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ON ANALYTICAL SOLUTION OF THE BLACK-SCHOLES
EQUATION BY THE FIRST INTEGRAL METHOD

Farshid MEHRDOUST!, Mohammad MIRZAZADEH?

The Black-Scholes formula is used as a model for valuing European or
American call and put options on a non-dividend paying stock. In option pricing
theory, the Black-Scholes equation is one of the most effective models for pricing
options. In this paper, the first integral method is employed to obtain a quick
and accurate solution to the Black-Scholes equation with boundary condition for
a European option pricing problem.
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1. Introduction

The financial mathematics is definitely among the most popular subjects of

applied mathematics today from both academic and the industry point of view. The
main subjects in financial mathematics is concerned with modeling of evolution of
financial processes such as stock prices, interest rates, exchange rates and pricing
derivatives on basic underlying. The first basic breakthrough in the financial mathe-
matics was made by Black and Scholes which is indeed found an explicit closed form
solution for pricing plain vanilla European options [5, 6]. According to the idea of
Black and Scholes, the option price can be modeled as a terminal boundary problem
for a partial differential equation. Therefore, it is reasonable to adopt the exist-
ing theory and methods of partial differential equation as a fundamental approach
to the study of the option pricing. This includes designing efficient algorithms for
solving option pricing problems from the viewpoint of numerical solutions of partial
differential equation problems.
Many authors have applied several different methods to solve the Black-Scholes equa-
tion [1, 4, 7]. In this paper, the first integral method (FIM) is applied to solve the
Black-Scholes partial differential equation and boundary conditions for a European
option pricing problem. The FIM is a direct algebraic method for obtaining exact
solutions of some nonlinear partial differential equations. Recently, this method has
been widely used by many researchers [2, 8-10].
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2. The Black-Scholes model framework

The underlying asset price follows the geometric Brownian motion [5]
Sy

t

= pdt + odWr, (1)

where the value of the option also depends on the initial price of the stock Sy, the
expiry date T, the volatility of the underlying asset o, the exercise (strike) price F,
and the risk-free interest rate u. Let V' = V(S,t) denote the option price. The value
of the option at the expiry (maturity) time 7" for call option is

V(S,T)= (S - E)" =maz{0,S — E},
and for put option is as follows

V(S,T)=(E—S)" =max{0,E — S}.

Now, we can derive a mathematical model of the option pricing using the A-hedging
technique [5, 6]. For this purpose, we consider a portfolio

=V - SA, (2)

where A denotes shares of the underlying asset. We choose A such that II is risk-free
in interval (¢,t + dt). If portfolio II starts at time ¢, and A remains unchained in
(t,t 4 dt), then the requirement II be risk-free means the return of the portfolio at

t + dt should be
Hiyar — 1L
—— =rdt 3
et ©
or equivalently
d% — AdSt = Ttht = 7"(‘/;5 — ASt)dt (4)
Recall that the stochastic process S; satisfies the stochastic differential equation (1),
hence using It6 formula [5] we conclude that

ov. 1 4 26 Vv ov ov
dVy = (E—i-f S 557 +,uSaS)dt+aS%th. (5)
Using (4) and (5), we can write
ov. 1 2 2, OV ov ov B
(= 5 +3 S 552 S(?S ApS)dt + (oS 55 Ao S)dWy = r(V — AS)dt. (6)

Since we assume that the change over any time step (¢,t + dt) is non-random, the

coefficient of the random term dW; on the left hand side must be zero. For this

purpose, we choose A = g—g Therefore, from (6) we get the following partial
differential equation

8V 1 2 0? V 2%

S+ rS—— — 1V =0. 7

ot oz a5 T @)

This is the Black-Scholes equat10n that describes the option price movement. There-
fore, in order to determine the option value at any time in [0, T], we need to solve
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the following partial differential equation problem in the domain Q = {(S,¢) : 0 <
S <o00,0<t<T}

2
88‘;4-;0'25268;2/4-7“52‘;—7“‘/:0, (8)

with the boundary condition, V(T,S) = (S — E)* for call option and V(T,S) =

(E — S)*, for put option.

By setting © = InS and 7 = T — ¢, the problem (8) is reduced to a Cauchy problem

of a parabolic equation with constant coefficients

oV 1 ,0°V o2 AV
S0 ey (r = )V =0, (9)

subject to the boundary condition, V (T, S) = (e*—FE)™ for call option and V (T, S) =
(E — e*)* for put option.
3. The First integral method analysis
Consider the nonlinear partial differential equation in the form
U (W, Ugy Uty Ugpy Ugsty ) = 0, (10)

where v = u(z, t) is the solution of nonlinear partial differential equation (10). Here,
we consider the following transformation

u(z,t) = f(£), (11)
where £ = x — ct. This enables us to use the following changes
0 0 0 0 0? 0? 0? 0?

