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STOCHASTIC SCENARIO BASED MICROGRID ENERGY
MANAGEMENT WITH ELECTRIC VEHICLES
CONSIDERING UNCERTAINTY SOURCES

Mahmoudreza GHADI-SAHEBI?, Reza EBRAHIMI?

This paper focuses on energy management of distributed generation sources
and electric vehicles in a grid-connected microgrid considering uncertainties. The
problem is formulated as a multi-objective optimization problem of energy cost and
emission. In this context, innovative scenario-based objective functions are
introduced to handle different uncertainties in the microgrid energy management.
Since the objective functions are based on scenarios, appropriate probability density
functions for each uncertainty source are defined, and then scenarios are randomly
generated to be included in the objective function. To solve the optimization
problem, the modified version of the multi-objective particle swarm optimization
(MOPSO) algorithm is used. Also, the multiple-objective genetic algorithms and the
multiple-objective differential evolution algorithms are used for optimization. The
results confirm the effectiveness of objective functions and the good performance of
the proposed modified MOPSO algorithm.

Keywords: Microgrid; Electric Vehicles; Multi-Objective Optimization;
Uncertainty

1. Introduction

One of the most important issues in the Microgrid (MG) field is the
environmental pollution and the costs of power generation, which should be
carefully considered. The energy management of distributed generation (DG)
sources and electric vehicles (EVs) in the MG were studied using the network
load curve and time-varying electricity prices during the day [1]. EV charging is
mainly shifted to off-peak times when electricity is cheap, and the use of EV
discharge and DGs schedule for peak-load times. Therefore, the presence of DGs
and EV parking lots can improve the network power quality, if energy
management is done correctly [2]. On the other hand, many uncertainties need to
be considered in the MG field. The uncertainties indicate the lack of accurate
information related to the parameter values of system components, and
measurements. The most important uncertainty sources in the MG include:
loading condition, wind speed, power, solar generation and the uncertainty related
to EVs [3].

! Department of Electrical Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran,
e-mail: M.ghadi@gorganiau.ac.ir

2 Department of Electrical Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran,
e-mail: R.ebrahimi@gorganiau.ac.ir (Corresponding Author)


mailto:M.ghadi@gorganiau.ac.ir
mailto:R.ebrahimi@gorganiau.ac.ir

260 Mahmoudreza Ghadi-Sahebi, Reza Ebrahimi

Researchers have shown that more than 90% EVs are mostly unused in the
park mode [4]. Considering the charge stations for connecting EVs to the MG, can
provide an additional power under the name of vehicle-to-grid (V2G) at peak
times. This solution can be implemented by discharging EV batteries at peak
hours and charging them at other times. EVs have plenty of economic and
environmental benefits, but they provide more complexity for planning and
operation of the power network. Therefore, EVs integration in a MG requires the
new computational methods [5]. A daily model of energy resource planning for
smart grids is proposed in the presence of a large number of EVSs. In this research
work, a new demand response method, which reduced the energy consumption by
changing the travel plans, was introduced [6]. A charging method is studied for
EV owners. In this study, by controlling the charge and discharge time of the EVs,
the profitability and consent of EV owners is obtained [7]. A planning method
using EVs in the MG is proposed. The proposed planning method focuses on the
environmental and economic issues with the aim of integrating a large number of
EVs into the MG by considering uncertainty sources [8]. An optimal EV charge
and discharge considering the uncertainty of EV and WT was studied. Based on
the possible behavior of EVs and WT, the objective function was defined to
reduce cost and emission [9]. A real-time load management approach to
coordinate the charging EVs in a distribution system was used. This strategy is
based on minimizing the total energy production cost and the energy losses cost of
a distribution system [10]. A new management method for estimating the electric
energy consumption of EVs is presented. In this study assumed that a certain
percentage of EVs are in the charging mode. In this method, by managing the
charging and discharging time of EVs at charging stations, the optimum points for
lowest cost and emissions were obtained [11]. In another study, a new load
management strategy for optimizing the charging EVs was proposed for the peak-
shaving of load curve [12]. The role of EVs in demand side management and
network balancing for a MG was investigated. Moreover, incentive factors for the
charging EVs were considered. The results showed that EV owners, is generally
benefit from these conditions [13]. A new method for load management was
proposed to coordinate the charge of several EVs in the MG for improving the
network reliability and minimize the total cost of purchasing or selling energy for
charging and discharging EVs. The proposed method reduces the production cost
through considering the uncertainty of energy market prices and the charging time
of EVs [14]. A control strategy to minimize EVs charging cost was studied. Their
study is based on the pricing and the demand data of EVs energy. The results
showed that the proposed method can be very effective in the regulation market
[15]. Finally, a profitable business model for the EV fleet owners considering the
change of electricity demand and their parking times by a heuristic algorithm was
introduced [16].
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The novelties of this paper include: the MG energy management
considering uncertainty related to DG source and EVs, accurate charging and
discharging scheduling of EVs considering relevant constraints and simultaneous
reduction of operating emission and costs. For this purpose, the multi-objective
particle swarm optimization (MOPSO) algorithm is used.

