ∈ G.

Theorem 2.5. Let A and B two unital C∗-algebras and α : A → A an automor-

phism. Let (E,B,U) be an S-module, (G,A, θ) be a C∗-dynamical system and v

a projective U -unitary representation of G on E with the normalized multiplier ω.

If ρ : A → L(E) is a unital projective U -covariant α-completely positive map, then

there are

(i) a Hilbert B-module E0 and a unitary U0 such that (E0, B, U0) is an S-module;

(ii) a map V ∈ L(E,E0) such that V ♯ = V ∗, an U0-representation π0 of A on

(E0, B, U0) satisfying V ∗π0(a)
∗π0(b)V = V ∗π0(α(a)

∗b)V for all a, b ∈ A and

ρ(a) = V ∗π0(a)V for all a ∈ A;

(iii) a projective U0-unitary representation w of G into U(E0) with the multiplier

ω;

(iv) π(θs(a)) = wsπ(a)w
U0
s for all a ∈ A and s ∈ G.
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Proof. (i) Following the proof of Lemma 4.1, [9], we form the algebraic tensor product

A⊗alg E and endow it with a pre-inner product by setting

⟨
n∑

i=1

ai ⊗ xi,
m∑
j=1

a′j ⊗ yj

⟩
=

n∑
i=1

m∑
j=1

⟨
xi, ρ(α(a

∗
i )a

′
j)yj

⟩

for all a1, a2, . . . , an, a
′
1, a

′
2, . . . , a

′
m ∈ A, x1, x2, . . . , xn, y1, y2, . . . , ym ∈ E.

By Cauchy-Schwarz inequality for positive-definite sesquilinear forms we ob-

serve that N =
{ n∑
i=1

ai ⊗ xi ∈ A⊗alg E/
n∑

i,j=1

⟨xi, ρ(α(a∗i )aj)xj⟩ = 0
}
is a submodule

of A ⊗alg E. Therefore ⟨·, ·⟩ induces naturally on the quotient module A ⊗alg E/N

as a B-valued inner product. We denote this inner product also by ⟨·, ·⟩. To obtain

E0 we divide A ⊗alg E by the kernel N and complete and E0 becomes a Hilbert

B-module.

We define U0 by U0(
n∑

i=1

ai ⊗ xi +N) =
n∑

i=1

α(ai)⊗ Uxi +N for all

ai ∈ A, xi ∈ E, i = 1, n.

For all ai, a
′
j ∈ A, xi, yj ∈ E, i = 1, n, j = 1,m we have⟨

U0(

n∑
i=1

ai ⊗ xi +N), U0(

m∑
j=1

a′j ⊗ yj +N)

⟩
=

=

⟨
n∑

i=1

α(ai)⊗ Uxi +N,
m∑
j=1

α(a′j)⊗ Uyj +N

⟩
=

=

n∑
i=1

m∑
j=1

⟨
Uxi, ρ(α(α(ai)

∗)α(a′j))Uyj
⟩
=

n∑
i=1

m∑
j=1

⟨
xi, ρ(α(ai)

∗)a′j)yj
⟩
=

=

⟨
n∑

i=1

ai ⊗ xi +N,
m∑
j=1

a′j ⊗ yj +N

⟩
, so U0 is unitary.

Since

⟨
U0(

n∑
i=1

ai ⊗ xi +N),

m∑
j=1

a′j ⊗ yj +N

⟩
=

=

n∑
i=1

m∑
j=1

⟨
α(ai)⊗ Uxi +N, a′j ⊗ yj +N

⟩
=

n∑
i=1

m∑
j=1

⟨
Uxi, ρ(α(α(ai)

∗a′j))yj
⟩
=

=
n∑

i=1

m∑
j=1

⟨
xi, ρ(α(a

∗
i )α

−1(a′j))U
∗yj

⟩
=

⟨
n∑

i=1

ai ⊗ xi +N,
m∑
j=1

α−1(a′j)⊗ U∗yj +N

⟩
,

we get U∗
0 (

m∑
j=1

a′j ⊗ yj +N) =

m∑
j=1

α−1(a′j)⊗ U∗yj +N

(ii) We define V : E → E0 by V x = 1A ⊗ Ux+N, x ∈ E.

