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Speech Emotion Recognition (SER) is an important research area, with two 

distinct approaches for modeling emotions: as discrete classes and as points within 

a continuous affect space. In this paper, we argue for the carefully considered fitting 

of dimensional models in order to allow for accurate mapping of emotion classes 

within the affect space, unifying the two approaches. To this end, we use machine 
learning algorithms (K-means clustering, Gaussian Mixture Models, and Support 

Vector Machines), fitted on the Interactive Emotional Dyadic Motion Capture 

database (IEMOCAP), which provides dual discrete and continuous annotation of 

emotional content. We also show how the reliability and generality of the results can 

be improved by initializing the dimensional model’s class centroids using the 

Warriner-Kuperman-Brysbaert (WKB) corpus. The proposed approach can lead to 

an unweighted accuracy up to 74.3% ÷ 77.3%, which represents state-of-the-art 

results for the considered dataset.  

Keywords: dimensional models of affect, machine learning, speech emotion 

recognition 

1. Introduction and Related Work 

The science (and somewhat art) of Speech Emotion Recognition (SER) is 

a constantly growing research area, finding a foothold in a wide spectrum of 

applications, in fields such as human-machine interfaces, forensics, and medical 

science, to name a few [1], [2]. 

When designing a SER system, there are two ways to consider emotions: 

discrete classes and dimensional modeling. In the former case, each affective state 

is viewed as a distinct, standalone category (e.g., anger, fear, sadness, etc.) [3], 

leading to a classification problem. By contrast, the latter takes into consideration 

a number of continuous affective dimensions, giving rise to an abstract affect 

space (typically 2D) [4], [5], the position within being the target, leading to a 

regression problem. Most often, the affective dimensions used are arousal (a 

subjective evaluation of the level of the affective manifestation) and valence (a 

subjective evaluation of the positivity of the affective manifestation). It is worth 

mentioning that the terms arousal and activation are used interchangeably in SER 
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literature, although arousal is defined as a measure of the physiological response 

in an affective state, whereas activation represents the subjective measure 

described previously [6]. 

Earlier research has been concerned separately with the two SER 

paradigms (discrete and continuous), i.e., trying to determine the prevalent 

emotion class or the position within the affect space. In this sense, promising 

results have been reported in literature using machine learning and deep learning 

models and techniques, including Support Vector Machines (SVMs) [7], 

Multilayer Perceptrons (MLPs) [8], [9], Recurrent Neural Networks (RNNs) with 

Long Short-term Memory (LSTM) cells [10]-[12], Convolutional Neural 

Networks (CNNs) [13], [14], hybrid models [15], or advanced Convolutional 

Recurrent Neural Networks (CRNNs) [16], [17], using either algorithmic or 

automatic (“true deep learning”) feature extraction, with the trend favoring the 

latter type, especially for continuous emotion recognition [18]. In most cases, 

attention mechanisms are also employed, significantly boosting the systems’ 

performance. 

Using both the discrete and continuous paradigms in a form of joint 

learning has also been proposed and yielded good results [19]. However, to the 

best of our knowledge, this is the first time that multidomain strategies are 

proposed (unifying the discrete and continuous paradigms by directly tying them 

together, through mapping). Two examples of such envisioned strategies are 

illustrated in Fig. 1. 
 

 

Fig. 1. Direct vs. multidomain SER. Top: standard systems. Middle: the dimensional model maps the 

estimated affect space position to the emotion class. Bottom: the dimensional model output is used as 

additional features for a classifier. Note: A single model may contain the enclosed blocks. 
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Instead of a standard system for only one task (top), the more nuanced 

nature of continuous emotion recognition serves to first determine the position 

within the affect space, and a pre-trained dimensional model then maps it to the 

corresponding emotion class (middle). Or, going further (bottom), the dimensional 

models’ output could be used as an additional guiding feature for a second model, 

a classifier, trained together with the regression model through joint learning. In 

this paper, we present only the implementation and fitting of the dimensional 

model mapping, shown in green. 