The rest of the paper is organized as follows: In Section 2, the problem is
defined. The objective functions of cost, emission and constrains are introduced in
this section. In Section 3, the modeling of uncertainties and scenario generations
are discussed. In Section 4, the proposed MOPSO algorithm is introduced briefly.
The description of the test MG is given in Section 5. The simulation approaches
are presented in Section 6. Finally, Section 7 concludes this paper

2. Problem Formulations

Energy management of the MG means optimizing the use of sources with
different approaches and constraints that can be defined as an optimization
problem. One of the important issues in the management of resources in the MG
Is the reduction of costs and the environmental emissions [17]. The generation
capacity of DGs should be determined to minimize energy costs and emissions
considering operation limitations. Mathematical formulations for the DGs
operation in a MG can be defined as follows:

2.1. Objective Functions

2.1.1. Operating Cost

One of the main goals of energy management in the MG and in the
presence of EVs is the reduction of energy costs. The cost function is a
combination of DG source cost and EVs cost of energy exchanged to the network.
Therefore, the cost function is defined as follows [18]:

Mlnf Mlnz Zcost(t)_Man Z(Per,d(t) x B (1)

S3UPL()xBL +SL UL () UL (t 1) |>+ZPEV(t)xB;v),
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where, Ns is the number of random samples of operation conditions; 7z, is the
probability of each sample; P, (t) and Beria(t) are the power network and the

price of electricity per hour during period t, respectively; Npg is the number of
DGs installed in the MG; P/ (t) and B, are power and electricity price of the ith

DG during period t, respectively; S/, is cost of the ith DG during period t;
U [ (1) is a binary variable of shut down/startup of the ith DG during period t; Nev
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is the number of EVs; PJ, (1) and BEjV (t) are the power and the electricity price of

charge and discharge of the jth EV in the network during period t, respectively,
and T, is total number of hours (t=1, 2, . .,24).

2.1.2. Emission

Another challenge of the management issue in the MG is the
environmental emission. The most important emissions associated with DG
source in MGs are Carbon dioxide (COz2), Sulfur dioxide (SO2) and Nitrogen
oxides (NOx). As a result, the emission function is defined as follows [19]:

Ng
Minf, (X )=Min> 7, iEmission(t)
v=l t=1 (2)

Ng T Npg . ) Ney )
= Minz;,”uzl:{PGrid () xEgpg + Z;, Poc () xEpg + Z; Pey () xEQ, }1
L= t= i= j=

where, E;., EJ, and E, are represent the amount of pollutants emission in

kg/MWh caused by the ith DG, the jth EV and the network, respectively. These
emission variables are as follows:

Els =Co, +So, +No,', (3)

2D DG

where, Co,' , So,' and No,' are the amounts of CO2, SO, and NOx from the
ith DG sources, respectively. The same relations can be applied to EVs as follows:

Ed, =Co,’ +S0,' +No, !, 4)
where, Co,! , So,’ andNo, ! are the amounts of COz, SOz and NOx

from the jth EV, respectively.
EGrid :COZGnd +Sozenu +Noxend’ (5)

where, COZGrid , S0,

MG, respectively.

