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NOISE-INDICATOR ARMA MODEL WITH APPLICATION IN FITTING
PHYSICALLY-BASED TIME SERIES

by Vladica Stojanovié!, Tijana Kevki¢?, Eugen Ljajko® and Gordana Jeli¢*

In this paper we propose modification of a linear autoregressive moving-average (ARMA)
model by using the so-called Noise-Indicator time series. The obtained model, named NIN-ARMA
model, is nonlinear threshold autoregressive one. The basic stochastic properties of the NIN-ARMA
model have been analyzed and the Empirical Characteristic Function (ECF) method has been used
for parameters estimation. Finally, the NIN-ARMA model has been applied in fitting of two actual,
real-based physical time series.
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1. Introduction

Time series modeling is a dynamic research area with aim to carefully collect and study past
observations of a time series to develop an appropriate model which describes the inherent struc-
ture of the series [1]. One of the frequently used stochastic time series models is the Autoregressive
Moving Average (ARMA) model. The basic assumption made to implement this model is that the
considered time series is linear and follows a particular known statistical distribution, such as the
normal distribution [2]. Despite the relative simplicity for understanding and implementation of the
ARMA models, they exhibit the insufficiency in cases where time series show non-linear patterns.
To overcome that drawback of the ARMA model here is proposed its modification by introducing the
so-called Noise-Indicator, similar as in [3]-[5]. The modified model obtained in this way is nonlin-
ear threshold time series model, and is called Noise-Indicator ARMA model (or, shortly NIN-ARMA
model). Its definition and basic stochastic properties are explained in Section 2. The estimation pro-
cedure of the model’s parameters based on the so-called Empirical Characteristic Function (ECF)
method is considered in Section 3. The numerical simulations of described estimation procedure, as
well as the practical application of the developed model in fitting of two actual time series are given
in Section 4. Finally, last Section 5 is devoted to some concluding remarks.

2. Definition and the main properties of NIN~ARMA model

Definition and explanation of the main stochastic properties of the NIN-ARMA model pri-
marily require introduction of the Noise-Indicator time series, as follows.

Definition 2.1. Let (&) ~ (0,62) be a time series of the independent identical distributed random
variables (RVs), defined on some probability space (Q,P,.% ). Then

L,
0, Stz_l <c.

2
& 12c¢

ni(e) :=1(g* | >¢c) = 2.1

is the Noise-Indicator of the series (&), with the parameter ¢ > 0.
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Notice that (1) indicates those innovations (&) which are, in comparison with the given
value ¢ > 0, statistically significant. In that sense, the parameter c is usually called critical value of
reaction. Namely, if the value 81271 is smaller than c, then is 1; = 0, while in the case of pronounced
fluctuation of €2 ,, the indicator is n; = 1. Furthermore, we denote the Noise-Indicator’s mean

1—1°
me:=E[n]=P{e’?>c}=1-F(c),

where F(-) is the cumulative distribution function (CDF) of (¢7). Thus, for a given value ¢ > 0 can
be determined m,, and vice versa. This will be especially significant at parameters estimation of
developed model, which we are formally introducing in the following way.

Definition 2.2. Let (1) be the Noise-Indicator defined by Eq. (2.1). We say that series (X;) obeys
the Noise-INdicator ARMA model of the order (p,q), or simply the NIN-FARMA(p,q) model, if is

valid
P

q
Xt:Zain—i‘f‘St‘f‘ijntfjet—j» teZ, (D
=1 =1

where a; > 0,i=1,...,pandb; >0, j=1,...,q.

Let us emphasize that the NIN-ARMA model can be interpreted as the nonlinear modifica-
tion of the ARMA(p,q) model, with the mean E[X;] = 0 and “temporary” innovations (1,—;&_;).
Moreover, Eq. (1) gives the standard ARMA model, when ¢ — 0, hence the NIN-ARMA model can
be referred as the generalization of the ARMA models. Conversely, under the nontrivial condition
0 < ¢ < oo, or, equivalently m,. € (0, 1), our model shows a nonlinear, specific structure, which
will be analyzed in following. In this aim, we are starting from the matrix representation of the
NIN-ARMA (p,q) model, by the stochastic difference equation of order one:

Xt = AXt—l +Ut> (2)

where, for an arbitrary ¢ € Z, we denoted:

1 0 0 Xi ’g
X1
A = 0 1 0 ) Xl - ) Ul - . 9
0o --- 1 o0 Xi—p+1 0

and u; := & + Z?: 1bjni—j&—j. Some necessary and sufficient stationary conditions of the vector
series (X;) are specified in following.
Theorem 2.1. Let the vector series (X;) be defined by the recurrence relation (2), where the RVs
(&) have absolutely continuous distribution. Then, the following conditions are equivalent:

(i) The polynomial P(L) = AP — Z?Zl aj AP~/ has the roots A, ..., A, which satisfy the con-
dition |7Lj| <LVj=1,...,p.