∥V x∥2 = ∥ ⟨V x, V x⟩ ∥ = ∥ ⟨1A ⊗ Ux+N, 1A ⊗ Ux+N⟩ ∥ =

= ∥ ⟨Ux, ρ(1A)Ux⟩ ∥ ≤ ∥ρ(1A)∥ · ∥x∥2, then V is bounded.

For each a1, a2, . . . , an ∈ A and x, y1, y2, . . . , yn ∈ E, we have



Projective J-representations associated with projective u-covariant (α)-completely positive linear maps 21⟨
V x,

n∑
i=1

ai ⊗ yi +N

⟩
=

⟨
1A ⊗ Ux+N,

n∑
i=1

ai ⊗ yi +N

⟩
=

=

⟨
Ux,

n∑
i=1

ρ(α(1A)ai)yi

⟩
=

⟨
x,

n∑
i=1

U∗ρ(ai)yi

⟩
=

⟨
x,

n∑
i=1

ρ(ai)U
∗yi

⟩
(1)

From Lemma 2.8, [9], there is M > 0 such that ρ(a∗i )ρ(aj) ≤Mρ(α(a∗i )aj).

Hence, for a1, a2, . . . , an ∈ A, y1, y2, . . . , yn ∈ E, we have

∥
n∑

i=1

ρ(ai)U
∗yi∥2 = ∥

⟨
n∑

i=1

ρ(ai)U
∗yi,

n∑
j=1

ρ(aj)U
∗yj

⟩
∥ =

= ∥
n∑

i,j=1

⟨U∗yi, ρ(a
∗
i )ρ(aj)U

∗yj⟩ ∥ ≤M∥
n∑

i,j=1

⟨U∗yi, ρ(α(a
∗
i )aj)Uyj⟩ ∥ =

=M∥
n∑

i=1

ai ⊗ yi +N∥2 (2)

By (1) and (2) it results that V is an adjointable map with the adjoint

V ∗(
n∑

i=1

ai ⊗ xi +N) =
n∑

i=1

ρ(ai)U
∗xi, ai ∈ A, xi ∈ E, i = 1, n.

Let a1, a2, . . . , an ∈ A, x1, x2, . . . , xn ∈ E. We have

V ♯(

n∑
i=1

ai ⊗ xi +N) = U∗V ∗U0(

n∑
i=1

ai ⊗ xi +N) =

= U∗V ∗(
n∑

i=1

α(ai)⊗ Uxi +N) = U∗(
n∑

i=1

ρ(α(ai))U
∗Uxi) = U∗(

n∑
i=1

ρ(α(ai))xi) =

= V ∗(

n∑
i=1

ai ⊗ xi +N). This implies that V ♯ = V ∗.

We define π′0 : A→ L(E0) by π
′
0(a)(

n∑
i=1

ai ⊗ xi +N) =

n∑
i=1

aai ⊗ xi +N for all

a, a1, a2, . . . , an ∈ A, x1, x2, . . . , xn ∈ E.

We have ∥π′0(a)(
n∑

i=1

ai ⊗ xi +N)∥2 = ∥
n∑

i=1

aai ⊗ xi +N∥2 =

= ∥

⟨
n∑

i=1

aai ⊗ xi +N,
n∑

j=1

aaj ⊗ xj +N

⟩
∥ = ∥

n∑
i,j=1

xi, ρ(α(a
∗
i a

∗)aaj)xj∥ ≤

≤M(a)∥
n∑

i,j=1

⟨xi, ρ(α(a∗i )aj)xj⟩ ∥ =M(a)∥
n∑

i=1

ai⊗xi+N∥2 for all a, a1, a2, . . . , an ∈

A, x1, x2, . . . , xn ∈ E.