The main source of data for fitting the dimensional model would be a 

dataset with dual discrete and continuous annotation of emotional content (labels 

for emotion classes, and numerical values for the affective dimensions). The only 

such available corpus is the Interactive Emotional Dyadic Motion Capture 

(IEMOCAP) database [20], having almost exclusively been used for emotion 

classification. In the rare case when the affective dimensions were taken into 

consideration, they were not used for true continuous emotion recognition, but 

were grouped into categories (low vs. medium vs. high values) [21]. 

Unfortunately, similar to the vast majority of available datasets for SER, 

the IEMOCAP database comprises simulated data, using actors that are more or 

less guided through specific scenarios with limited or no unpredictability [22]. 

Furthermore, only 6 evaluators annotated the data, which, considering the 

subjective and uncertain nature of the task, leads to lower confidence in the 

available data and suggests the fitted dimensional model would have poor 

generalization. Therefore, an additional source can be used, such as the Warriner-

Kuperman-Brysbaert (WKB) corpus [23], which includes affective dimension 

annotations for a number of words, the relevant ones being those representing the 

emotion classes, such as “anger” (i.e., the “concept of anger”), etc. In our 

approach, these annotated values are used to initialize the class centroids (means). 

The reasoning is that, for the WKB corpus, there were hundreds of evaluators, 

greatly increasing confidence in its reliability and leading to better generalization. 

In this paper, we used three machine learning algorithms – K-means 

clustering, Gaussian Mixture Models (GMMs), and SVMs – in order to create 

dimensional models for reliable continuous-to-discrete mapping from a 2D 

arousal-valence affect space to 4 emotion classes, as a key step towards a 

multidomain approach to SER. The main contributions are: 

1) Proposing to combine the two emotion recognition paradigms (discrete and 

continuous) into multidomain strategies, with a dimensional model serving 

as the link. 

2) Using machine learning algorithms and the only dually annotated database 

available in literature (IEMOCAP) for fitting the dimensional model. 

3) Employing the WKB corpus for dimensional model initialization, improving 

confidence and generalization. 
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4) Demonstrating how the proposed approach can reach state-of-the-art SER 

classification performance for the IEMOCAP database. 

2. Proposed Methodology 

We tested three machine learning algorithms for developing the 

dimensional model for affect mapping. When the model was obtained using K-

means clustering (we refer to this as the K-means model, KMM) or GMM fitting, 

then the class centroids (means) were initialized in one of two ways: i) using the 

values estimated from averaging over the IEMOCAP data (native initialization); 

ii) using the values estimated from the WKB data (WKB initialization). The first 

option allows for better data fitting, but, in the second case, model generalization 

is greater. SVMs lead to even better results thanks to their implicit higher 

dimensional transformation of the affect space but can only use IEMOCAP data. 

The K-means clustering algorithm represents the simplest and fastest 

possible approach [24]. Its basic principle consists of grouping the data into a 

selected number of clusters so that each data point is assigned to the cluster whose 

centroid (mean) is closest (in the sense of minimum L2-norm) to the data point. 

This model implies linear decision boundaries between the clusters and can be 

seen as a particular case of a GMM with hard component assignment and with all 

mixture components sharing the same covariance matrix. 

Defined as a linear combination of Gaussian distributions, GMMs can be 

interpreted as a generalization of K-means clustering to account for clusters with 

non-identical distribution and involving soft component assignment (i.e., the 

assignment function for data points and clusters is no longer binary, but rather 

represents the probability of the data points to be part of each cluster). By 

allowing each mixture component to have a separate and non-diagonal covariance 

matrix, the resulting clusters end up stretched and rotated in the affect space so as 

to better fit the data. Additionally, the soft component assignment and the shape 

of the probability density functions allow the fitting to lead to more accurate, non-

linear decision boundaries between the clusters. 

The third method, which improved the emotional mapping, was 

represented by SVMs, since they transform an original input space (the affect 

space) into a higher-dimensional one, where the data may be linearly separable. 

When the transformation is nonlinear, by means of a nonlinear kernel, such as a 

radial basis function (RBF) or a polynomial kernel, then the resulting decision 

boundaries in the original space is also nonlinear, leading to better separation. 

