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STOCHASTIC SCENARIO BASED MICROGRID ENERGY 

MANAGEMENT WITH ELECTRIC VEHICLES 

CONSIDERING UNCERTAINTY SOURCES 

Mahmoudreza GHADI-SAHEBI1, Reza EBRAHIMI2 

This paper focuses on energy management of distributed generation sources 

and electric vehicles in a grid-connected microgrid considering uncertainties. The 

problem is formulated as a multi-objective optimization problem of energy cost and 

emission. In this context, innovative scenario-based objective functions are 

introduced to handle different uncertainties in the microgrid energy management. 

Since the objective functions are based on scenarios, appropriate probability density 

functions for each uncertainty source are defined, and then scenarios are randomly 

generated to be included in the objective function. To solve the optimization 

problem, the modified version of the multi-objective particle swarm optimization 

(MOPSO) algorithm is used. Also, the multiple-objective genetic algorithms and the 

multiple-objective differential evolution algorithms are used for optimization. The 

results confirm the effectiveness of objective functions and the good performance of 

the proposed modified MOPSO algorithm. 

Keywords: Microgrid; Electric Vehicles; Multi-Objective Optimization; 

Uncertainty 

1. Introduction 

One of the most important issues in the Microgrid (MG) field is the 

environmental pollution and the costs of power generation, which should be 

carefully considered. The energy management of distributed generation (DG) 

sources and electric vehicles (EVs) in the MG were studied using the network 

load curve and time-varying electricity prices during the day [1]. EV charging is 

mainly shifted to off-peak times when electricity is cheap, and the use of EV 

discharge and DGs schedule for peak-load times. Therefore, the presence of DGs 

and EV parking lots can improve the network power quality, if energy 

management is done correctly [2]. On the other hand, many uncertainties need to 

be considered in the MG field. The uncertainties indicate the lack of accurate 

information related to the parameter values of system components, and 

measurements. The most important uncertainty sources in the MG include: 

loading condition, wind speed, power, solar generation and the uncertainty related 

to EVs [3].  
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Researchers have shown that more than 90% EVs are mostly unused in the 

park mode [4]. Considering the charge stations for connecting EVs to the MG, can 

provide an additional power under the name of vehicle-to-grid (V2G) at peak 

times. This solution can be implemented by discharging EV batteries at peak 

hours and charging them at other times. EVs have plenty of economic and 

environmental benefits, but they provide more complexity for planning and 

operation of the power network. Therefore, EVs integration in a MG requires the 

new computational methods [5]. A daily model of energy resource planning for 

smart grids is proposed in the presence of a large number of EVs. In this research 

work, a new demand response method, which reduced the energy consumption by 

changing the travel plans, was introduced [6]. A charging method is studied for 

EV owners. In this study, by controlling the charge and discharge time of the EVs, 

the profitability and consent of EV owners is obtained [7].  A planning method 

using EVs in the MG is proposed. The proposed planning method focuses on the 

environmental and economic issues with the aim of integrating a large number of 

EVs into the MG by considering uncertainty sources [8]. An optimal EV charge 

and discharge considering the uncertainty of EV and WT was studied. Based on 

the possible behavior of EVs and WT, the objective function was defined to 

reduce cost and emission [9]. A real-time load management approach to 

coordinate the charging EVs in a distribution system was used. This strategy is 

based on minimizing the total energy production cost and the energy losses cost of 

a distribution system [10]. A new management method for estimating the electric 

energy consumption of EVs is presented. In this study assumed that a certain 

percentage of EVs are in the charging mode. In this method, by managing the 

charging and discharging time of EVs at charging stations, the optimum points for 

lowest cost and emissions were obtained [11]. In another study, a new load 

management strategy for optimizing the charging EVs was proposed for the peak- 

shaving of load curve [12]. The role of EVs in demand side management and 

network balancing for a MG was investigated. Moreover, incentive factors for the 

charging EVs were considered. The results showed that EV owners, is generally 

benefit from these conditions [13]. A new method for load management was 

proposed to coordinate the charge of several EVs in the MG for improving the 

network reliability and minimize the total cost of purchasing or selling energy for 

charging and discharging EVs. The proposed method reduces the production cost 

through considering the uncertainty of energy market prices and the charging time 

of EVs [14]. A control strategy to minimize EVs charging cost was studied. Their 

study is based on the pricing and the demand data of EVs energy. The results 

showed that the proposed method can be very effective in the regulation market 

[15]. Finally, a profitable business model for the EV fleet owners considering the 

change of electricity demand and their parking times by a heuristic algorithm was 

introduced [16]. 