Reducing the cost of the energy production leads to an increase in
environmental emission, and vice versa. This means that reduce cost and emission
is impossible to simultaneously. As a result, the operation point must be chosen so
that cost and emission are minimized to the lowest level.

_and No, are the amounts of CO2, SOz and NOx from the

Gri

2.2. Constrains

2.2.1. Power balance
The total power generated by DGs and EVs discharge and power
purchased from the network should be equal to the sum of the load demands, the
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power used to charge EVs and the total power losses. The power balance is as
equation (6):

Npe X N ey ) Ney .
F)Grid (t) + z I:)DIG (t) + z I:)EJ\/ _Dch (t) = Dt + z I:)EJ\/ _ch (t) + LOSS(t) ’ (6)
i=1 j=1 j=1

where, P2, . (t) and P, . (t) are the power charge and discharge of the jth
EV, respectively; Dy is the load demand, and Loss(t) is the total power losses of
power system during period t.

2.2.2 DGs Units Power Limitations
All the DGs have an upper and a lower limitation for their power
generated as shown in equation (7):

I:>DiG_min < I:)DIG (t) < I:)DiG_malx’ (7)
where, Pl _.inand Pae . are the minimum and maximum power limits of
DG at time t.

2.2.3. Network Exchanged Power Limitation
The amount of electric power exchanged with the upstream power grid is
limited as follows:

IDGrid (t) < PGrid_max ! (8)
where, Parid (t) is the amount of energy exchanged to the network, and Py o 1S
the maximum power exchanged to the network.

2.2.4 EVs Constrains
In each programming period, the charge and discharge of EVs batteries
cannot be done simultaneously as shown in equation (9).

Al®)+BI(t) <1, ABe{0l}, Viefl,.Ny}, Vtell.. T} (9)

where, Aj(t) and Bj(t) are the binary variables that show the charge and

discharge mode of the jth EV in during period t. The charge and discharge rate of
each EVs battery is limited as follows:
Py o) <P L XxAIM), Vie{l,.Ng} vtel.. T} (10)
I:)Ej\/ _Dch(t) < Pchh_max xB j (t)’ VJ E{l ""’N EV }’ Vte {1’ ’T } (11)
where PC,{_maX and Pchh_maX are the maximum charge and discharge rate of the jth

EV. Further, the amount of energy stored in the EV batteries shall not be less than
or greater than specified amounts as expressed in (12) and (13).

ESO) <ylo. Viell..Ng} vte{l,.T} (12)
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ES®) 2yh, Vie{l,..Ny} vte{l...T) (13)
where, EJ(t) is the charge state of the jth EV at t period (kwWh), and /! and
w) are the minimum and maximum battery charge level (kWh), respectively.
These limitations are considered to prevent shortening battery life. The Esj t) is
calculated as equation (14).

_ _ _ _ _ 1 _
Es(t) = EJ(t —1) + 75 %Py, () -Egp(t)- -5 Pey pen(t),

trip
Dch

(14)

Vjie{l,..Ngy}, vte{l,. T}
where, EJ(t-1) is the remaining energy from previous period; Etﬂip(t) is the

power consumption for one-hour trip to constant speed, and ncjh and néeh are EVs
charge and discharge efficiency.

