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ON THE ROBUSTNESS OF THE METHODOLOGY FOR
MODELLING THE DEPENDENCIES BETWEEN CIRCUIT
AND TECHNOLOGY PARAMETERS OF INTEGRATED

CIRCUITS
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The impact of the manufacturing process variation on the inte-
grated circuits (ICs) performance is an acknowledged topic concerning the
semiconductor industry, yet not determined in a quantitative manner. As-
sessing it as early as possible in the design and production flow, i.e. in
pre-silicon stage, under the form of a mathematical relationship, will en-
hance manufacturer’s ability to improve production. Towards this goal, our
previous work concentrated on developing the Verification for Manufactura-
bility by Modelling Process Variation - Circuit Performance Dependency
(subsequently named as P2P4M) methodology [1] capable to model the de-
pendency of the device performances with the influential technology param-
eters by using Monte Carlo simulations.

Given the stochastic nature of the Machine Learning algorithms employed
in the methodology, it is important to investigate if the P2P4M methodol-
ogy returns coherent results at different runs. This paper presents a compre-
hensive analysis on the P2P4M methodology, both in terms of consistency
and reliability. To this end, the evaluation concentrated on its capability
across datasets, based on several metrics defined for this purpose. The re-
sults obtained on an Infineon Technologies product represent a trustworthy
and comprehensible tool for both the designer and the technologist.

Keywords: Process Control Monitor parameters, process variation, P2P4M
methodology, integrated circuits performance

1. Introduction and Related Work

In the semiconductor industry it is crucial to maintain the highest pos-
sible standards in what regards the electrical performance of the IC products,
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given the inherent fabrication process variation. Moreover, considering the
exponential complexity increase, as well as the constant dimension decrease
[2], their performance became even more vulnerable to the slightest deviation
from their nominal value [3].

In the same time, it is equally important to efficiently control the process
variation and to accurately understand and predict the intricate impact of the
process variation on the IC performance, in order to increase manufacturer’s
capability of mass production. On a broader scale, this can be translated
as identifying the mathematical representation of the complex relationship
between manufacturing and design, very early in the development phase (i.e.
during pre-silicon - preSi).

The key to solving this problem may be the Process Control Monitor
(PCM) parameters employed by the technologist to supervise the manufac-
turing process [4], such that any process variation is rapidly signaled. The
PCMs’ potential is huge, since the PCM structures are placed among the pro-
ductive dies, which offers them the advantage to have the same technology
steps applied. This potentiality was tackled in recent years, as the PCM pa-
rameters’ applicability areas have been extended from monitoring purposes to
trimming enhancements [5], yield prediction [6], yield detractors detection [7]
or IC defect identification [8]. However, the PCMs are employed exclusively
during the post-silicon (postSi) verification stage, where their number is much
smaller compared to the productive dies measurements and IC issues (yield
problems, defects, etc) have already appeared and caused production delays
and money waste.

The Verification for Manufacturability by Modelling Process Variation
- Circuit Performance Dependency P2P4M methodology [1] takes into con-
sideration all these elements and models the relationship between IC’s perfor-
mances (under the form of Electrical Parameters - EPs) and the process vari-
ation (reflected by the PCMs), in a mathematical form by means of Machine
Learning (ML) algorithms. The novelty consists in capturing this dependence
during the pre-silicon stage, based on Monte Carlo (MC) co-simulations of the
IC and PCM structure schematics. To the best of our knowledge, the P2P4M
methodology is the only available tool to determine this mathematical relation
during the pre-silicon verification. The P2P4M methodology has been suc-
cessfully applied to parametric yield prediction [1], global and local sensitivity
analysis with process variation [1], [9] and pre-silicon yield estimation [10].

However, the ML algorithms are stochastic algorithms, since there is an
uncertainty degree involved in their learning and optimization processes or
because they operate in stochastic domains [11]. This element of randomness
may conflict with the careful inspection of the IC to ensure that they have
been produced in accordance with the their specifications. Therefore, any
methodology used in the IC development phase (as is the case of the P2P4M
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methodology) must be certified as robust and consistent, besides reaching the
required high standards.

The goal of this research is to propose a robustness assessment plan for
the P2P4M methodology, in order to perform a comprehensive evaluation
with regards to the methodology functioning. Moreover, a special attention is
paid to the case of operating across datasets for the same IC product. The
rest of the paper is organized as follows: Section 2 presents a short description
and the particularities of the P2P4M methodology employed in this research,
followed by the proposed approach for the methodology robustness assessment
provided in Section 3. Section 4 sums up the experimental results, while the
conclusions are presented in Section 5.