Stochastic scenario based microgrid energy management with electric vehicles considering…  261 

The novelties of this paper include: the MG energy management 

considering uncertainty related to DG source and EVs, accurate charging and 

discharging scheduling of EVs considering relevant constraints and simultaneous 

reduction of operating emission and costs. For this purpose, the multi-objective 

particle swarm optimization (MOPSO) algorithm is used.  

The rest of the paper is organized as follows: In Section 2, the problem is 

defined. The objective functions of cost, emission and constrains are introduced in 

this section. In Section 3, the modeling of uncertainties and scenario generations 

are discussed. In Section 4, the proposed MOPSO algorithm is introduced briefly. 

The description of the test MG is given in Section 5. The simulation approaches 

are presented in Section 6. Finally, Section 7 concludes this paper  

2. Problem Formulations 

Energy management of the MG means optimizing the use of sources with 

different approaches and constraints that can be defined as an optimization 

problem. One of the important issues in the management of resources in the MG 

is the reduction of costs and the environmental emissions [17]. The generation 

capacity of DGs should be determined to minimize energy costs and emissions 

considering operation limitations. Mathematical formulations for the DGs 

operation in a MG can be defined as follows:   

2.1. Objective Functions 

2.1.1. Operating Cost 

One of the main goals of energy management in the MG and in the 

presence of EVs is the reduction of energy costs. The cost function is a 

combination of DG source cost and EVs cost of energy exchanged to the network. 

Therefore, the cost function is defined as follows [18]: 
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where, NS is the number of random samples of operation conditions;  is the 

probability of each sample;
 GridP (t) and  BGrid(t) are the power network and the 

price of electricity per hour during period t, respectively;
 
NDG is the number of 

DGs installed in the MG; i

DGP (t) and 
i

EVB are power and electricity price of the ith 

DG during period t, respectively; i

DGS  is cost of the ith DG during period t; 
i

DGU (t) is a binary variable of shut down/startup of the ith DG during period t; NEV 
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is the number of EVs; j
EV (t)P and

 
j

EVB (t) are the power and the electricity price of 

charge and discharge of the jth EV in the network during period t, respectively, 

and T, is total number of hours ( t = 1, 2, . .,24).   

2.1.2. Emission 

Another challenge of the management issue in the MG is the 

environmental emission. The most important emissions associated with DG 

source in MGs are Carbon dioxide (CO2), Sulfur dioxide (SO2) and Nitrogen 

oxides (NOx). As a result, the emission function is defined as follows [19]: 
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(2) 

where, 
i

DG
E , 

j

EV
E  and Grid

E are represent the amount of pollutants emission in 

kg/MWh caused by the ith DG, the jth EV and the network, respectively. These 

emission variables are as follows: 
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where,
 2 DG

iCo , 2 DG

iSo and 
DG

i

X
No are the amounts of CO2, SO2 and NOx from the 

ith DG sources, respectively. The same relations can be applied to EVs as follows: 
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where,
 2 EV

jCo , 2 EV

jSo and
EV

j

XNo are the amounts of CO2, SO2 and NOx 

from the jth EV, respectively. 

2 2
,

Grid Grid GridXGrid
Co So NoE = + +  (5) 

where, 2Grid
Co , 2Grid

So and 
GridXNo are the amounts of CO2, SO2 and NOx from the 

MG, respectively. 

Reducing the cost of the energy production leads to an increase in 

environmental emission, and vice versa. This means that reduce cost and emission 

is impossible to simultaneously. As a result, the operation point must be chosen so 

that cost and emission are minimized to the lowest level. 

2.2. Constrains 

2.2.1. Power balance  

The total power generated by DGs and EVs discharge and power 

purchased from the network should be equal to the sum of the load demands, the 
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power used to charge EVs and the total power losses. The power balance is as 

equation (6): 

_ _ ,
DG EV EVN N N

i j j

Grid DG EV Dch t EV ch

i =1 j =1 j =1

P (t) + P (t) + P (t) = D + P (t) + Loss(t)    (6) 

where, _

j

EV chP (t)  and _

j

EV DchP (t) are the power charge and discharge of the jth 

EV, respectively; Dt is the load demand, and Loss(t) is the total power losses of 

power system during period t.  