(if) Eq. (2) has the unique, strong stationary and ergodic solution

X, =Y AU, 3)
k=0

where the sum above converges almost surely and in the mean square sense.

(iii) The inequality Zle a;j <1 holds.
Proof. (i) = (ii): After some computation it can be seen that det (A — AI) = (—1)? P(1), i.e., the
eigenvalues of matrix A are the roots of characteristic polynomial P(1). Then, according to the

assumption (i), we have A¥—0 pxps k — oo. According to [6], the existence of almost sure unique,
ergodic and stationary solution (3) of the Eq. (2) is equivalent to the above convergence.
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(ii) = (iii): If assume that condition (i) is true, then vector series Y, = Y0 AV, ,t € Z,

where V, = ( net 0 - 0 )/, is also strong stationary, with the mean
P\ -1
E(YJ::(IA—A)_IE(VJ::rnCGZ~(14—2:¢U> Ay @)
j=1
Note that components y,(j )7 Jj=1,...,p of the series (Y,) satisfy recurrence relations:
p
. .
w o= Yap +ne
j=1
j i—1 .
W= =2

According to the assumptions of absolutely continuous distribution of (&) and m, > 0, follows that
RVs y,(j ) are (almost surely) strictly positive, for any j = 1,...,p and ¢ € Z. Finally, Eq. (4) gives
E(y,m) > 0 or, equivalently, | —Y¥?  a; >0, and (iii) follows.

i=1

(iii) = (i): Let &/, (A) = max {A,} be the spectral radius of the matrix A. Then, the inequality
J

Z»(A) < ||A||,, holds, where ||A]|,, = max { ):?:1 aj, 1} =1 is the sup-norm. If we suppose that

7»(A) = 1, then for some ¢ € [0,27) there exists an eigenvalue A’ = e!* which satisfies equality
. P o
P(A) =%~ Y a;ellP=)% =0,
=1

ei(pfj)a

After that, the inequality ‘eipa‘ < 2511 a; implies Zi.’:l a;j > 1, which contradicts (iif).
Thus, .¥),(A) < 1 what is equivalent to (i). O

From the developing of the vector series (X;) at their first components, follows:

Corollary 2.1. The NIN-ARMA(p,q) series (X;) is stationary if and only if the conditions of the
Theorem 2.1 hold. Then, this series has an unique representation:

=

Xi=&+ Z Vi Ne—k E—k» teZ, 5
k=1

. . . in{k by, k<
where series {v} satisfies recurrence relation v — me{ P} ajvi—j= { ks =4 , k=1,2,...

j=1 0, k>gq
Furthermore, the sum in Eq. (5) converges almost surely and in the mean square sense.

Further, we have considered in a more detail the simplest case of NIN—FARMA(1, 1) model,
defined by equality:
Xr=aX;—1+&+bN-1&§-1, tE€ZL. (6)
where 0 < a,b < 1. If denote u; := & +bn;—1&—_1, then series X; = aX;_1 + u; is the AR(1) model
on (u;), which can be expressed as an infinite MA-model:

Xt: Zajut_j:8t+
‘=0 j

aNa+bn,_;)e-;. @)
J =1

Finally, according to Eq. (7) and after some computation, the covariance of (X;) is:
, 1+bmc(2a+b)
o ———— >
1—a?
52 -1 a+bm.(1+a(a+b)) 7
1—a?

These facts will be used below, in order to estimate the parameters of the NIN—ARMA model.

h=0;

W (h) = E(XiX;1n) = ®)

h=41,42,...
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3. Parameters estimation

Since the NIN-ARMA(1,1) model represents the specific modification of the appropriate
linear ARMA one, the more complex procedure for estimation of its parameters 8 = (a,b,m,, 6>)’
is need. For instance, due to Eqgs. (8), the moment-based estimation methods, known as the Yule-
Walker estimators, cannot be used here. Also, since the likelihood function of the series (X;) is
unbounded at the origin, the maximum likelihood and other closely related methods not applicable.
For these reasons here is used the empirical characteristic function (ECF) estimation method [8],
based on matching the ECF with theoretical characteristic function (CF) of NIN~ARMA model.
The main advantage of this method is based on the fact that the CF is uniformly bounded implying
numerical stability of the ECF method. Moreover, according to bijective correspondence between
CFs and corresponding CDFs, the ECF retains all the informations present in the sample. First of
all, we are giving a general definition of the CF of order ¢ > 1:

Definition 3.1. Let r = (ry,...,r;)' € R’ and X,(l) = (X:,..-,X;10-1), t €Z be the overlapping
blocks of the process (X;). The {—~dimensional CF of vector (X,M)) is

[
exp (i Z rjX,ﬂl)
j=1

Following statement gives an explicit expression of the CF of NIN-ARMA(1, 1) model, in
the case of Gaussian distributed innovations.

Theorem 3.1. Let (X;) be the NIN-ARMA(1,1) model defined by Egs. (6)-(7), where RVs (&) have
a Gaussian distribution . (0,6?2). Then, the CF of the first order of RVs (X;) is

: &)

(p)(p(r; 0):=E [exp (ir'X,(E))] =E

2,22

(p)(fl)(r’e) _ e70.2"2/21—1 |:(1 —mc)eicerazj/z—cheio- r2q (j*l)(a+b)2/2:| , (10)
Jj=1

and CFs of the random vectors Xt“) =(X;,..., Xi10-1), £>2are

14

, 2 2
(0 —TZ ( )é: rf) —%2 (rﬁ- f rjaj’l> —%2 <r1+(a+b) X r_,-aj’z)
Py (r;0)=e =2 (1—m)e =2 +mee =2

11
[/ 2 2 4 . 2
el - (¥ altk l> o (a+b) ¥ 1 alth=2
XH (1—me)e : <k:l k +me : ( = )
=1
Proof. If we denote & := (a+b1n;)&, t € Z, then Eq. (7) can be rewritten as
Xi=g&+) o & —j. (12)
=1
As the RVs (1) and (&) are mutually independent, (&) is series of uncorrelated RVs, with CDF:
Fe(x) = P{& <x}=Plag <x}P{n, =0} +P{(a+b)& <x}P{n, =1}
= (l—m.)F:(x/a)+m.Fs (x/(a+b)), (13)

where F(x) := P{& < x} is the CDF of RVs (&) with Gaussian distribution .#"(0,6?). According
to Eq. (12), the first order CF of RVs (X;) is

0x(:6) = (™) = ge(r) [T e (o' ' 1:0), (14)
=1

where @¢(r) = e~9°"/2 is the CF of Gaussian RV (&) and, according to Eq. (13),
@e(r;0) = (1 —mc)@e(ar) +me @e((a+b)r) (15)
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is the CF of RVs (& ). Finally, substitution Eq. (15) in Eq. (14) gives Eq. (10).
On the other hand, according to Eq. (12) it follows X, ; = &4x + ):‘;":1 al7VE j, for any
k=1,...,£— 1. Substituting these equalities into Eq. (9), we have:

A
(p}(f)(r;e) = {exp[ (Z ri€yj—1+ Z r al” 2<§t Z Z kll]+k_2€tj)] }
j=lk=1
{ / ) /
= qug(rj) o | i+ Y, ria’? H<P5 Z real T2
Jj=2 Jj=2 j=1 k=1
From here and Eq. (15), immediately follows Eq. (11). O

Now, denote as X7 :={Xj,...,Xr } some realization of length T € N of the NIN-ARMA(1, 1)
model (X;), and the appropriate ¢-dimensional ECF of the sample X7 as
T—(+1
S0 1 (0
(pT (r) = m t:ZI exp (lr Xl‘ ) .

The estimates based on the ECF method (we called them the ECF estimates) are obtained by a
minimization, with respect to the parameter 8 = (a,b,m., 6>)’, of the following objective function:

:/---/R[ ‘(pxre) ‘dr

Here, (p)g) (r; 0) is the CF of order ¢, defined by Eq. (9),dr:=dr;---drpand g : RY — R* is a some
weight function. In other words, ECF estimates represent the solutions of the minimization equation

A0 _ gl
0r —argrenelgST (8),

where ® = (0,1)3 x (0, 4o0) is the parameter space of the non-trivial, stationary NIN-ARMA (1, 1)
model. Using some general results of the ECF-asymptotic theory [9]-[12], similarly as in [13], the
strong consistency and asymptotic normality (AN) of the ECF estimates can be shown, as it follows:

Theorem 3.2. Let 6y be the true value of the parameter 0 € ®. and let 9(5), T =1,2,... be solutions

of the Eq. (16). Additionally, we are assuming satisfaction of the following regularity conditions:
() There exists the set ® = (0,1)3 x (0,My2) C ©, where M2 is chosen sufficiently large, so that

60,6\ € @ forall T > Ty > 0;

s} (60)
d6 96’

20y (r:60) gy (x:60)

00 20’
integrable function h: R — R*.