Since this is a multiclass problem, we adopted the one versus one (OvO) 

classification strategy, which implied training a different SVM for each pair of 

classes, resulting in N·(N−1)/2 classifiers, where N represents the number of 

classes. 
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One extra approach was to not do any fitting at all, but simply use the 

WKB data to define the class centroids and directly perform classification based 

on the minimum distance (L2 norm) from a data point to the centroids (we refer to 

this as the WKB model). This would offer the best generalization due to the WKB 

corpus’ advantages, but also implies using only annotations provided within an 

abstract conceptualization of emotions (strictly the “concept of anger”, etc., 

without a visceral side to the data as there exists in speech recordings), whose 

nature would obviously be insufficient for SER tasks. 

3. Experimental Setup and Results 

3.1. The IEMOCAP database 

The database [20] contains 5 sessions of audio-visual recordings, with 10 

actors (5 female, 5 male) working in pairs to solve speaking tasks (scripted and 

improvised), totaling 10,039 recordings. The corresponding audio files are stored 

in uncompressed 16-bit PCM format, sampled at 16 kHz. 

A total number of 10 discrete emotion classes (anger, fear, disgust, 

sadness, happiness, frustration, excitement, surprise, neutral and other) is 

available, with many of them strongly underrepresented, however, forcing us to 

use a smaller subset, grouped into 4 new classes (neutral; sadness; anger + 

frustration, and happiness + excitement, grouping the last two pairs together due 

to their closeness), similar to [9], [10], [15], [17]. For each sample, there are 3 

evaluators. As expected, in the vast majority of cases, not all agreed on the 

annotation, given the uncertainty involved in the task [25], [26]. In order to obtain 

the final annotation (the ground truth), we propose 3 voting techniques: unanimity 

(requiring 3/3 consensus; resulting in 2,200 samples); majority (requiring 2/3 

consensus; 7,577 samples); and ranked majority (starting with 2/3 consensus and 

doing a second pass over the remaining samples and labeling them according to 

the most trustworthy available evaluator per case, i.e., the evaluator who was most 

often in agreement with the initial ground truth; 9,641 samples). 

For the continuous dimensions, we used arousal (activation) and valence. 

Each sample was rated by 2-3 evaluators, on a scale from 1 to 5 (low to high 

activation, negative to positive valence), which we then averaged and normalized 

to the [−1, 1] range. We also noticed that the annotation files contained an error: 

the values were reversed (1 was high activation / positive valence, and 5 was low 

activation / negative valence, instead of the other way around for both 

dimensions), requiring an additional sign inversion. 

Additionally, due to the unrealistically low granularity of this annotation 

data, and to allow for better model fitting and regularization, white Gaussian noise 

was added to the dataset [12], [27]. The resulting data distribution within the 

affect space is illustrated in Fig. 2. While the classes have clearly separated 
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centroids, a large degree of overlap between data points for each pair of classes 

can be observed. 
 

3.2. The WKB corpus 

The Warriner-Kuperman-Brysbaert [23] corpus consists of a large number 

of lemmas (words in canonical form), with the corresponding affective 

dimensions being annotated by 1,827 participants through Amazon’s 

crowdsourcing service, with all words having at least 15 ratings and 87% of words 

having 24 ratings on average. These ratings were given on a scale from 1 to 9 

(low to high arousal, negative to positive valence). 

As discussed, we only use the words defining the 4 classes (neutral, 

sadness, anger + frustration, happiness + excitement) and, to reduce uncertainty, 

extended the list to those part of the corresponding word families (e.g., anger, 

angry; frustrated, frustrating, frustration; etc.), but not semantic fields (e.g., fury; 

annoyed; etc.). For each class group, we average the affective dimension values 

and normalize the resulting means to the same [−1, 1] range. 
 

 

Fig. 2. IEMOCAP data distribution within the affect space, with added white Gaussian noise. 
 

3.3. Results and discussion 

We used the scikit-learn framework for Python to implement and fit the 

discussed models. For KMM and GMM mapping, we tested native initialization 

(based on IEMOCAP data) and WKB initialization (based on WKB data) for the 

class centroids (means). For the SVM model, WKB initialization cannot be used. 