&(-) Cafg(-)v %(-) = 85(')’ @(-) = 6752(')’ M(-) = 766752(')’ (12)

and so on for other derivatives. Using Equation (12) we can convert the nonlin-

ear partial differential equation (10) to the following nonlinear ordinary differential
equation

of(€) 9*f(§)

Let us consider a new independent variable
_ _ 91§
which leads a system of nonlinear ordinary differential equations
90X (¢)
Y
= ex(©.v(©). (13

By the qualitative theory of ordinary differential equations, if we can find the in-
tegrals to Equation (15) under the same conditions, then the general solutions to
Equation (14) can be solved directly. However, in general, it is really difficult for
us to realize this even for one first integral, because for a given plane autonomous
system, there is no systematic theory that can tell us how to find its first integrals,
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nor is there a logical way for telling us what these first integrals are. We will apply
the division theorem to obtain one first integral to Equation (14) which reduces
Equation (13) to a first order integrable ordinary differential equation. An exact
solution to (10) is then obtained by solving this equation. Now, let us recall the
following theorem, i.e. division theorem [8].

Theorem 3.1. Suppose that P(w, z) and Q(w, z) are polynomials in Clw, z| and also
P(w, z) is irreducible in Clw, z]. If Q(w, z) vanishes at all zero points of P(w,z),
then there exists a polynomial G(w, z) in Clw, z] such that

Q(w,z) = P(w, 2)G(w, 2).

4. The Black-Scholes equation with FIM

Our goal for this section is to solve the following Black-Scholes partial differ-
ential equation

oV 9*V ov
Z —1)— — 1
gr = a2 Tk Vg TV (16)
subject to the boundary condition, V (T, S) = (¢ — E)* for call option and k = %
is a real constant.
By considering the following transformation
Vi(z,t) = f(§), § =z —ct, (17)
the Black-Scholes equation becomes
—cf' ="+ (k-1)f —kf. (18)
Using (14) and (15), we get
X(©) = Y, (19)
Y(§) = (I-c—k)Y()+kEX(E). (20)

According to FIM, we suppose that X (&) and Y (§) are nontrivial solutions of (19)
and (20), and

QIX,Y) =) ai(X)Y",
1=0

is an irreducible polynomial in the complex domain C[X,Y] such that
QX(£),Y(£) =D a(X ()Y€ =0, (21)
i=0

where a;(X), i =0,1,...,m are polynomials of X and a,,(X) # 0. Equation (21) is
called the first integral to (19) and (20). Using the division theorem, there exists a
polynomial g(X) + h(X)Y in the complex domain C[X, Y] such that

4Q _ dQdX  dQdy _

= et = ) RN P (XY (22)

9

I
=)

(2
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Suppose that m = 1 by comparing with the coefficients of Y?, i = 2,1,0 on both
sides of (22) we have

ar(X) = h(X)ar(X), (23)

ap(X)+ (1 —c—k)a1(X) = g(X)a1(X) + h(X)aog(X), (24)

a1 (X)(kX) = g(X)ao(X). (25)

Since a;(X), ¢ = 0,1 are polynomials, then from (23) we conclude that a;(X) is

constant and h(X) = 0. For simplicity, take a;(X) = 1. Balancing the degrees of

g9(X) and ag(X), we conclude that deg(g(X)) = 0. Suppose that g(X) = Ay, then
we find ag(X) as follows

ao(X)=Ao+ (A1 +c+ k—1)X, (26)

where Ag is arbitrary integration constant.
Substituting ag(X) and g(X) into (25) and setting all the coefficients of powers X
to be zero, then we obtain a system of nonlinear algebraic equations and by solving
it, we obtain
ko1

Ag =0, A1:—%—§+§i\/02+2ck—2c+k2+2k+1, (27)
where k and c are arbitrary constants.
Using the conditions (27) in (21), we obtain

Y (€) :{—g—§+%i\/c2+20k—20+k2+2/€+1}X(5)- (28)

By combining (28) and (19), we obtain the exact solution to Equation (18) and then
the exact solution to the Black-Scholes equation can be written as follows

ko1
V(z,t) :exp{—g — 53 EVE 20k 20+ k2 4 2k + Lo — et + &)},

where &q is an arbitrary constant.

5. Conclusion

The main goal of this paper is to provide analytical solution of the Black-
Scholes option pricing equation by the first integral method. We obtained an efficient
and accurate solution to solve the Black-Scholes partial differential equation.
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