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DIMENSIONAL MODELS FOR
CONTINUOUS-TO-DISCRETE AFFECT MAPPING IN
SPEECH EMOTION RECOGNITION

Serban MIHALACHE?, Dragos BURILEANU?

Speech Emotion Recognition (SER) is an important research area, with two
distinct approaches for modeling emotions: as discrete classes and as points within
a continuous affect space. In this paper, we argue for the carefully considered fitting
of dimensional models in order to allow for accurate mapping of emotion classes
within the affect space, unifying the two approaches. To this end, we use machine
learning algorithms (K-means clustering, Gaussian Mixture Models, and Support
Vector Machines), fitted on the Interactive Emotional Dyadic Motion Capture
database (IEMOCAP), which provides dual discrete and continuous annotation of
emotional content. We also show how the reliability and generality of the results can
be improved by initializing the dimensional model’s class centroids using the
Warriner-Kuperman-Brysbaert (WKB) corpus. The proposed approach can lead to
an unweighted accuracy up to 74.3% + 77.3%, which represents state-of-the-art
results for the considered dataset.

Keywords: dimensional models of affect, machine learning, speech emotion
recognition

1. Introduction and Related Work

The science (and somewhat art) of Speech Emotion Recognition (SER) is
a constantly growing research area, finding a foothold in a wide spectrum of
applications, in fields such as human-machine interfaces, forensics, and medical
science, to name a few [1], [2].

When designing a SER system, there are two ways to consider emotions:
discrete classes and dimensional modeling. In the former case, each affective state
is viewed as a distinct, standalone category (e.g., anger, fear, sadness, etc.) [3],
leading to a classification problem. By contrast, the latter takes into consideration
a number of continuous affective dimensions, giving rise to an abstract affect
space (typically 2D) [4], [5], the position within being the target, leading to a
regression problem. Most often, the affective dimensions used are arousal (a
subjective evaluation of the level of the affective manifestation) and valence (a
subjective evaluation of the positivity of the affective manifestation). It is worth
mentioning that the terms arousal and activation are used interchangeably in SER
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literature, although arousal is defined as a measure of the physiological response
in an affective state, whereas activation represents the subjective measure
described previously [6].

Earlier research has been concerned separately with the two SER
paradigms (discrete and continuous), i.e., trying to determine the prevalent
emotion class or the position within the affect space. In this sense, promising
results have been reported in literature using machine learning and deep learning
models and techniques, including Support Vector Machines (SVMs) [7],
Multilayer Perceptrons (MLPs) [8], [9], Recurrent Neural Networks (RNNs) with
Long Short-term Memory (LSTM) cells [10]-[12], Convolutional Neural
Networks (CNNs) [13], [14], hybrid models [15], or advanced Convolutional
Recurrent Neural Networks (CRNNs) [16], [17], using either algorithmic or
automatic (“true deep learning”) feature extraction, with the trend favoring the
latter type, especially for continuous emotion recognition [18]. In most cases,
attention mechanisms are also employed, significantly boosting the systems’
performance.

Using both the discrete and continuous paradigms in a form of joint
learning has also been proposed and yielded good results [19]. However, to the
best of our knowledge, this is the first time that multidomain strategies are
proposed (unifying the discrete and continuous paradigms by directly tying them
together, through mapping). Two examples of such envisioned strategies are
illustrated in Fig. 1.
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Fig. 1. Direct vs. multidomain SER. Top: standard systems. Middle: the dimensional model maps the
estimated affect space position to the emotion class. Bottom: the dimensional model output is used as
additional features for a classifier. Note: A single model may contain the enclosed blocks.
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Instead of a standard system for only one task (top), the more nuanced
nature of continuous emotion recognition serves to first determine the position
within the affect space, and a pre-trained dimensional model then maps it to the
corresponding emotion class (middle). Or, going further (bottom), the dimensional
models’ output could be used as an additional guiding feature for a second model,
a classifier, trained together with the regression model through joint learning. In
this paper, we present only the implementation and fitting of the dimensional
model mapping, shown in green.

The main source of data for fitting the dimensional model would be a
dataset with dual discrete and continuous annotation of emotional content (labels
for emotion classes, and numerical values for the affective dimensions). The only
such available corpus is the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) database [20], having almost exclusively been used for emotion
classification. In the rare case when the affective dimensions were taken into
consideration, they were not used for true continuous emotion recognition, but
were grouped into categories (low vs. medium vs. high values) [21].