2.2.2 DGs Units Power Limitations 

All the DGs have an upper and a lower limitation for their power 

generated as shown in equation (7): 

_ min _ max ,i i i

DG DG DGP P (t) P   (7) 

where, min

i

DGP − and max

i

DGP − are the minimum and maximum power limits of 

DG at time t.   

2.2.3. Network Exchanged Power Limitation 

The amount of electric power exchanged with the upstream power grid is 

limited as follows: 

_ ,Grid Grid maxP (t) P  (8) 

where, PGrid (t) is the amount of energy exchanged to the network, and _Grid max
P  is 

the maximum power exchanged to the network. 
 

2.2.4 EVs Constrains 

In each programming period, the charge and discharge of EVs batteries 

cannot be done simultaneously as shown in equation (9). 

   , , ,j j

EVA (t) + B (t) 1 A,B 0,1 j 1 ,...,N t 1,... ,T        (9) 

where, 
j

A (t) and 
j

B (t) are the binary variables that show the charge and 

discharge mode of the jth EV in during period t. The charge and discharge rate of 

each EVs battery is limited as follows: 

  _ _ max , ,j j j

EV ch ch EVP (t) P × A (t) j 1 ,...,N t 1,... ,T      (10) 
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EV Dch Dch EVP (t) P × B (t) j 1 ,..., N t 1,... ,T      (11) 

where _ max

j

chP and _ max

j

DchP  are the maximum charge and discharge rate of the jth 

EV. Further, the amount of energy stored in the EV batteries shall not be less than 

or greater than specified amounts as expressed in (12) and (13). 

  , ,j j

S max EVE (t) j 1 ,..., N t 1,... ,T      (12) 
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  min , ,j j

S EVE (t) j 1 ,..., N t 1,... ,T      (13) 

where, j

SE (t)  is the charge state of the jth EV at t period (kWh), and j

min  and 
j

max are the minimum and maximum battery charge level (kWh), respectively. 

These limitations are considered to prevent shortening battery life. The 
j

SE (t) is 

calculated as equation (14).

 

  

_ _D1 ),

,

j j j j j j

S S ch EV ch trip EV chj

Dch

EV

1
E (t) = E (t ) + × P (t) - E (t) - × P (t

j 1 ,...,N t 1,... ,T




−

   

 

(14) 

 

 

where, 1j

SE (t )−  is the remaining energy from previous period; 
j

tripE (t)  is the 

power consumption for one-hour trip to constant speed, and 
j

ch  and 
j

Dch  are EVs 

charge and discharge efficiency. 

3. Scenario Based Stochastic Model of system 

Basically, the variables in a MG have uncertainties and they must be 

considered in a model to confirm the results obtained from studies. The reasons 

for uncertainty can be due to random nature variables or inaccuracy in measuring. 

Therefore, the proper Probability Density Function (PDF) should be chosen for 

each variable to create different scenarios. Obviously, load, as the most probable 

variable of uncertainty, plays a very important role in the performance of 

problems associated with load change. For this reason, a normal PDF is widely 

used for load change [20]. The PDF for load changes is expressed as equation 

(15). 

2

2
(P )

( )1
exp(

22

L PL
L

PLPL

f
P 

 
=

−
−


 

(15) 

where, PL is the load power; µPL and σPL are the mean and the variance of load 

power, respectively. 

The power of a photovoltaic array depends on the intensity of solar 

radiation at the installed location [21]. For this reason, a Beta PDF is used to the 

power production of a PV array. So, the PV power output is expressed as a 

function of radiation to respect to the power curve of sun radiation as equation 

(16). 
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where, ξ represents the amount of solar radiation in kW/m2; α and β are the 

parameters of cumulative PDF; PPV(ξ) represents the power output of PV in kW; γ 

is the PV efficiency, and Ac is the area of arrays in m2. 

The wind speed is described as a Weibull distribute function to determine 

the power of a WT as equation (17) [22]. 
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where, v is the wind speed in m/s, and k and c are the shape factor and the scale 

parameter, respectively. The distributions take different shapes with different 

values of k and c. 

The connection of EVs to the MG, creates a load type with a new 

definition. Thus, EVs can be used as the energy consumers during charging and 

electric power generators during discharging. Assuming the presence of EVs is 

random and there are no available data for their behavior. The uncertainty 

associated with the power produced and consumed by vehicles in charging 

stations is modeled using fuzzy logic with triangular membership functions that is 

described as equation (18) and (19). 