3. Scenario Based Stochastic Model of system

Basically, the variables in a MG have uncertainties and they must be
considered in a model to confirm the results obtained from studies. The reasons
for uncertainty can be due to random nature variables or inaccuracy in measuring.
Therefore, the proper Probability Density Function (PDF) should be chosen for
each variable to create different scenarios. Obviously, load, as the most probable
variable of uncertainty, plays a very important role in the performance of
problems associated with load change. For this reason, a normal PDF is widely
used for load change [20]. The PDF for load changes is expressed as equation
(15).

1 (Pl_ _:upl_)2
f (P )= —F—=—=exp(—— " 15
( L) m p( 2XO'§L ( )
where, Py is the load power; e and or. are the mean and the variance of load
power, respectively.

The power of a photovoltaic array depends on the intensity of solar
radiation at the installed location [21]. For this reason, a Beta PDF is used to the
power production of a PV array. So, the PV power output is expressed as a
function of radiation to respect to the power curve of sun radiation as equation
(16).

['(a +p) 4 a
——— (A xyx &) TA-(Axyx &) if Py, €[0,Pp, (£)],
f, Py ) =1 T(a) T(p) v (16)

0 otherwise
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where, & represents the amount of solar radiation in kW/m?; o« and S are the
parameters of cumulative PDF; Pey(¢) represents the power output of PV in kW; y
is the PV efficiency, and A. is the area of arrays in m?,

The wind speed is described as a Weibull distribute function to determine
the power of a WT as equation (17) [22].

Ky ep-()), v z0
f,)=49¢c c AR (17)

0 otherwise

where, v is the wind speed in m/s, and k and c are the shape factor and the scale
parameter, respectively. The distributions take different shapes with different
values of k and c.

The connection of EVs to the MG, creates a load type with a new
definition. Thus, EVs can be used as the energy consumers during charging and
electric power generators during discharging. Assuming the presence of EVSs is
random and there are no available data for their behavior. The uncertainty
associated with the power produced and consumed by vehicles in charging
stations is modeled using fuzzy logic with triangular membership functions that is
described as equation (18) and (19).

Heper (Pey )= ([L- A]% Pg, , Pey  [L+ 2] Py, ); (18)
Hogner (Pey )= —(L- A]x Pg, , Py, [L+A]x Pg, ). (19)

where, Pg, and A are the power rated and the uncertainty coefficient of EV in

charging stations, respectively [23].

In this paper, the Roulette Wheel method is used to generate scenarios for
the energy management of the MG source. Hence, the PDFs is categorized into
seven levels, according to the degree of accuracy considered for the solutions.
Then a random number with normal distribution is created within interval [0 1],
and according to the obtained value, one part of the Roulette Wheel is selected for
indicating the amount of variability. For example, as shown in Fig. 1a, a normal
PDF for load values has been selected, which can be divided to seven levels. 71 to
77 are the probability of each level as depicted in Fig. 1b, by the random selection

of a number in the range 0 to 1, one of the levels from 71 to 77 is selected [24].
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4. Multi-objective Particle Swarm Optimization Algorithm (MOPSO)

The MOPSO algorithm is a developed version of the Particle Swarm
Optimization (PSO) algorithm, which presented by CoelloCoello in 2004. In this
algorithm, the particles are randomly dispersed in search area and objective
functions are calculated for each particle. After that, the particles are evaluated
according to the objective function’s values, and the non-dominated solutions are
stored in the repository [25]. In the MOPSO, particles are updated as equations
(20) and (21):

Vk (t +-1-) = Dd Xw ka (t) +C1x r1>< (X IbeSt (t) —Xy (t))-}-CZX I’zx (Repk (t) —Xy (t)); (20)
X, (t+1) =x, (t) +v, (t+1). (21)

where, v is the velocity of particle k; Dqg is damping coefficient; w is
weighting factor, ry and r2 are random numbers between 0 and 1. ¢; and c; are
impression coefficients, and Rep, (t) is a solution selected from the repository in

each iteration. For the subsequent iterations the X ,f Pest (t) is updated as follows:
(1) If dominates x ;™ (t) thenx ™ (t +1) =x, (t +1).