We tested linear, RBF, and 3rd order polynomial kernels, with several values for 

the regularization parameter C, using the OvO strategy. In all experiments, we 

used 5-fold cross-validation, reserving one session for testing (20% of the data). 
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Results are given using both unweighted accuracy (UA) and weighted 

accuracy (WA), as per (1) and (2), where K is the number of classes, Ni and Hi 

are, respectively, the number of samples and of correctly made predictions for 

class i, and N is the size of the entire dataset. In general, UA is more relevant 

when classes are unequally represented. 

 A  
1
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 i

 

i 1
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WA  
1

 
  i

 

i 1
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When using the majority and ranked majority voting schemes (instead of 

unanimity), average performance was reduced by 10% and by an 15%, 

respectively, illustrating the less reliable nature of the extended dataset. Since the 

quality of the data is a most important factor, we kept and reported only the results 

obtained using the unanimous voting scheme. In Table 1, we present the results 

for the KMM and GMM mappings, which are very similar, as well as the direct 

WKB model. 
Table 1 

Results for KMM, GMM, and direct WKB model mappings 

Model Centroid init. Metrics 

KMM 
Native UA = 75.2%, WA = 71.6% 

WKB UA = 74.3%, WA = 71.2% 

GMM 
Native UA = 75.4%, WA = 72.3% 

WKB UA = 74.3%, WA = 72.5% 

WKB − UA = 73.4%, WA = 73.1%
 

 
Table 2 

Results for SVM mapping 

Model Kernel C Metrics 

SVM 

Linear 

1 UA = 76.5%, WA = 75.5% 

0.1 UA = 76.4%, WA = 75.1% 

0.01 UA = 75.1%, WA = 71.8% 

RBF 

1 UA = 77.0%, WA = 75.0% 

0.1 UA = 77.3%, WA = 75.7% 

0.01 UA = 76.3%, WA = 74.1% 

3rd ord. 
poly. 

1 UA = 75.5%, WA = 71.5% 

0.1 UA = 73.3%, WA = 69.6% 

0.01 UA = 60.4%, WA = 56.3%
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Whereas Table 2 includes the SVM model metrics. Expectedly, the GMM’s 

unconstrained covariance matrix allows for better data fitting than the KMM, 

while the SVM model with RBF kernel and C of 0.1 outperforms both. 

By contrast, as discussed previously, the direct WKB model theoretically 

offers the best generalization thanks to the increased reliability of the WKB 

corpus but is a poorer fit for the IEMOCAP data. Thus, we consider the best 

compromise between model accuracy and generalization is achieved by the GMM 

dimensional model with WKB initialization. The KMM dimensional model is 

illustrated in Fig. 3. The direct WKB model differs only in terms of centroid 

positions, and, as such, has not been included. 
 

 

Fig. 3. KMM mapping (dimensional model) with WKB initialization. Cluster centroids are marked with 

magenta crosses. Data points are colored according to the model output. 
 

Fig. 4 and Fig. 5 represent the GMM and SVM dimensional models, respectively. 

For the KMM, the boundaries between classes are linear, while those of the GMM 

and SVM are non-linear. The biggest difference between the illustrated mappings 

concerns the happiness and neutral classes. The GMM and SVM models confine 

the neutral class to a central subdomain of the affect space, whilst the KMM 

model extends it towards low arousal and high valence, which is not valid. On the 

other hand, the KMM and GMM models relegate happiness only towards medium 

and high arousal, whilst the SVM model does not offer a valid boundary for this 

class. The other two classes (anger and sadness) are always associated with 

correct subdomains within the affect space (e.g., high arousal and negative 

valence for anger). These arguments further indicate GMM mapping to be the best 

compromise. 
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Fig. 4. GMM mapping (dimensional model) with WKB initialization. Cluster centroids are marked 

with magenta crosses. The 50% probability contours for each class component are also drawn. 

Data points are colored according to the model output. 
 

 

Fig. 5. SVM mapping (dimensional model) with RBF kernel. The magenta lines represent the 

decision boundaries for each class. Data points are colored according to the model output. 
 