( ([ ] , , [ ] ;) )r r r

char EV EV EV EVP = 1 - × P   P  1+ × P    (18) 

([ ] , , [ ] ).( )  − r r r

dchar EV EV EV EVP = 1 - × P   P  1+ × P  

 
(19) 

where, r

EVP and λ are the power rated and the uncertainty coefficient of EV in 

charging stations, respectively [23].  

In this paper, the Roulette Wheel method is used to generate scenarios for 

the energy management of the MG source. Hence, the PDFs is categorized into 

seven levels, according to the degree of accuracy considered for the solutions. 

Then a random number with normal distribution is created within interval [0 1], 

and according to the obtained value, one part of the Roulette Wheel is selected for 

indicating the amount of variability. For example, as shown in Fig. 1a, a normal 

PDF for load values has been selected, which can be divided to seven levels. π1 to 

π7 are the probability of each level as depicted in Fig. 1b, by the random selection 

of a number in the range 0 to 1, one of the levels from π1 to π7 is selected [24]. 
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Fig. 1. (a.) PDF for load changes and (b.) Roulette wheel mechanism 
 

4.  Multi-objective Particle Swarm Optimization Algorithm (MOPSO) 

 

The MOPSO algorithm is a developed version of the Particle Swarm 

Optimization (PSO) algorithm, which presented by CoelloCoello in 2004. In this 

algorithm, the particles are randomly dispersed in search area and objective 

functions are calculated for each particle. After that, the particles are evaluated 

according to the objective function’s values, and the non-dominated solutions are 

stored in the repository [25].  In the MOPSO, particles are updated as equations 

(20) and (21): 

1 1 2 2
( ) ( );1 Pbest

k d k k k k kV D w v c r x x c r x(t ) × × (t) × × (t) (t) × × Rep (t) (t)= + − + −+  (20) 

1 1 .k k kx x v(t ) (t) (t )= ++ +  (21) 

where, νk is the velocity of particle k; Dd is damping coefficient; w is 

weighting factor, r1 and r2 are random numbers between 0 and 1. c1 and c2 are 

impression coefficients, and kRep (t)  is a solution selected from the repository in 

each iteration. For the subsequent iterations the 
Pbest

kx (t) is updated as follows:  

 (1) If dominates 
Pbest

kx (t) then 1 1 .
k

Pbest

k xx (t ) (t )=+ +  

 (2) If the current  dominates 1
k

x (t )+ then 1 .Pbest Pbest

k kx x(t ) (t)=+  

 (3) If no one dominates the other, then one of them is randomly 

selected to be the 1 .Pbest

kx (t )+  

This step is repeated until the best answer is obtained. The flowchart of the 

MOPSO algorithm is shown in Fig. 2. Here, the MOPSO algorithm is used to 

minimize the operation cost and the emissions. 
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Fig. 2. MOPSO algorithm flow chart 

 

5.  Simulation Results 

In the previous sections, the energy management of DGs and EVs with the 

aim of reducing energy costs and environmental pollution is formulated. In this 

section, a case study of a typical low-voltage network-connected MG is presented 

in which the proposed energy management scheme is implemented. The low-

voltage grid-connected MG consists of different types of power sources includes: 

photovoltaic array (PV), wind turbine (WT), micro turbine (MT), fuel cell (FC) 

and electrical vehicles (EVs). The single diagram of the MG is shown in Fig..3. 
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Fig. 3. The MG under study with electrical vehicle parking lots 
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It is assumed that all DG units are working at unit power factor, so that no 

reactive power trading exists. Moreover, according to the decisions taken in the 

microgrid central controller (MGCC), proper power trading between the MG and 

the market (utility) can be established at each hour of the day. In Fig. 4, the load 

curve is shown in the studies of daily period. Total energy consumption for load 

in the MG for 24 hours is about 94803 kWh and the peak load is 5072 kW. Also, 

the output curves of power, PV and WT are shown in Fig. 5.  