(2) If the current dominates x, (t +1) then x ™ (t +1) =x ™ (t).
(3) If no one dominates the other, then one of them is randomly
selected to be the x™ (t +1).

This step is repeated until the best answer is obtained. The flowchart of the
MOPSO algorithm is shown in Fig. 2. Here, the MOPSO algorithm is used to
minimize the operation cost and the emissions.
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Fig. 2. MOPSO algorithm flow chart
5. Simulation Results

In the previous sections, the energy management of DGs and EVs with the
aim of reducing energy costs and environmental pollution is formulated. In this
section, a case study of a typical low-voltage network-connected MG is presented
in which the proposed energy management scheme is implemented. The low-
voltage grid-connected MG consists of different types of power sources includes:
photovoltaic array (PV), wind turbine (WT), micro turbine (MT), fuel cell (FC)
and electrical vehicles (EVs). The single diagram of the MG is shown in Fig..3.
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Fig. 3. The MG under study with electrical vehicle parking lots
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It is assumed that all DG units are working at unit power factor, so that no
reactive power trading exists. Moreover, according to the decisions taken in the
microgrid central controller (MGCC), proper power trading between the MG and
the market (utility) can be established at each hour of the day. In Fig. 4, the load
curve is shown in the studies of daily period. Total energy consumption for load
in the MG for 24 hours is about 94803 kWh and the peak load is 5072 kW. Also,
the output curves of power, PV and WT are shown in Fig. 5.
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Fig. 4. Load curve for 24 hours in MG
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Fig. 5. PV and WT power curves

The considered MG incorporates 1000 EVs into seven parking lots whose
driving patterns are chosen by statistical data as used in [26]. The information
includes: the travel time of each EV, the start time, the end time of the trip and the
average distance travelled. Thus, the EVs are divided into seven groups, namely,
El, ElI2, EO, EO2, SP, OU and TR, as shown in Table 1.

Table 1

The EVs driving pattern for seven EV groups for 24 hours
Group name Number of Possible times of connecting to the network
EVs in group
Ell 200 01:00-06:00,08:00-15:00,17:00-24:00
ElI2 200 01:00-06:00,08:00-15:00,17:00-19:00
EO1 100 01:00-05:00,11:00-14:00,17:00-24:00
EO2 200 01:00-05:00,11:00-15:00,17:00-19:00,22:00-24:00
SP 150 01:00-09:00,13:00-18:00,22:00-24:00
ou 100 01:00-06:00,08:00-15:00,20:00-24:00
TR 50 01:00-06:00,12:00-15:00,20:00-22:00




Stochastic scenario based microgrid energy management with electric vehicles considering... 269

It is assumed that the EV owners drive at a constant speed and the energy
consumption of each EV is 3 kWh per hour. In simulation part, EVs of Nissan
Leaf type with a 24-kWh battery capacity is used. The maximum charge and
discharge rate for each EV is 4 kWh and also depth of discharge (DOD) is
considered 25% and the maximum state of charge (SOC) is 85%. Battery
capacity. Also, each EV can be energy exchange a maximum of 4 kWh with the
upstream network. The energy stored in the batteries should be sufficient to cover
the travel distance. The cost of energy produced and emission of each DG and
EVs in the MG with their technical limitations are presented in Table 2 [27].

Table 2
Cost and emission of DGs and electrical vehicles

Cost Emission
Unit S Bid NOx SO, CO;
($/MWh) | ($/MWHh) | (kg/MWh) | (kg/MWh) | (Kg/MWh)
PV 0 2.584 0 0 0
WT 0 1.073 0 0 0
FC 1.65 0.294 0.0075 0.003 460
MT 0.96 0.457 0.1 0.0036 720
EV 0 0.24 0.014 0.001 41.9

According to Table 2, PV and WT energy characteristics can be
distinguished by their lack of emission, while MT and FC sources have relatively
high emissions. The total cost includes: the sum of initial maintenance, the DGs
fuel and the EVs parking cost. The cost of energy exchanged with the network in
24 hours is given in Table 3. According to this table, the price of electricity at low
consumption hours is cheaper than at the peak times. Therefore, the energy
producers of DGs and EVs reduce energy production at low consumption hours
and increase production at peak times. The total cost of the network in the absence
of DGs and EVs is about 20454$.