2. The P2P4M Methodology

The Verification for Manufacturability by Modelling Process Variation
- Circuit Performance Dependency P2P4M methodology, previously intro-
duced in [1], is able to express an optimal relationship between each EP and
the PCMs. The novelty of this approach stands in the fact that we address the
modeling of the circuit performance behavior based on technology process vari-
ation for IC products that do not have dedicated PCM structures for every chip
(which reflects the case for most of the products). The data availability issue is
overcome by employing pre-silicon simulations, obtained by co-simulating the
circuit and PCM structures schematics based on the methodology described in
[12]. This leads to the estimation of the dependence of the device performances
with the influential technology parameters very early in the development phase.

Fig. 1 depicts the schematic representation of the P2P4M methodology
utilized in this paper. The ultimate goal is to obtain the optimal regression
model, i.e. metamodel, associated to each EP, based on the available set of
PCM parameters. Therefore, the input dataset is initially split into training
and test datasets based on a random sampling of the overall distribution.

Each electrical performance of an IC depends on a limited and most of
the times unknown set of technology parameters. In order to determine the
precise set of PCMs exerting an influence on the studied EP, a feature se-
lection step is used. This way, only the PCM parameters displaying a clear
correlation with the EP under study with respect to a threshold are included
in the metamodel training. For this, we used (Brownian) Distance Correlation
- DistCorr <(X, Y ), a metric that quantifies the degree of independence be-
tween two variable and displays several advantages, out of which we mention:
noise robustness, low computational cost and the ability to capture non-linear
relationship between the variables [13]. The empirical sample <2

n(X, Y ) is
computed as follows:

<2
n(X, Y ) =

ν2n(X, Y )√
ν2n(X)ν2n(Y )

(1)
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Fig. 1. The schematics of the P2P4M methodology employed
in this research

where ν2n(X, Y ) is the distance covariance, while ν2n(X) = ν2n(X,X) and ν2n(Y ) =
ν2n(Y, Y ) are called distance variances.

Next, a multilayer perceptron (MLP) Neural Network (NN) prediction
model is trained using the predetermined set of influential PCMs (as input)
and the studied EP (as output), as it represents one of the fastest and most ac-
curate regression solutions. The last two steps are wrapped up in the Bayesian
Optimization (BO) framework, an optimization solution that iteratively sam-
ples in order to find the minimum of multi modal functions [14]. More pre-
cisely, two optimizable variables are declared - the threshold for DistCorr and
the neurons number for NN and the above-mentioned steps are iterated for a
specific number of times defined by the user. At each iteration, BO selects
values for the two variables with the aim of minimizing the metamodel pre-
diction error, a metric computed on the testing set; in this way, it adjusts the
threshold and the number of neurons adaptively until it minimizes the test er-
ror function. Finally, the metamodel incorporating the functional dependence
between the studied EP and its influential PCMs is obtained based on the
optimal hyperparameters selected by BO.

3. The Proposed Approach for Robustness Assessment

The P2P4M methodology evaluation is performed based on several met-
rics, in order to support the previous discussion and report robust results.
Firstly, the Mean Squared Prediction Error (MSPE ) represents a metric that
quantifies the quality of the metamodel, since it measures the squared distance
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between the prediction and the true values. Actually, the MSPE represents
the cost function to- be-minimized by BO during the metamodel fitting.

MSPE =
1

ntest

ntrain+ntest∑
i=ntrain+1

(EP i
k − ẼP

i

k)
2 (2)

where ntest is the number of samples in the test dataset, that were not used
in fitting the EP’s metamodel, while ntrain represents the number of samples

in the train dataset. EP i
ki and ẼP

i

k represent the actual and the predicted
values of the EPk, respectively.

Secondly, the DistCorr correlation coefficient computed between the stud-
ied EP and the available PCMs represents a methodology performance crite-
rion. Even though the literature does not provide a certain threshold value
to indicate the dependence between two variables, the P2P4M methodology
set similar thresholds at several runs, which indicates a consistent behavior.
Moreover, our experience based on a large set of extensive experiments con-
ducted over the years, indicates that a 0.1 value of this metric reflects an
observable dependence between two parameters instanced for minimum 500
times. Details on the computation formula are found in [13].