 
Fig. 4. Load curve for 24 hours in MG 

    

 

Fig. 5. PV and WT power curves 

The considered MG incorporates 1000 EVs into seven parking lots whose 

driving patterns are chosen by statistical data as used in [26]. The information 

includes: the travel time of each EV, the start time, the end time of the trip and the 

average distance travelled. Thus, the EVs are divided into seven groups, namely, 

EI, EI2, EO, EO2, SP, OU and TR, as shown in Table 1. 
Table 1 

The EVs driving pattern for seven EV groups for 24 hours 

Possible times of connecting to the network 
Number of 

EVs in group 
Group name 

01:00-06:00,08:00-15:00,17:00-24:00 200 EI1 

01:00-06:00,08:00-15:00,17:00-19:00 200 EI2 

01:00-05:00,11:00-14:00,17:00-24:00 100 EO1 

01:00-05:00,11:00-15:00,17:00-19:00,22:00-24:00 200 EO2 

01:00-09:00,13:00-18:00,22:00-24:00 150 SP 

01:00-06:00,08:00-15:00,20:00-24:00 100 OU 

01:00-06:00,12:00-15:00,20:00-22:00 50 TR 
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It is assumed that the EV owners drive at a constant speed and the energy 

consumption of each EV is 3 kWh per hour. In simulation part, EVs of Nissan 

Leaf type with a 24-kWh battery capacity is used. The maximum charge and 

discharge rate for each EV is 4 kWh and also depth of discharge (DOD) is 

considered 25% and the maximum state of charge (SOC) is 85%. Battery 

capacity. Also, each EV can be energy exchange a maximum of 4 kWh with the 

upstream network. The energy stored in the batteries should be sufficient to cover 

the travel distance. The cost of energy produced and emission of each DG and 

EVs in the MG with their technical limitations are presented in Table 2 [27]. 
 

Table 2  

Cost and emission of DGs and electrical vehicles 

Emission Cost 

Unit 2CO 

  (Kg/MWh) 
2SO 

 (kg/MWh) 
XNO 

 (kg/MWh) 

Bid 

 ($/MWh) 

S 

($/MWh) 

0 0 0 2.584 0 PV 

0 0 0 1.073 0 WT 

460 0.003 0.0075 0.294 1.65 FC 

720 0.0036 0.1 0.457 0.96 MT 

41.9 0.001 0.014 0.24 0 EV 
 

According to Table 2, PV and WT energy characteristics can be 

distinguished by their lack of emission, while MT and FC sources have relatively 

high emissions. The total cost includes: the sum of initial maintenance, the DGs 

fuel and the EVs parking cost. The cost of energy exchanged with the network in 

24 hours is given in Table 3. According to this table, the price of electricity at low 

consumption hours is cheaper than at the peak times. Therefore, the energy 

producers of DGs and EVs reduce energy production at low consumption hours 

and increase production at peak times. The total cost of the network in the absence 

of DGs and EVs is about 20454$. 
Table 3 

The price of electricity per hour [28] 

In this paper, time of use (TOU) pricing method is used for electric power 

exchanged by upstream network. Simulations are done in three cases. In the first 

case, the optimal management of MG with the aim of reducing costs is 

considered. In the second case, the optimization is done with the goal of reducing 

emissions, and finally, in the third one, simultaneous reduction of cost and 

8 7 6 5 4 3 2 1 Time(h) 

0.054 0.033 0.029 0.017 0.017 0.02 0.027 0.033 Price ($/kWh) 

16 15 14 13 12 11 10 9 Time(h) 

0.279 0.286 0.572 0.572 0.572 0.572 0.572 0.215 Price ($/kWh) 

24 23 22 21 20 19 18 17 Time(h) 

0.037 0.043 0.077 0.181 0.061 0.05 0.059 0.086 Price ($/kWh) 



270                                       Mahmoudreza Ghadi-Sahebi, Reza Ebrahimi 

emissions is studied. To achieve the optimal energy management of MG in the 

first and the second cases, particle swarm optimization (PSO) and genetic 

algorithm (GA) are used [29, 30]. In the third case, the MOPSO and multi-

objective genetic algorithm (NSGAII) are used to reduce cost and emission 

simultaneously [31, 32]. For each case, 10 different scenarios are defined and 

optimizations are done for all scenarios. The scenarios are generated by the 

roulette wheel mechanism and using PDFs defined for each resource, loads and 

vehicles. The algorithms are performed 20 times for each scenario. To perform the 

optimization, 1000 scenarios were generated by the roulette wheel method, but the 

results of 10 random scenarios are chosen and explained in comparison. 

5.1. First Case (Minimizing the Cost of Operation) 

In the first part of the simulation, the energy management of DG sources 

and EVs in the MG under study is performed with the aim of reducing the 

operating cost by using PSO and GA algorithms. The amount of energy generated 

by DGs and energy produced of EVs charge and discharge is determined by the 

algorithms in such a way to minimize the cost of the operation. The best, worst, 

average and standard deviations of solutions are calculated for each scenario. The 

results are given in Table 4. 