Table 3
The price of electricity per hour [28]
Time(h) 1 2 3 4 5 6 7 8
Price ($/kWh) 0.033 0.027 0.02 0.017 0.017 0.029 | 0.033 0.054
Time(h) 9 10 11 12 13 14 15 16
Price ($/kWh) 0.215 0.572 0.572 | 0.572 0.572 0.572 | 0.286 0.279
Time(h) 17 18 19 20 21 22 23 24
Price ($/kWh) 0.086 0.059 0.05 0.061 0.181 0.077 | 0.043 0.037

In this paper, time of use (TOU) pricing method is used for electric power
exchanged by upstream network. Simulations are done in three cases. In the first
case, the optimal management of MG with the aim of reducing costs is
considered. In the second case, the optimization is done with the goal of reducing
emissions, and finally, in the third one, simultaneous reduction of cost and
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emissions is studied. To achieve the optimal energy management of MG in the
first and the second cases, particle swarm optimization (PSO) and genetic
algorithm (GA) are used [29, 30]. In the third case, the MOPSO and multi-
objective genetic algorithm (NSGAII) are used to reduce cost and emission
simultaneously [31, 32]. For each case, 10 different scenarios are defined and
optimizations are done for all scenarios. The scenarios are generated by the
roulette wheel mechanism and using PDFs defined for each resource, loads and
vehicles. The algorithms are performed 20 times for each scenario. To perform the
optimization, 1000 scenarios were generated by the roulette wheel method, but the
results of 10 random scenarios are chosen and explained in comparison.

5.1. First Case (Minimizing the Cost of Operation)

In the first part of the simulation, the energy management of DG sources
and EVs in the MG under study is performed with the aim of reducing the
operating cost by using PSO and GA algorithms. The amount of energy generated
by DGs and energy produced of EVs charge and discharge is determined by the
algorithms in such a way to minimize the cost of the operation. The best, worst,
average and standard deviations of solutions are calculated for each scenario. The
results are given in Table 4.

Table 4

Simulation results in the first case using PSO and GA algorithms in 10 scenarios
. Standard Simulation

Scenario | Best ($) Worst ($) Average ($) deviation ($) | time (s)
Algorithm | GA PSO | GA PSO | GA PSO | GA PSO | GA | PSO
S1 0812 | 9764 | 9856 | 9784 | 9841 | 9773 |22.36 | 7.42 | 451 | 374
S2 10186 | 10123 | 10248 | 10141 | 10205 | 10137 | 29.17 | 7.76 | 445 | 381
S3 8833 | 8793 |8825 |8805 |8796 | 8800 |24.36|6.32 | 446 | 376
S4 9875 | 9806 | 9913 | 9818 | 9891 |9810 | 26.51 | 6.38 | 450 | 382
S5 9759 | 9719 | 9810 | 9731 | 9789 | 9726 | 23.72 | 6.84 | 453 | 377
S6 10061 | 9923 | 9948 | 9948 | 10029 | 9929 | 25.86 | 7.83 | 451 | 378
S7 8904 |8839 |8949 |8851 |8932 |8844 | 30.11 | 6.29 | 448 | 376
S8 8984 |8901 | 9136 | 8926 | 9118 | 8909 | 27.21 | 7.51 | 450 | 381
S9 0621 | 9568 | 9677 | 9578 | 9646 | 9572 | 26.90 | 6.81 | 449 | 380
S10 9713 | 9647 | 9762 | 9662 | 9738 | 9653 | 28.13 | 7.57 | 452 | 375