Unfortunately, similar to the vast majority of available datasets for SER,
the IEMOCAP database comprises simulated data, using actors that are more or
less guided through specific scenarios with limited or no unpredictability [22].
Furthermore, only 6 evaluators annotated the data, which, considering the
subjective and uncertain nature of the task, leads to lower confidence in the
available data and suggests the fitted dimensional model would have poor
generalization. Therefore, an additional source can be used, such as the Warriner-
Kuperman-Brysbaert (WKB) corpus [23], which includes affective dimension
annotations for a number of words, the relevant ones being those representing the
emotion classes, such as “anger” (i.e., the “concept of anger”), etc. In our
approach, these annotated values are used to initialize the class centroids (means).
The reasoning is that, for the WKB corpus, there were hundreds of evaluators,
greatly increasing confidence in its reliability and leading to better generalization.

In this paper, we used three machine learning algorithms — K-means
clustering, Gaussian Mixture Models (GMMs), and SVMs — in order to create
dimensional models for reliable continuous-to-discrete mapping from a 2D
arousal-valence affect space to 4 emotion classes, as a key step towards a
multidomain approach to SER. The main contributions are:

1) Proposing to combine the two emotion recognition paradigms (discrete and
continuous) into multidomain strategies, with a dimensional model serving
as the link.

2) Using machine learning algorithms and the only dually annotated database
available in literature (IEMOCAP) for fitting the dimensional model.

3) Employing the WKB corpus for dimensional model initialization, improving
confidence and generalization.
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4) Demonstrating how the proposed approach can reach state-of-the-art SER
classification performance for the IEMOCAP database.

2. Proposed Methodology

We tested three machine learning algorithms for developing the
dimensional model for affect mapping. When the model was obtained using K-
means clustering (we refer to this as the K-means model, KMM) or GMM fitting,
then the class centroids (means) were initialized in one of two ways: i) using the
values estimated from averaging over the IEMOCAP data (native initialization);
i) using the values estimated from the WKB data (WKB initialization). The first
option allows for better data fitting, but, in the second case, model generalization
is greater. SVMs lead to even better results thanks to their implicit higher
dimensional transformation of the affect space but can only use IEMOCAP data.

The K-means clustering algorithm represents the simplest and fastest
possible approach [24]. Its basic principle consists of grouping the data into a
selected number of clusters so that each data point is assigned to the cluster whose
centroid (mean) is closest (in the sense of minimum L2-norm) to the data point.
This model implies linear decision boundaries between the clusters and can be
seen as a particular case of a GMM with hard component assignment and with all
mixture components sharing the same covariance matrix.

Defined as a linear combination of Gaussian distributions, GMMs can be
interpreted as a generalization of K-means clustering to account for clusters with
non-identical distribution and involving soft component assignment (i.e., the
assignment function for data points and clusters is no longer binary, but rather
represents the probability of the data points to be part of each cluster). By
allowing each mixture component to have a separate and non-diagonal covariance
matrix, the resulting clusters end up stretched and rotated in the affect space so as
to better fit the data. Additionally, the soft component assignment and the shape
of the probability density functions allow the fitting to lead to more accurate, non-
linear decision boundaries between the clusters.

The third method, which improved the emotional mapping, was
represented by SVMs, since they transform an original input space (the affect
space) into a higher-dimensional one, where the data may be linearly separable.
When the transformation is nonlinear, by means of a nonlinear kernel, such as a
radial basis function (RBF) or a polynomial kernel, then the resulting decision
boundaries in the original space is also nonlinear, leading to better separation.
Since this is a multiclass problem, we adopted the one versus one (OvO)
classification strategy, which implied training a different SVM for each pair of
classes, resulting in N-(N-1)/2 classifiers, where N represents the number of
classes.
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One extra approach was to not do any fitting at all, but simply use the
WKB data to define the class centroids and directly perform classification based
on the minimum distance (L2 norm) from a data point to the centroids (we refer to
this as the WKB model). This would offer the best generalization due to the WKB
corpus’ advantages, but also implies using only annotations provided within an
abstract conceptualization of emotions (strictly the “concept of anger”, etc.,
without a visceral side to the data as there exists in speech recordings), whose
nature would obviously be insufficient for SER tasks.