Thus for each a ∈ A, π′0(a) is a well defined bounded linear operator from E0

to E0.
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Using

⟨
π′0(a)(

n∑
i=1

ai ⊗ xi +N),
m∑
j=1

a′j ⊗ x′j +N

⟩
=

=

⟨
n∑

i=1

aai ⊗ xi +N,

m∑
j=1

a′j ⊗ x′j +N

⟩
=

n∑
i=1

m∑
j=1

⟨
xi, ρ(α(a

∗
i a

∗)a′j)x
′
j

⟩
=

=
n∑

i=1

m∑
j=1

⟨
xi, ρ(α(a

∗
i )α(a

∗)a′j)x
′
j

⟩
=

⟨
n∑

i=1

ai ⊗ xi +N,
m∑
j=1

α(a∗)a′j ⊗ x′j +N

⟩

U0π
′
0(a

∗)U∗
0 (

m∑
j=1

a′j ⊗ x′j +N) = U0π
′
0(a

∗)(

m∑
j=1

α−1(a′j)⊗ U∗x′j +N) =

= U0(

m∑
j=1

(a∗α−1(a′j))⊗ U∗x′j +N) =

m∑
j=1

α(a∗)a′j ⊗ x′j +N for all a1, a2, . . . , an,

a′1, a
′
2, . . . , a

′
m ∈ A and x1, x2, . . . , xn, x

′
1, x

′
2, . . . , x

′
m ∈ E and it follows that π′0 : A→

L(E0) is a well defined map and is an U0-representation.

We define an U0-representation π0 : A → L(E0) by π0(a) = π′0(α(a)) for all

a ∈ A.

We have V ♯π′0(a)V x = V ∗(a ⊗ Ux + N) = U∗ρ(a)Ux = ρ(a)x. Therefore

ρ(a) = V ♯π′0(a)V for all a ∈ A.

For each x ∈ E and a, b ∈ A, we get V ∗π′0(a)
∗π′0(b)V x =

= V ∗U0π
′
0(a

∗)U∗
0π

′
0(b)V x = V ∗U0π

′
0(a

∗)U∗
0π

′
0(b)(1A ⊗ Ux+N) =

= V ∗U0π
′
0(a

∗)U∗
0 (b⊗ Ux+N) = V ∗U0π

′
0(a

∗)(α−1(b)⊗ U∗Ux+N) =

= V ∗U0π
′
0(a

∗)(α−1(b)⊗ x+N) = V ∗U0(a
∗α−1(b)⊗ x+N) =

= V ∗(α(a∗α−1(b))⊗ Ux+N) = ρ(α(a∗α−1(b)))U∗Ux =

= ρ(α(a)∗b)x = V ∗π′0(α(a)
∗b)V x

We have V ∗π0(a)
∗π0(b)V x = V ∗π′0(α(a))

∗π′0(α(b))V x =

= V ∗π′0(α(α(a))
∗α(b))V x = V ∗π′0(α(α(a)

∗b))V x = V ∗π0(α(a)
∗b)V x for all a, b ∈ A

and x ∈ E.

(iii) We define w : G → U(E0) by ws(

n∑
i=1

ai ⊗ xi +N) =

n∑
i=1

θηs (ai)⊗ vsxi +N

for all ai ∈ A, xi ∈ E, i = 1, n, s ∈ G.