Table 4  

Simulation results in the first case using PSO and GA algorithms in 10 scenarios 

Simulation  

time (s) 

Standard  

deviation ($) 
Average ($) Worst ($) Best ($) Scenario 

PSO GA PSO GA PSO GA PSO GA PSO GA Algorithm 

374 451 7.42 22.36 9773 9841 9784 9856 9764 9812 S1 

381 445 7.76 29.17 10137 10205 10141 10248 10123 10186 S2 

376 446 6.32 24.36 8800 8796 8805 8825 8793 8833 S3 
382 450 6.38 26.51 9810 9891 9818 9913 9806 9875 S4 

377 453 6.84 23.72 9726 9789 9731 9810 9719 9759 S5 

378 451 7.83 25.86 9929 10029 9948 9948 9923 10061 S6 

376 448 6.29 30.11 8844 8932 8851 8949 8839 8904 S7 

381 450 7.51 27.21 8909 9118 8926 9136 8901 8984 S8 

380 449 6.81 26.90 9572 9646 9578 9677 9568 9621 S9 

375 452 7.57 28.13 9653 9738 9662 9762 9647 9713 S10 

The numerical results reveal that the PSO algorithm has a lower cost and 

profitability than the GA algorithm. For example, the lowest cost is 8793$ and 

8833$ for PSO and GA algorithms, respectively, is obtained in the 3th scenario. In 

this scenario, the average cost is 9515$ and 9599$ for PSO and GA algorithms, 

respectively. The differences between the best and the worst solutions are low for 

the PSO algorithm in the 10th scenarios. For this reason, the standard deviation is 

small. The small amount of standard deviation for the PSO algorithm indicates the 

high accuracy of this algorithm. As a result, the PSO algorithm is better than the 
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GA algorithm due to more efficient arrangement and scheduling of vehicles at the 

charging station. Also, the convergence time in the GA algorithm is high. But the 

PSO algorithm has a good convergence time, lower cost and greater profitability.  

The percentage of the profitability for 7 groups of EVs is presented in Fig. 6. 

 
Fig. 6. The percentage of the profitability for EV groups and DGs 

Based on the obtained results, in the first case, the total profitability of the 

network in the presence of DG sources and EVs is about 95083$, of which 

77421$ (81.4%) is due to the existence of EVs and 17662$ (about 18%) is 

attributed to DGs.  
 

5.2.  Second Case (Minimizing the Emission) 

In the second case, the energy management of DGs and EVs in the MG is 

carried out by PSO and GA algorithms aiming to reduce emission. In this part of 

the optimization, the algorithms should provide a schedule for utilizing DGs and 

EVs so that the emissions are minimized. The results of the 10 scenarios are 

shown in Fig. 7. 

 
Fig. 7. Emission values for 10 scenarios in second case 

As shown in Fig. 7, the amount of emission obtained by the PSO algorithm 

in all scenarios is less than that of GA algorithm. The lowest emission for PSO 
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and GA is in the 3th scenario and the maximum amount is witnessed in the 2th 

scenario. Therefore, it can be concluded that by increasing the load, the emissions 

increase. According to the results, PV and WT resources produce their maximum 

power output in order to minimize the emissions. On the other hand, MT and FC 

have the lowest share in the power generation. Due to lower emissions of EVs 

than MT and FC, the EVs have a larger share of energy exchange. The operating 

schedule moves toward supplying the demand by more charging and discharging 

of EVs in order to reduce emissions. Because the cost is not considered in the 

objective function for the second case of the simulation, EVs have contributed 

more in supplying the demand. 
 