(ii)

is a regular matrix;

(iii)

is a non-zero matrix, uniformly bounded by the strictly positive, g-

A . . . . .
Then, 9; Vis strictly consistent and is AN estimator for parameter 0.

Remark 3.1. In following, we use the estimation procedure based on two-dimensional CF of the

RVs X,(2> := (X;,Xr+1)’. In this case, the objective function S(T2 ) represents a double integral with
respect to the weight function g : R> — R*, which can be numerically approximated by using some
cubature formulas. Note that an explicit expression of the two-dimensional CF of (X;) can be easily
obtained by Eq.(11), while the following real-valued function

~ 0 1 T-1

or(r1,r) :=Re (p; )(rl ) = ﬁ cos (rX; +rX;+1)
represents its ECF estimate. Figure 1. illustrates the graphs of two-dimensional CF and appropriate
ECF of the Gaussian NINFARMA(1, 1) model, when 7 = 1500, a = b = 0.5 and ¢ = 6% = 1.



262 V. Stojanovié, T. Kevkic, E. Ljajko, G. Jeli¢

FIGURE 1. Graphs of the two-dimensional CF (panel left) and the appropriate
ECF (panel right) of the series Xt(z) = (X, Xi41)"

4. Numerical simulations & application of the model

This part is dedicated to implementation of the aforementioned ECF procedure for estimation
the parameters 8 = (a,b,m.,>)" of the NINNARMA(1,1) model. The ECF estimates are computed
according to the minimization of the double integral:

S(2> 0) = (2) . - 2
T ( )— Rzg(rl,rz)‘(l)x (71772,9)—(,0]"(}’17}"2)‘ drldrz7 (16)

with respect to the exponential weight function g(ry,r2) = exp (—(rf +r3)). This function puts
more weights around the origin, which is in accordance to the fact that CF in this point contains the
most of information about the PDF of estimated model. Moreover, integral in Eq. (16) then can be
numerically approximated by using Gauss-Hermitian N-point cubature formula:

N
10736) = [, g dnan = (1) s= X 0y 102

where (vi;,v2;) are the cubature nodes, and ®; are the corresponding weight coefficients. Here,
the cubature formula with N = 81 nodes, realized using the MATHEMATICA package “Orthogonal
Polynomials” [14] was used. Thereafter, the objective function given by Eq. (16) is minimized by
a Nelder-Mead method, and the whole estimation procedure was done by the original authors’ codes
written in statistical programming language “R”.

For comparison, the same estimation procedure was applied on the linear ARMA(1,1) model.
In the case of both models, two different sample sizes T = 150 (small sample) and 7 = 1500 (large
sample) have been considered. For all of them have been generated 500 independent realizations
{Xo,Xi,...,Xr} of the series (X;) with Gaussian innovations, where Xy £ 0 was set. The obtained
numerical results, the means (Mean), minima (Min.), maxima (Max.) and standard estimating errors
(SEE) are presented in Table 1. together with values of the objective function S(T2 ) as the reference
estimation errors. Very similar characteristics of the ECF estimates in all simulated process are
evident, as well as that ECF estimates converge and values of SEE and S(TZ) are decreasing with
increasing the sample size. Let us notice finally that the estimates of the critical value of the NIN—
ARMA model can be easily obtained by solving the equation P{&‘t2 > ¢} = m, with respect to c.