We have

⟨
ws(

n∑
i=1

ai ⊗ xi +N),

m∑
j=1

bj ⊗ yj +N

⟩
=

=

⟨
n∑

i=1

θηs (ai)⊗ vsxi +N,

m∑
j=1

bj ⊗ yj +N

⟩
=

n∑
i=1

m∑
j=1

⟨vsxi, ρ(α(θηs (a)∗)bj)yj⟩ =

=

n∑
i=1

m∑
j=1

⟨vsxi, ρ(α(θηs (a∗))bj)yj⟩

On the other hand,

⟨
n∑

i=1

ai ⊗ xi +N,U0ws−1U0(

m∑
j=1

bj ⊗ yj +N)

⟩
=

=

⟨
n∑

i=1

ai ⊗ xi +N,U0ws−1(
m∑
j=1

α(bj)⊗ Uyj +N)

⟩
=
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=

⟨
n∑

i=1

ai ⊗ xi +N,U0(
m∑
j=1

θη
s−1(α(bj))⊗ vs−1Uyj +N)

⟩
=

=

⟨
n∑

i=1

ai ⊗ xi +N,

m∑
j=1

α(θη
s−1(α(bj)))⊗ Uvs−1Uyj +N

⟩
=

=

⟨
n∑

i=1

ai ⊗ xi +N,
m∑
j=1

α(α(θη
s−1(bj)))⊗ Uvs−1Uyj +N

⟩
=

=

⟨
n∑

i=1

ai ⊗ xi +N,

m∑
j=1

θη
s−1(bj)⊗ Uvs−1Uyj +N

⟩
=

=
n∑

i=1

m∑
j=1

⟨
ai ⊗ xi +N, θη

s−1(bj)⊗ v∗syj +N
⟩
=

n∑
i=1

m∑
j=1

⟨
xi, ρ(α(a

∗
i )θ

η
s−1(bj))v

∗
syj

⟩
=

n∑
i=1

m∑
j=1

⟨
xi, v

∗
sρ(θ

η
s (α(a

∗
i )θ

η
s−1(bj)))v

∗
s−1v

∗
syj

⟩
=

=

n∑
i=1

m∑
j=1

⟨
xi, v

∗
sρ(θ

η
s (α(a

∗
i ))bj)ω(s

−1, s)v∗ss−1yj
⟩
=

=

n∑
i=1

m∑
j=1

⟨xi, v∗sρ(θηs (α(a∗i ))bj)yj⟩ =
n∑

i=1

m∑
j=1

⟨xi, v∗sρ(α(θηs (a∗i ))bj)yj⟩

For all ai ∈ A, xi ∈ E, i = 1, n, s, t ∈ G, we have

wst(
n∑

i=1

ai ⊗ xi +N) =
n∑

i=1

θηst(ai)⊗ vstxi +N =

=

n∑
i=1

θηsθ
η
t (ai)⊗ ω(s, t)vsvtxi +N = ω(s, t)ws(

n∑
i=1

θηt (ai)⊗ vtxi +N) =

= ω(s, t)wswt(

n∑
i=1

ai ⊗ xi +N)

Thus, we proved that w is a projective U0-unitary representation.

(iv) For all a, ai ∈ A, xi ∈ E, i = 1, n, s ∈ G, we have

π0(θ
η
s (a))(

n∑
i=1

ai ⊗xi +N) = π′0(α(θ
η
s (a)))(

n∑
i=1

ai ⊗ xi +N) =

n∑
i=1

α(θηs (a))ai ⊗ xi +N

On the other hand, wsπ0(a)w
U0
s (

n∑
i=1

ai ⊗ xi +N) =

= wsπ0(a)ws−1(

n∑
i=1

ai ⊗ xi +N) = wsπ
′
0(α(a))(

n∑
i=1

θη
s−1(ai)⊗ vs−1xi +N) =

= ws(

n∑
i=1

α(a)θη
s−1(ai)⊗ vs−1xi +N) =

n∑
i=1

θηs (α(a)θ
η
s−1(ai))⊗ vsvs−1xi +N =

=
n∑

i=1

θηs (α(a))ai ⊗ xi +N =
n∑

i=1

α(θηs (a))ai ⊗ xi +N

Therefore, condition (iv) is verified. �
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[14] M. Joiţa, Crossed products of locally C∗-algebras and strong Morita equivalence, Mediterr.

J.Math. 5 (2008), 4, 467-492.
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