In Table 3, we compare our proposed approach to other works using 

standard classification systems for discrete emotions. As it can be seen, 

dimensional models can lead to best performance, as long as reliable affective 

dimension data exists; in other words, if the overall affect space coordinates of 

speech segments can be correctly predicted by a regression model.  
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Table 3 

Comparison between the proposed approach maximum performance and existing results 

Method Best results 

[7]  WA = 68.6% 

[9] UA = 61.0% 
[10] UA = 65.0%, WA = 66.1% 

[11] UA = 58.8%, WA = 63.5% 
[13] UA = 63.9%, WA = 70.4% 

[15] UA = 66.0%, WA = 70.5% 
[16] UA = 64.7% 

[17] UA = 67.0%, WA = 68.1% 

Dimensional model mapping UA = 74.3%, WA = 72.5%
 

 

In a fully implemented multidomain system (such as the examples 

proposed in Fig. 1 – middle and bottom), which would include automatic emotion 

recognition models, the higher the performance of the regression model, the closer 

the accuracy of the full system (the final classification) would approach the results 

reported in this work. 

5. Conclusion 

In this paper, we proposed unifying the two paradigms of emotion 

representation into multidomain systems, using dimensional models to map the 

discrete emotion classes within a continuous (arousal-valence) affect space. We 

used K-means clustering, GMMs, and SVMs to develop such dimensional models 

based on data from the IEMOCAP database, additionally using the WKB corpus 

to increase model generalization. Experiments yielded promising results and 

illustrated the viability of the approach for future work. 

R E F E R E N C E S 

[1] B. Schuller, “Speech Emotion Recognition: Two Decades in a Nutshell, Benchmarks and 

Ongoing Trends,” Communications of the ACM, vol. 61, no. 5, pp. 90-99, May 2018. 
[2] D. Schuller and B. Schuller, “The Age of Artificial Emotional Intelligence,” Computer, vol. 

51, no. 9, Sep. 2018, pp. 38-46. 

[3] P. Ekman, “An Argument for Basic Emotions,” Cognition and Emotion, vol. 6, no. 3-4, 

May 1992, pp. 169-200. 

[4] J. A. Russell, ‘A Circumplex Model of Affect,” Journal of Personality and Social 

Psychology, vol. 39, no. 6, Dec. 1980, pp. 1161-1178. 

[5] D. Watson, D. Wiese, J. Vaidya, and A. Tellegen, “The Two General Activation Systems of 

Affect: Structural Findings, Evolutionary Considerations, and Psychobiological Evidence,” 

Journal of Personality and Social Psychology, vol. 76, no. 5, May 1999, pp. 820-838. 

[6] D. C. Rubin and J. M. Talarico, “A Comparison of Dimensional Models of Emotion: 

Evidence from Emotions, Prototypical Events, Autobiographical Memories, and Words,” 

Memory, vol. 17, no. 8, Nov. 2009, pp. 802-808. 



Dimensional models for continuous-to-discrete affect mapping in SER              147 

[7] Q. Jin, C. Li, S. Chen, and H. Wu, “Speech Emotion Recognition with Acoustic and Lexical 

Features,” in Proceedings of the IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), Brisbane, Queensland, Australia, Apr. 2015, pp. 4749-4753. 

[8] W. Rao et al., “Investigation of Fixed-dimensional Speech Representations for Real-time 

Speech Emotion Recognition System,” in Proceedings of the International Conference on 

Orange Technologies (ICOT), Singapore, Dec. 2017, pp. 197-200. 

[9] S. Latif et al., “Augmenting Generative Adversarial Networks for Speech Emotion 

Recognition,” in Proceedings of INTERSPEECH, Shanghai, China, Oct. 2020, pp. 521-525. 

[10] S. Liu et al., “Hierarchical Component-attention Based Speaker Turn Embedding for 
Emotion Recognition,” in Proceedings of the International Joint Conference on Neural 

Networks (IJCNN), Glasgow, UK, Jul. 2020, pp. 1-7. 

[11] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic Speech Emotion Recognition using 

Recurrent Neural Networks with Local Attention,” in Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 

USA, Mar. 2017, pp. 2227-2231. 

[12] J. Han, Z. Zhang, F. Ringeval, and B. Schuller, “Prediction-based Learning for Continuous 

Emotion Recognition in Speech,” in Proceedings of the IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, Mar. 2017, 

pp. 5005-5009. 