Practical application of NIN-ARMA(1,1) model is illustrated by fitting dynamics of two
time series, taken from a dataset of World Ozone and Ultraviolet Radiation Data Centre of Canada
(WOUDC) [15]. The first series, labeled as Series A, refers to a total daily amount of ozone in the
atmosphere directly above Bucharest (Romania). The considered data have been obtained by mea-
suring of ozone concentration with Dobson’s spectrophotometer between January 1999. and August
2016. The second one, Series B contains data of daily measurements of erythemally-weighted UVB
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TABLE 1. Estimated parameters values of ARMA(1,1) and NIN-ARMA(1,1)
model. (True parameters are: a =b =0.5, c = 62=1,m ~0.317)
ARMA Estimates 2) NIN-ARMA Estimates @)
Sample Sy St
a b o? a b me o2
Min. 0.2371 0.2850 0.7014 4.533E-7 0.2300 0.2877 0.1703 0.7358 4.12E-7
Mean 04951 0.5013 1.0123 6.08E-6 0.4920 0.4910 0.3149 1.0481 5.52E-6
T=150  Max. 0.8487 0.5585 1.5487 2.15E-5 0.7698 0.8607 03981 15643 3.41E-5
SEE  0.0971 0.0813 0.19490 4.23E-6 0.0952 0.0745 0.0718 0.1902 4.51E-6
Min. 0.3580 0.3700 0.8653 3.07E-8 0.3418 0.3861 0.2706 0.8437 3.93E-8
Mean 0.5000 0.5002 1.0031 5.17E-7 0.5008 0.4995 0.3169 1.0071 5.21E-7
T=1500 Max. 0.6801 0.5395 1.1867 3.46E-6 05806 0.5749 03405 1.1969 2.50E-6
SEE  0.0547 0.0206 0.0550 3.93E-7 0.0672 0.0160 0.0212 0.0592 4.12E-7
TABLE 2. Estimated parameters values and fitting errors statistics of the actual data.
Parameters estimates Fitting errors
Sample 5 @)
a b me c o Sr RMS AIC
Series A ARMA 0.0219 0.7770 1.0000 0.0000 0.0715 1.43E-6 0.1714 -4839.46
NIN-ARMA 0.0289 0.3430 0.1138 0.2608 0.1043 7.26E-7 0.1496 -4864.51
Series B ARMA 0.2392 0.8140 1.0000 0.0000 0.2790 5.90E-5 0.8751 -1425.16
NIN-ARMA 0.1330 0.7593 0.3247 0.1728 0.1782 8.20E-7 0.7701 -1429.60
(Y (%) PDFs
&1 - i
< 3
3 = o
[I) 560 10‘00 15‘00 20‘00 EEbO BObO 6 560 10b0 15‘00 EObO ZSbO QObO ° —O'ﬁﬁﬁ
3 - NIN-ARMA.
o © = = = ARMA
) C,i - ° 3
8 <] s
E 7 - ~
e T S P N

FIGURE 2. Dynamics of the actual time series, along with their empirical fitted
PDFs: Series A (graphs above) and Series B (graphs below).

solar radiation over Belgrade (Serbia) in period from March 2009. until August 2011. These data
have been obtained by using Solar Light’s Model 501 Series Biometer-Radiometer. The sample size
of these series are, respectively, 7 = 3010 (large sample) and 7" = 767 (small sample). The both
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chosen datasets are univariate, discrete time series, measured at daily time intervals. In addition,
they are measured as the continuous variables, denoted as (¥;), using the real positive number scales.

For both of samples we have introduced the so-called log returns X; = In(¥;/¥;_), which
enable condition E[X;] = 0, and thus series (X;) can be modeled by ARMA or NIN~ARMA model.
Table 2. shows the considered Series A and B fitted by ARMA(1,1) and NIN-ARMA(1,1) model,
respectively. For checking the efficiency of both of the models we have computed two typical
goodness-of-fit statistics: the Root Mean Squares (RMS) of differences between observed and pre-
dicted values, as well as the Akaike Information Criterion (AIC). These values, shown in the right
side of Table 2, indicate that ECF estimates of the NIN-ARMA model have generally less fitting er-
rors, i.e. proposed model has a higher efficiency. Some of these facts also confirms Figure 2., where
the dynamics of the both of actual time series is shown. In this figure also are shown empirical PDFs
(histograms) of the Series A and B, which were compared to the PDFs obtained by fitting with the
ECF estimates. As it can be easily seen, in both cases the NIN-ARMA model provide better matches
to the appropriate empirical PDFs than the corresponding linear ARMA one.

5. Conclusion

In this paper is proposed a new, nonlinear stochastic model suitable for empirical analysis of
time series which show nonlinear changes in their dynamics. The applicability and suitability of the
developed NIN-ARMA model has been checked in fitting of two nonlinear, physically-based data
series. First is related to the total daily amount of ozone, while second is daily measurements of
the UV-radiation. The ECF estimation method was used in both cases. The results of fitting these
two time series show that NIN-ARMA model can be easily applied, with certain modifications, for
estimation and fitting the non-linear time series of similar kind as considered ones.
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