When discussing about the regression model accuracy (and implicitly
of the P2P4M capability), it is important to decide if the ML algorithm was
capable to extract the maximum information from the available data, i.e. there
is no dependence between the residual error and the target. For this, another
metric is introduced - the first-order correlation between the residual error and
the target values of one EP ρε−EP, computed using Pearson’s correlation, as
seen in equation (3). Similarly, a reliable predictor maintains a high degree of
correlation between the predicted and the true values. Therefore, the metric
that assesses the correlation between the predicted and the target values of
one EP (ρẼP−EP) is used, also defined based on first-order correlation, as it can
be observed in equation (4).

ρε−EP =
cov(εk, EP k)

σεkσEPk

(3)

ρẼP−EP =
cov(EPk, ẼP k)

σEPk
σẼPk

(4)

It must be highlighted that cov and σ represent the covariance and the

standard deviation, respectively, while ẼP k are the predicted values of EPk
using the corresponding metamodel and EPk are the target (real) values of the

same parameter. Last but not least, εk = EPk − ẼP k is the residual error.
The available space on a wafer is narrow and consequently the PCMs

structures and the PCM parameters monitored during production are limited.
This is the reason why usually the monitoring is technology-oriented. Being
able to precisely identify the technology parameters whose variation would
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affect the EP’s behavior and transform the process into a product-oriented,
translates into a better monitoring and the possibility to see a snapshot of
the process variation at any time. Therefore, since we focus on providing a
tool with an efficient functioning across datasets, during several iterations,
another relevant aspect to be taken into consideration is the number and the
selected subset of influential PCMs - PCMi. The P2P4M methodology should
maintain its consistency during several iterations and identify the same set of
influential PCMs when provided the same input.

4. Experimental Results

In order to experimentally assess the P2P4M methodology’s reliabil-
ity and consistency, we used two datasets from an Infineon Technologies low
dropout voltage regulator (LDO). The main goal was evaluating the method-
ology’s functioning capability across datasets. First, the experiments aimed to
test the P2P4M methodology’s coherence in providing the same results when
being employed several times. Secondly, the methodology was applied on an
extended PCMs dataset of the IC under study, most of them not monitored
during the production phase, with the purpose of identifying other important
influential PCMs. It should be mentioned that the considered EPs are typical
LDO’s measurable electrical performances and some of them are describing
the same property under different operating conditions; the PCMs cannot be
disclosed in this paper.

To conduct the proposed experiments, MC simulations have been ob-
tained by co-simulating a setup that contained both the circuit model and the
PCM structure schematics. The simulation structure displays the advantage of
being able to reflect the changes determined in the same time by the process
variation in both EPs and PCMs. Thus, the analysis was conducted on 32
EPs and two different datasets of PCMs - initialSet93 and extendedSet198,
each one containing N = 962 samples. The initialSet93 included 93 PCMs,
all of them being simulated during preSi and measured in the postSi phase on
a regular basis. The extendedSet198 contained, besides the initialSet93, 105
additional PCMs that were not being monitored during the postSi production.
Further, the dataset will be referred to as follows: PCMk, with k = [1, ..., 93]
indicates an PCM parameter part of the initial set, while for k = [94, ..., 198],
the PCM is part of the extendedSet198.

The datasets underwent a pre-processing phase, consisting in normalizing
the values in the [-1, 1] interval, as both PCMs and EPs (whether we are
referring to the initialSet93 or to the extendedSet198) span across different
orders of magnitude. Next, the entire dataset is split into training and testing
sets - ntrain = 862 and ntest = 100. This way, the reported metrics of the
trained metamodels ’ accuracy are robust, since they refer specific to the testing
dataset.



On the Robustness of the Methodology for Modelling the Dependencies [...] 103

The P2P4M methodology was applied on the described datasets, during
a four-iteration analysis, in order to provide sufficient variability, but keep the
computational effort at reasonable costs. As presented in the previous sub-
section, five metrics have been considered for the analysis, namely: MSPE,
DistCorr threshold, ρẼP−EP, ρε−EP and the number, as well as the subset of
influential PCMs - PCMi.

In Figs. 2, 3 and 4 is illustrated the performance of the P2P4M method-
ology on three EPs, i.e. EP1, EP2, EP3. It must be highlighted that these EPs
are expressing the same electrical characteristic, i.e. current limitation, for
different output voltage levels. It is easily noticeable that there are very small
changes between the obtained metrics’ results for all four runs, as well as for
both PCMs datasets. The small values of the MSPE (around 0.018), together
with the high correlation between the predicted and the target values (greater
than 0.9) and the insignificant correlation between the fitting error and the
real EPs (around 0.02) prove that the metamodels are reliable and accurate.
In addition, the P2P4M methodology selected the same six influential PCMs
PCMi affecting the three EPs, thus confirming the methodology consistency
and the fitting approach for the presented issue.