The numerical results reveal that the PSO algorithm has a lower cost and
profitability than the GA algorithm. For example, the lowest cost is 8793$% and
88333 for PSO and GA algorithms, respectively, is obtained in the 3th scenario. In
this scenario, the average cost is 9515$% and 9599% for PSO and GA algorithms,
respectively. The differences between the best and the worst solutions are low for
the PSO algorithm in the 10th scenarios. For this reason, the standard deviation is
small. The small amount of standard deviation for the PSO algorithm indicates the
high accuracy of this algorithm. As a result, the PSO algorithm is better than the
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GA algorithm due to more efficient arrangement and scheduling of vehicles at the
charging station. Also, the convergence time in the GA algorithm is high. But the
PSO algorithm has a good convergence time, lower cost and greater profitability.
The percentage of the profitability for 7 groups of EVs is presented in Fig. 6.

12% EO1
9%

EO2
16%

Fig. 6. The percentage of the profitability for EV groups and DGs

Based on the obtained results, in the first case, the total profitability of the
network in the presence of DG sources and EVs is about 95083$, of which
77421% (81.4%) is due to the existence of EVs and 17662$ (about 18%) is
attributed to DGs.

5.2. Second Case (Minimizing the Emission)

In the second case, the energy management of DGs and EVs in the MG is
carried out by PSO and GA algorithms aiming to reduce emission. In this part of
the optimization, the algorithms should provide a schedule for utilizing DGs and
EVs so that the emissions are minimized. The results of the 10 scenarios are
shown in Fig. 7.
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Fig. 7. Emission values for 10 scenarios in second case

As shown in Fig. 7, the amount of emission obtained by the PSO algorithm
in all scenarios is less than that of GA algorithm. The lowest emission for PSO
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and GA is in the 3th scenario and the maximum amount is witnessed in the 2th
scenario. Therefore, it can be concluded that by increasing the load, the emissions
increase. According to the results, PV and WT resources produce their maximum
power output in order to minimize the emissions. On the other hand, MT and FC
have the lowest share in the power generation. Due to lower emissions of EVs
than MT and FC, the EVs have a larger share of energy exchange. The operating
schedule moves toward supplying the demand by more charging and discharging
of EVs in order to reduce emissions. Because the cost is not considered in the
objective function for the second case of the simulation, EVs have contributed
more in supplying the demand.

5.2.3. Third Case (Minimizing the Cost and Emission Simultaneously)

In the third case of simulations, the energy management of DG resources
and EVs in the MG studies with the aim of reducing the cost and the emission
simultaneously. For this purpose, two multi-objective algorithms, including the
MOPSO and NSGAII are applied to find the optimal operating point of resources
and EVs at each hour. The results are provided in Tables 5.

Table 5
Simulation results in the third case using a MOPSP algorithm in 10 scenarios

Simulation Best ($) Worst ($) Average ($)
Scenario | algorithm Time | Cost | Emission | Cost | Emission Cost | Emission
S $) (kg) $) (kg) $) (kg)
s1 MOPSO 616 | 12693 56786 | 12915 57270 | 12705 56802
NSGAII 714 | 12756 57396 | 13108 58104 | 12892 57565
s2 MOPSO 639 | 13160 58857 | 13386 59355 | 13178 58872
NSGAII 720 | 13242 59584 | 13630 60415 | 13369 59695
MOPSO 621 | 11431 51104 | 11623 51538 | 11440 51119
53 NSGAII 724 | 11406 51580 | 11737 52413 | 11523 51727
sa MOPSO 625 | 12748 56982 | 12960 57463 | 12753 56996
NSGAII 730 | 12838 57765 | 13184 58491 | 12957 57859
S5 MOPSO 628 | 12635 56478 | 12845 56963 | 12644 56495
NSGAII 728 | 12687 57087 | 13047 57833 | 12824 57262
6 MOPSO 625 | 12900 57737 | 13131 58220 | 12908 57751
NSGAII 713 | 13007 58525 | 13381 59313 | 13138 58666
57 MOPSO 626 | 11491 51370 | 11683 51799 | 11497 51379
NSGAII 720 | 11575 52084 | 11902 52757 | 11701 52248
S8 MOPSO 616 | 11571 51806 | 11782 52246 | 11582 51826
NSGAII 730 | 11679 52553 | 12151 53344 | 11945 52696
59 MOPSO 632 | 12438 55589 | 12643 56068 | 12444 55606
NSGAII 732 | 12507 56279 | 12870 57049 | 12636 56425
10 MOPSO 635 | 12541 56077 | 12754 56549 | 12549 56092
NSGAII 724 | 12627 56817 | 12983 57549 | 12757 56964