3. Experimental Setup and Results

3.1. The IEMOCAP database

The database [20] contains 5 sessions of audio-visual recordings, with 10
actors (5 female, 5 male) working in pairs to solve speaking tasks (scripted and
improvised), totaling 10,039 recordings. The corresponding audio files are stored
in uncompressed 16-bit PCM format, sampled at 16 kHz.

A total number of 10 discrete emotion classes (anger, fear, disgust,
sadness, happiness, frustration, excitement, surprise, neutral and other) is
available, with many of them strongly underrepresented, however, forcing us to
use a smaller subset, grouped into 4 new classes (neutral; sadness; anger +
frustration, and happiness + excitement, grouping the last two pairs together due
to their closeness), similar to [9], [10], [15], [17]. For each sample, there are 3
evaluators. As expected, in the vast majority of cases, not all agreed on the
annotation, given the uncertainty involved in the task [25], [26]. In order to obtain
the final annotation (the ground truth), we propose 3 voting techniques: unanimity
(requiring 3/3 consensus; resulting in 2,200 samples); majority (requiring 2/3
consensus; 7,577 samples); and ranked majority (starting with 2/3 consensus and
doing a second pass over the remaining samples and labeling them according to
the most trustworthy available evaluator per case, i.e., the evaluator who was most
often in agreement with the initial ground truth; 9,641 samples).

For the continuous dimensions, we used arousal (activation) and valence.
Each sample was rated by 2-3 evaluators, on a scale from 1 to 5 (low to high
activation, negative to positive valence), which we then averaged and normalized
to the [—1, 1] range. We also noticed that the annotation files contained an error:
the values were reversed (1 was high activation / positive valence, and 5 was low
activation / negative valence, instead of the other way around for both
dimensions), requiring an additional sign inversion.

Additionally, due to the unrealistically low granularity of this annotation
data, and to allow for better model fitting and regularization, white Gaussian noise
was added to the dataset [12], [27]. The resulting data distribution within the
affect space is illustrated in Fig. 2. While the classes have clearly separated



142 Serban Mihalache, Dragos Burileanu

centroids, a large degree of overlap between data points for each pair of classes
can be observed.

3.2. The WKB corpus

The Warriner-Kuperman-Brysbaert [23] corpus consists of a large number
of lemmas (words in canonical form), with the corresponding affective
dimensions being annotated by 1,827 participants through Amazon’s
crowdsourcing service, with all words having at least 15 ratings and 87% of words
having 24 ratings on average. These ratings were given on a scale from 1 to 9
(low to high arousal, negative to positive valence).

As discussed, we only use the words defining the 4 classes (neutral,
sadness, anger + frustration, happiness + excitement) and, to reduce uncertainty,
extended the list to those part of the corresponding word families (e.g., anger,
angry; frustrated, frustrating, frustration; etc.), but not semantic fields (e.g., fury;
annoyed; etc.). For each class group, we average the affective dimension values
and normalize the resulting means to the same [—1, 1] range.
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Fig. 2. IEMOCAP data distribution within the affect space, with added white Gaussian noise.

3.3. Results and discussion

We used the scikit-learn framework for Python to implement and fit the
discussed models. For KMM and GMM mapping, we tested native initialization
(based on IEMOCAP data) and WKB initialization (based on WKB data) for the
class centroids (means). For the SVM model, WKB initialization cannot be used.
We tested linear, RBF, and 3rd order polynomial kernels, with several values for
the regularization parameter C, using the OvO strategy. In all experiments, we
used 5-fold cross-validation, reserving one session for testing (20% of the data).
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Results are given using both unweighted accuracy (UA) and weighted
accuracy (WA), as per (1) and (2), where K is the number of classes, N; and H;
are, respectively, the number of samples and of correctly made predictions for
class i, and N is the size of the entire dataset. In general, UA is more relevant
when classes are unequally represented.

L N/ (1)
UA =—Z —
K- N
1 K
WA ZNZMH,- (2)

When using the majority and ranked majority voting schemes (instead of
unanimity), average performance was reduced by 10% and by an 15%,
respectively, illustrating the less reliable nature of the extended dataset. Since the
quality of the data is a most important factor, we kept and reported only the results
obtained using the unanimous voting scheme. In Table 1, we present the results
for the KMM and GMM mappings, which are very similar, as well as the direct
WKB model.