5.2.3. Third Case (Minimizing the Cost and Emission Simultaneously) 

In the third case of simulations, the energy management of DG resources 

and EVs in the MG studies with the aim of reducing the cost and the emission 

simultaneously. For this purpose, two multi-objective algorithms, including the 

MOPSO and NSGAII are applied to find the optimal operating point of resources 

and EVs at each hour. The results are provided in Tables 5. 
Table 5 

Simulation results in the third case using a MOPSP algorithm in 10 scenarios 

Average ($) Worst ($) Best ($) Simulation 

 Time 

 (S) 

 

algorithm 

 

 

Scenario Emission 

(kg) 

Cost 

($) 

Emission 

(kg) 

Cost  

($) 

Emission 

(kg) 

Cost 

 ($) 

56802 12705 57270 12915 56786 12693 616 MOPSO 
S1 

57565 12892 58104 13108 57396 12756 714 NSGAII 

58872 13178 59355 13386 58857 13160 639 MOPSO 
S2 

59695 13369 60415 13630 59584 13242 720 NSGAII 

51119 11440 51538 11623 51104 11431 621 MOPSO 
S3 

51727 11523 52413 11737 51580 11406 724 NSGAII 

56996 12753 57463 12960 56982 12748 625 MOPSO 
S4 

57859 12957 58491 13184 57765 12838 730 NSGAII 

56495 12644 56963 12845 56478 12635 628 MOPSO 
S5 

57262 12824 57833 13047 57087 12687 728 NSGAII 

57751 12908 58220 13131 57737 12900 625 MOPSO 
S6 

58666 13138 59313 13381 58525 13007 713 NSGAII 

51379 11497 51799 11683 51370 11491 626 MOPSO 
S7 

52248 11701 52757 11902 52084 11575 720 NSGAII 

51826 11582 52246 11782 51806 11571 616 MOPSO 
S8 

52696 11945 53344 12151 52553 11679 730 NSGAII 

55606 12444 56068 12643 55589 12438 632 MOPSO 
S9 

56425 12636 57049 12870 56279 12507 732 NSGAII 

56092 12549 56549 12754 56077 12541 635 MOPSO 
S10 

56964 12757 57549 12983 56817 12627 724 NSGAII 
 

The responses in ideal Pareto front should be distributed equally. If the 

dominant particles are distributed uniformly, then the algorithm is more accurate 
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in choosing the optimal response. As an example, the Pareto fronts in the 1th 

scenario for the two algorithms are shown in Fig. 8. 

     
                                          (a.)                                                                        (b.) 

Fig. 8.  Pareto fronts of (a.) MOPSO, (b.) NSGAII algorithms 

In Fig. 8, the Pareto front is drawn for the 10 dominant particles of 

MOPSO and NSGAII algorithms. If the dominant particles are uniformly 

distributed, choosing the best response from the Pareto front is possible. In order 

to evaluate the results of simulations in the third case more accurately, the metric 

distance criteria are calculated for the algorithms, which is expressed as follows: 

(22) 
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In equation (22), Nk is the number of particles, di is the distance between 

the kth particle and the nearest neighbor and d is the average distances, which are 

calculated as follows: 
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where, .minmf and .maxmf  are minimum and maximum solutions, 

respectively. The lower value of metric distance means that the solutions in the 

Pareto solution are more distributed, and the zero value for the metric distance 

means that all solutions in the Pareto solution set are equally spaced. 
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Fig. 9. Metric distance for multi objective algorithms 

In Fig. 9, the upper and lower horizontal lines represent the boundary 

values. The square box contains half the metric distance and the red line in the 

square box represents the average values of the metric distance. By comparing the 

algorithms, the proposed method of the MOPSO algorithm has the minimum 

average value and the minimum metric distance. The lower horizontal line of the 

MOPSO algorithm is lower than that of the NSGAII algorithm. As a result, 

compared to the other algorithms, this algorithm has a better performance in 

finding uniform distribution solutions and Pareto front. 

6.  Conclusion 

This paper focuses on the energy management of DG sources and EVs in 

the grid-connected MG to reduce the operating cost and emissions in the presence 

of uncertainties.  In this study, the uncertainties of power generation of DGs, EVs 

and network load are considered. Thus, new scenario-based objective functions 

are introduced which have been formulated in such a way to encompass all the 

uncertainties weighted according to their probability of occurrence. In order to 

achieve the most accurate results, the simulations are done in three cases with 10 

scenarios generated by the roulette wheel mechanism. The modified version of the 

single-objective function GA and PSO algorithm as multi-objective function 

NSGAII and MOPSO are used to solve the optimization problem. Performing 20 

times of algorithm run for each scenario, the lowest value of the objective 

function and the standard deviation is obtained for the PSO algorithm. In the third 

case, the cost and emission reductions are achieved simultaneously by using 

MOPSO and NSGAII algorithms. The simulation results indicate the good 

performance of the proposed PSO and the MOPSO algorithms in each scenario. 

The minimum amount of the objective functions in the third case is obtained for 

the MOPSO algorithm.  
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