The responses in ideal Pareto front should be distributed equally. If the
dominant particles are distributed uniformly, then the algorithm is more accurate
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in choosing the optimal response. As an example, the Pareto fronts in the 1th
scenario for the two algorithms are shown in Fig. 8.
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Fig. 8. Pareto fronts of (a.) MOPSO, (b.) NSGAII algorithms

In Fig. 8, the Pareto front is drawn for the 10 dominant particles of
MOPSO and NSGAII algorithms. If the dominant particles are uniformly
distributed, choosing the best response from the Pareto front is possible. In order
to evaluate the results of simulations in the third case more accurately, the metric
distance criteria are calculated for the algorithms, which is expressed as follows:

1 &,
: =JNk 2@ )" (22)

In equation (22), Nk is the number of particles, di is the distance between
the kth particle and the nearest neighbor and d is the average distances, which are
calculated as follows:

. -min{Ni‘ fr;(xo_im(x,-)\}; )
ol_z(idi)/Nk. (24)

where, f_ . ..and f_ . are minimum and maximum solutions,

respectively. The lower value of metric distance means that the solutions in the
Pareto solution are more distributed, and the zero value for the metric distance
means that all solutions in the Pareto solution set are equally spaced.



274 Mahmoudreza Ghadi-Sahebi, Reza Ebrahimi

0.045f

0.04f _

0.035¢ _
1

0.03r

S Metric

0.025f

0.02r

T
—e

1
0.015} —
MOPSO NSGAII

Fig. 9. Metric distance for multi objective algorithms

In Fig. 9, the upper and lower horizontal lines represent the boundary
values. The square box contains half the metric distance and the red line in the
square box represents the average values of the metric distance. By comparing the
algorithms, the proposed method of the MOPSO algorithm has the minimum
average value and the minimum metric distance. The lower horizontal line of the
MOPSO algorithm is lower than that of the NSGAII algorithm. As a result,
compared to the other algorithms, this algorithm has a better performance in
finding uniform distribution solutions and Pareto front.

6. Conclusion

This paper focuses on the energy management of DG sources and EVs in
the grid-connected MG to reduce the operating cost and emissions in the presence
of uncertainties. In this study, the uncertainties of power generation of DGs, EVs
and network load are considered. Thus, new scenario-based objective functions
are introduced which have been formulated in such a way to encompass all the
uncertainties weighted according to their probability of occurrence. In order to
achieve the most accurate results, the simulations are done in three cases with 10
scenarios generated by the roulette wheel mechanism. The modified version of the
single-objective function GA and PSO algorithm as multi-objective function
NSGAII and MOPSO are used to solve the optimization problem. Performing 20
times of algorithm run for each scenario, the lowest value of the objective
function and the standard deviation is obtained for the PSO algorithm. In the third
case, the cost and emission reductions are achieved simultaneously by using
MOPSO and NSGAII algorithms. The simulation results indicate the good
performance of the proposed PSO and the MOPSO algorithms in each scenario.
The minimum amount of the objective functions in the third case is obtained for
the MOPSO algorithm.
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