The following examples aim to prove that monitoring the proper PCMs
for each product, instead of defining them based on the employed technology,
brings several advantages to the semiconductor production stage. In Fig. 5 the
performance of the P2P4M methodology for EP7 is depicted. For this EP, the
methodology chose 10 influential PCMs for 3 out of the 4 iterations. During

Fig. 2. The reliability and consistency results of P2P4M’s 4
runs for EP1 (current limitation at VQ1)
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Fig. 3. The reliability and consistency results of P2P4M’s 4
runs for EP2 (current limitation at VQ2)

Fig. 4. The reliability and consistency results of P2P4M’s 4
runs for EP3 (current limitation at VQ3)

run 3, PCM30 was put aside by the methodology through a slight increased
value of the DistCorr metric (0.11). It leads to a marginally increase of the
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Fig. 5. The reliability and consistency results of P2P4M’s 4
runs for EP7

MSPE value up to 0.0064, given the weak correlation between EP7 and PCM30.
We can conclude that PCM30 displays a light influence on the studied EP and
removing it from the set of influential PCMs does not appear to decrease the
correlation between the predicted and the target values for EP7, as the metric
remains around 0.96 for all iterations.

In contrast, a clear improvement is obtained by applying the methodol-
ogy on the extended dataset of PCMs (extendedSet198). Firstly, the meta-
models ’ accuracy increases, as the MSPE average value is halved. Secondly,
the number of influential PCMs oscillates between 10 and 11, even with an in-
crease of the DistCorr threshold (up to 0.12). This is due to the current array
of PCMi; when employing the extendedSet198, the P2P4M methodology
chose two additional influential PCMs. These PCMs identified as PCM136 and
PCM176 proved to be significant in explaining the EP7’s behavior. Moreover,
benefiting from an extensive dataset of PCMs, the methodology removed from
the influential PCMs list the PCM displaying the weakest correlation with the
studied EP, namely PCM30.

These conclusions are enhanced by the color-coded portrayal of the Dis-
Corr correlation coefficients between the extended set of PCMs and EP7, il-
lustrated in Fig. 6. It should be recalled that the initialSet93 includes the
PCMs’ indexes from 1 to 93, while the rest until index 198 represent the extra
PCMs that are only preSi simulated in the presented analysis. Two PCMs
from the initialSet93 - PCM56 and PCM57 are highly influencing the EP7,
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Table 1. The influential PCMs selected by P2P4M for
EP7 out of the initialSet93 and extendedSet198

Parameter
Influential PCMs - PCMi

initialSet93 extendedSet198

EP7

PCM36,PCM37,PCM53,
PCM56,PCM57,PCM79,
PCM80,PCM81,PCM82

PCM136,PCM176

Fig. 6. DistCorr metric values between EP7 and all of the
available PCMs in the study (extendedSet198)

with DistCorr scores of 0.4602 and 0.9098, respectively. These two PCMs are
among the influential PCMs identified by the P2P4M methodology.

Table 1 presents the entire set of influential PCMs; besides to above-
mentioned PCMs, the methodology was able to correctly select several other
PCMs in order to provide the optimal metamodel. The remaining seven in-
fluential PCMs display weaker correlations with EP7, around 0.2-0.3 and they
are represented with light blue in the Fig. 6. Out of the extendedSet198’s
PCMs, PCM136 surpasses the rest of 105 additional PCMs, displaying a Dist-
Corr correlation coefficient equal to 0.3860.

Continuing on the same note, the following example highlights the sig-
nificant influence of the extended PCMs’ dataset on the performance of the
P2P4M methodology. Fig. 7 illustrates the methodology’s performance for
EP11 and one can easily conclude that the results obtained by using the smaller
dataset represents an explicit example of EP’s behavior that is poorly explained
by the available PCM parameters. The resulted metamodels display low ac-
curacy, as their MSPE revolves around 0.12, even for the DistCorr threshold
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Fig. 7. The reliability and consistency results of P2P4M’s 4
runs for EP11

taking values between 0.19 and 0.31. In the same time, the correlation be-
tween the predicted and the target values of the EP is smaller than 0.35,
since the P2P4M methodology was able to select only two influential PCMS.
These PCMs identified as PCM2 and PCM30 display a significant correlation
with EP11, as their DistCorr correlation metrics are 0.3468 and 0.3259, re-
spectively. Yet, this proves not to be sufficient to reasonably describe EP11

and the P2P4M methodology is able to return the best metamodels, given the
insufficient set of initialSet93 PCM parameters.