Table 1
Results for KMM, GMM, and direct WKB model mappings
Model Centroid init. Metrics
KMM Native UA = 75.2%, WA = 71.6%
WKB UA = 74.3%, WA = 71.2%
Native UA = 75.4%, WA = 72.3%
GMM
WKB UA =74.3%, WA =72.5%
WKB - UA = 73.4%, WA = 73.1%
Table 2
Results for SVM mapping
Model Kernel C Metrics
1 UA = 76.5%, WA = 75.5%
Linear 0.1 UA = 76.4%, WA = 75.1%
0.01 UA =75.1%, WA = 71.8%
1 UA = 77.0%, WA = 75.0%
SVM RBF 0.1 UA =77.3%, WA =75.7%
0.01 UA = 76.3%, WA = 74.1%
1 UA = 75.5%, WA = 71.5%
3rd ord. 0.1 UA = 73.3%, WA = 69.6%
poly.

0.01 UA = 60.4%, WA = 56.3%
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Whereas Table 2 includes the SVM model metrics. Expectedly, the GMM’s
unconstrained covariance matrix allows for better data fitting than the KMM,
while the SVM model with RBF kernel and C of 0.1 outperforms both.

By contrast, as discussed previously, the direct WKB model theoretically
offers the best generalization thanks to the increased reliability of the WKB
corpus but is a poorer fit for the IEMOCAP data. Thus, we consider the best
compromise between model accuracy and generalization is achieved by the GMM
dimensional model with WKB initialization. The KMM dimensional model is
illustrated in Fig. 3. The direct WKB model differs only in terms of centroid
positions, and, as such, has not been included.
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Fig. 3. KMM mapping (dimensional model) with WKB initialization. Cluster centroids are marked with
magenta crosses. Data points are colored according to the model output.

Fig. 4 and Fig. 5 represent the GMM and SVM dimensional models, respectively.
For the KMM, the boundaries between classes are linear, while those of the GMM
and SVM are non-linear. The biggest difference between the illustrated mappings
concerns the happiness and neutral classes. The GMM and SVM models confine
the neutral class to a central subdomain of the affect space, whilst the KMM
model extends it towards low arousal and high valence, which is not valid. On the
other hand, the KMM and GMM models relegate happiness only towards medium
and high arousal, whilst the SVM model does not offer a valid boundary for this
class. The other two classes (anger and sadness) are always associated with
correct subdomains within the affect space (e.g., high arousal and negative
valence for anger). These arguments further indicate GMM mapping to be the best
compromise.
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Fig. 4. GMM mapping (dimensional model) with WKB initialization. Cluster centroids are marked
with magenta crosses. The 50% probability contours for each class component are also drawn.
Data points are colored according to the model output.
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Fig. 5. SVM mapping (dimensional model) with RBF kernel. The magenta lines represent the
decision boundaries for each class. Data points are colored according to the model output.

In Table 3, we compare our proposed approach to other works using
standard classification systems for discrete emotions. As it can be seen,
dimensional models can lead to best performance, as long as reliable affective
dimension data exists; in other words, if the overall affect space coordinates of
speech segments can be correctly predicted by a regression model.
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Table 3
Comparison between the proposed approach maximum performance and existing results
Method Best results

[71 WA = 68.6%
[9] UA = 61.0%

[10] UA = 65.0%, WA = 66.1%
[11] UA = 58.8%, WA = 63.5%
[13] UA = 63.9%, WA =70.4%
[15] UA = 66.0%, WA = 70.5%
[16] UA = 64.7%

[17] UA = 67.0%, WA = 68.1%

Dimensional model mapping UA =74.3%, WA =72.5%

In a fully implemented multidomain system (such as the examples
proposed in Fig. 1 — middle and bottom), which would include automatic emotion
recognition models, the higher the performance of the regression model, the closer
the accuracy of the full system (the final classification) would approach the results
reported in this work.

5. Conclusion

In this paper, we proposed unifying the two paradigms of emotion
representation into multidomain systems, using dimensional models to map the
discrete emotion classes within a continuous (arousal-valence) affect space. We
used K-means clustering, GMMs, and SVMs to develop such dimensional models
based on data from the IEMOCAP database, additionally using the WKB corpus
to increase model generalization. Experiments yielded promising results and
illustrated the viability of the approach for future work.
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