[13] Y. Zhang et al., “Attention Based Fully Convolutional Network for Speech Emotion 
Recognition,” in Proceedings of the Asia-Pacific Signal and Information Processing 

Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 

Nov. 2018, pp. 1771-1775. 

[14] D. Tang, P. Kuppens, L. Geurts, and T. Van Waterschoot, “Adieu Recurrence? End-to-end 

Speech Emotion Recognition using a Context Stacking Dilated Convolutional Network,” in 

Proceedings of the 28th European Signal Processing Conference (EUSIPCO), Amsterdam, 

Netherlands, Jan. 2021, pp. 1-5. 

[15] S. Fahad, A. Deepak, G. Pradhan, and J. Yadav, “DNN-HMM-Based Speaker-Adaptive 

Emotion Recognition Using MFCC and Epoch-Based Features,” Circuits, Systems, and 

Signal Processing, Jul. 2020. 

[16] M. Chen, X. He, J. Yang, and H. Zhang, “3-D Convolutional Recurrent Neural Networks 
with Attention Model for Speech Emotion Recognition,” IEEE Signal Processing Letters, 

vol. 25, no. 10, Oct. 2018, pp. 1440-1444. 

[17] Z. Zhao et al., “Exploring Deep Spectrum Representations via Attention-Based Recurrent 

and Convolutional Neural Networks for Speech Emotion Recognition,” IEEE Access, vol. 

7, Jul. 2019, pp. 97515-97525. 

[18] G. Trigeorgis et al., “Adieu Features? End-to-end Speech Emotion Recognition using a 

Deep Convolutional Neural Network,” in Proceedings of the IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, Mar. 2016, 

pp. 5200-5204. 

[19] Z. Yao, Z. Wang, W. Liu, Y. Liu, J. Pan, “Speech Emotion Recognition using Fusion of 

Three Multi-task Learning-based Classifiers: HSF-DNN, MS-CNN and LLD-RNN,” 

Speech Communication, vol. 120, Jun. 2020, pp. 11-19. 
[20] C. Busso et al., “IEMOCAP: Interactive Emotional Dyadic Motion Capture Database,” 

Language Resources & Evaluation, vol. 42, no. 4, Nov. 2008, Art. no. 335 (2008). 

[21] J. C. Kim and M. A. Clements, “Multimodal Affect Classification at Various Temporal 

Lengths,” IEEE Transactions on Affective Computing, vol. 6, no. 4, Oct.-Dec. 2015, 

pp. 371-384. 



148                                                  Serban Mihalache, Dragos Burileanu  

[22] G. S. Morrison, P. Rose, and C. Zhang, “Protocol for the Collection of Databases of 

Recordings for Forensic-voice-comparison Research and Practice,” Australian Journal of 

Forensic Sciences, vol. 44, no. 2, Jun. 2012, pp. 155-167. 

[23] A. B. Warriner, V. Kuperman, and M. Brysbaert, “Norms of Valence, Arousal, and 

Dominance for 13,915 English Lemmas,” Behavior Research Methods, vol. 45, no. 4, 

Dec. 2013, pp. 1191-1207. 

[24] C. Bishop, Pattern Recognition and Machine Learning, 1st ed., New York, NY, USA: 

Springer-Verlag, 2006. 

[25] B. Schuller, “Responding to Uncertainty in Emotion Recognition,” Journal of Information, 
Communication and Ethics in Society, vol. 17, no. 3, Aug. 2019, pp. 299-303. 

[26] G. Rizos and B. Schuller, “Average Jane, Where Art Thou? – Recent Avenues in Efficient 

Machine Learning  nder Subjectivity  ncertainty,” in M.-J. Lesot et al. (Eds.): Information 

Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), 

Communications in Computer and Information Science, vol. 1237, Jun. 2020, pp. 42-55. 

[27] C. C. Aggarwal, “Teaching Deep Learners to Generalize,” in Neural Networks and Deep 

Learning, Cham, Switzerland: Springer International Publishing, 2018, ch. 4, pp. 169-216. 