When applying the methodology on the extentedSet198, a certain im-
provement to the metamodels ’ accuracy is obtained. Despite the fact that the
average value of the DistCorr threshold actually decreased compared to the
case of the initialSet93, the average MSPE decreased to 0.02 and the Pear-
son’s correlation between the target and the predicted increased to 0.97. This
improvement is due exclusively to the extended set of PCMs on which the
accurate and optimal metamodels were trained. The last plot from the Fig.
exhibits a set of 14 PCMs that clearly influence the EP11’s behavior.

In Table 2, the entire set of influential PCMs is presented. As previously
stated, only two PCMs from the initial set are involved in the analysis, followed
by 12 additional PCMs from the extended set. The PCMs having indexes
from 189 to 193 display the highest correlation with EP11 and Fig. 8 helps
supporting this statement.

The highest DistCorr correlation coefficients are obtained for PCMs that
are not currently monitored during the production phase and it represents
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Table 2. The influential PCMs selected by P2P4M for
EP11 out of the initialSet93 and extendedSet198

Parameter
Influential PCMs - PCMi

initialSet93 extendedSet198

EP11 PCM2,PCM30

PCM94,PCM95,PCM102,
PCM110,PCM111,PCM120,
PCM121,PCM189,PCM190,
PCM191,PCM192,PCM193

a clear weakness for the manufacturing process. The maximum DistCorr
value reaches 0.6983 and it is almost double the maximum correlation met-
ric obtained between EP11 and the initialSet93’s PCMs. Consequently, the
relationship between the optimal enhanced metamodels and the use of the
extentedSet198 becomes straightforward, as the influence of the 12 PCMs
chosen from the additional 105 PCMs is critical when explaining EP11.

Besides the five highly correlated PCMs (depicted with red), the other
seven PCMs (enumerated in Table 1) display a comparable correlation to the
influential PCMs selected by the methodology from the initial set (at least
0.3). It is clear that the entire set of 12 influential PCMs from the extended
dataset should definitely be monitored during the postSi production phase by
the technologist, because even the smallest deviation in these parameters will
modify EP11’s behavior.

The remaining 27 EPs displayed similar behaviors as the 5 presented
in this sub-section, ranging from the same results, to slight improvements or

Fig. 8. DistCorr metric values between EP11 and all of the
available PCMs in the study (extendedSet198)
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significant improvement obtained when applying the P2P4M methodology on
the initialset93 and extendedSet198, respectively.

5. Conclusions

The predominantly strong dependence between IC performances and the
process variation (expressed through the PCMs) has been revealed and mod-
elled with the help of the P2P4M methodology. Nevertheless, ensuring a
reliable and consistent solution for an industry governed by imperative safety
measures, as is the case of the semiconductor production, represents a crucial
measure. Therefore, the paper performs an extended analysis on the P2P4M
methodology, in terms of reliability and consistency, given the stochastic na-
ture of the employed ML algorithms.

The experimental results confirms that the P2P4M methodology is co-
herent at different runs, by maintaining the accuracy metrics variation in ac-
ceptable limits while returning the same subset of influential PCMs (PCMi)
for the same initial set of PCMs. It passed the consistency and reliability tests,
proving to be an efficient tool for the designer.

Moreover, the P2P4M methodology highlighted that there are PCM
parameters that have a clear impact on the EPs, but they are not monitored
in production (only simulated in pre-silicon). No decrease in performance was
reported when employing the extentedSet198, so the best trade-off should be
found for every IC product in what concerns minimizing the space required
for the PCM structures and defining the PCMs to maximize the monitoring
information. This way, the methodology becomes a valuable tool for the tech-
nologist as well.

In addition, besides the confirmation provided by the experimental re-
sults obtained on the available data, our conclusions were validated by the
circuit designer, as well as the technologist. Future research efforts should be
directed towards monitoring the newly discovered influencing PCMs in post-
silicon, followed by a reiteration of the analysis on the acquired post-Silicon
data, to increase the reliability of using solely pre-silicon data.
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