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UAV FUZZY LOGIC CONTROL SYSTEM STABILITY 
ANALYSIS IN THE SENSE OF LYAPUNOV  

Eusebiu MARCU1, Corneliu BERBENTE2 

This article presents the stability analysis in the sense of Lyapunov for a 
fuzzy logic control system of an unmanned aerial aircraft (UAV). The first section 
presents an introduction to linear dynamic systems and their stability analysis and 
the second section presents the equations of motion an aircraft in small 
perturbations hypothesis. In the third section the fuzzy logic controller is presented 
and in the forth section the analysis of the stability of the system is presented. In the 
fifth section the experimental simulation results for a specific aircraft are presented 
and in the sixth the conclusions are stated. 

Keywords: Lyapunov stability analysis, fuzzy logic, dynamic system, unmanned 
aerial vehicle 

1. Introduction 

A linear dynamic system is a dynamic system based on the use of linear 
operator. The mathematical model of a linear dynamic system is represented by a 
linear differential equation of first order. 

xAx
dt
d

⋅=  (1) 

where nx ℜ∈ is the state vector and A is a nn×  constant matrix. The linear 
systems are commonly used in control theory, e.g. state space representation of a 
physical system, represented by (2) – continuous time-invariant/autonomous 
system. 
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where nx ℜ∈ is the state vector, qy ℜ∈ is the output vector, pu ℜ∈ is the 
control vector, A is the system matrix, B is the control matrix, C is the output 
matrix and D is feedback matrix – nqCpnBnnA ×=×=×= )dim(,)dim(,)dim(  

pqD ×=)dim(  [1]. 
The stability of the origin for a linear system can be determined by the Routh–
Hurwitz stability criterion by determining the eigenvalues of a matrix, i.e. the 
roots of its characteristic polynomial. A polynomial in one variable with real 
coefficients is called a Hurwitz polynomial if the real parts of all roots are strictly 
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negative. The Routh–Hurwitz theorem implies a characterization of Hurwitz 
polynomials by means of an algorithm that avoids computing the roots [2]. For 
general dynamic systems, a general way to establish Lyapunov stability or 
asymptotic stability is by means of Lyapunov functions [3]. 

The purpose of the paper is to present a stability analysis for a fuzzy logic 
controller [4] for an unmanned aerial vehicle in the sense of Lyapunov. 

2. Aircraft equations of motion 
Experience has shown that in many cases, the dynamic behavior of 

airplanes can be satisfactorily represented by assuming that the perturbations 
away from steady state flight are small. These equations are called the small 
perturbation equations and may be presented in two independent sets – 
longitudinal and lateral-directional equations [5]. 
The perturbed longitudinal equations with dimensional stability derivatives: 
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The perturbed lateral-directional equations with dimensional stability derivatives: 
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Where 1θ  - steady state pitch attitude angle; βα ,  - angle of attack and side slip 
ψφθ ,, - aircraft attitude; rea δδδ ,,  - aileron, elevator and rudder deflections 

q  - adimensional dynamic pressure 
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The dynamic stability analysis can be more easily predicted from an 
approximation to the equations (3) and (4) as follows:  

• for longitudinal equations, short period and phugoid approximations  
• for lateral-directional equations, dutch-roll and spiral approximations. 

UAV stability using transfer functions 

The classic approach to analyze the stability of an aircraft is to determine the 
open-loop transfer functions based of the equations of motion for every mode. 
The equations set expressed in (3) and (4) can be written in a matrix format given 
by for both longitudinal and lateral-directional modes.   
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By applying Laplace transform on equations (3) and (4), the system equations are 
[5]: 
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Using the approximations stated above, one can write the transfer functions for 
every mode, as follows: 
– short period approximation transfer functions: 
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– phugoid approximation transfer functions: 
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– dutch-roll approximation transfer functions: 
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(8) 
– spiral and roll approximations transfer functions: 
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Next, the roots of the characteristic equation are determined or Routh-Hurwitz 
criterion is applied after computing the coefficients of the characteristic equation 
for a given aircraft and flight condition [2].  
For closed-loop systems, the closed-loop system transfer function is determined 
(the controller’s transfer function must be determined) and then the behavior of 
the roots of the characteristic equations as a function of gain K is studied by 
means of root-locus or Bode methods [5]. 

3. Fuzzy logic controller for an UAV 
In order to study how an airplane or UAV responds to actuation of the 

primary controls – elevator, aileron, rudder and throttle – the state and the control 
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vectors for longitudinal and lateral motions must be defined. The state of the 
airplane may include position and velocity vectors relative to a reference frame, 
airplane attitude ( )ψϕθ ,, , rotation rates ( )rqp ,, , aerodynamic angles – angle of 
attack and sideslip ( )βα ,  and acceleration components. The control vector is 
defined by: 

[ ]treac δδδδ ,,,=                              
where aδ is aileron deflection, eδ is elevator deflection, rδ  is rudder deflection and 

tδ is throttle deflection. 
 The process of using state information to govern the control inputs is 
known as closing the loop, and the resulting system as a closed-loop control or 
feedback control. Fig. 1 presents a general block diagram describing the feedback 
situation in a flight control system. 
A classic fuzzy logic system is built in two phases [9]: the first phase is defining 
the systems variables (linguistic variables), the fuzzy database and the inference 
engine (rules database). The second phase is building the fuzzy logic controller 
which reads the sensors raw data, pre-process  the raw data which transforms into 
fuzzy logic specific data in order to perform the fuzzy logic operations: 
fuzzification (transforming the fuzzy logic specific data into degrees of 
membership), inferencing the data (the rules are applied over the data) and 
defuzzification. 

 
Fig. 1. UAV closed loop block diagram 

  The relative angle (ρ) is defined as the difference between the aircraft’s 
current heading – ch  and the destination heading – dh . The deflection angle (δ) is 
defined as the angle formed by the destination direction and aircraft’s current 
position vector. Therefore, one can write )360,0[),360,0[ ∈∈ δρ - Fig. 2. 
Once the fuzzy sets are defined the linguistic variables can be defined; a number 
of eight linguistic variables: Altitude, Distance, DeflectionAngle, RelativeAngle, 
YokeX, YokeY, Rudder, and ThrottleLever. These linguistic variables are of two 
kinds: conditional and action linguistic variable. Altitude, Distance, 
DeflectionAngle, and RelativeAngle are condition variables; YokeX, YokeY, 
Rudder, and ThrottleLever are action variables. The Altitude linguistic variable is 
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defined using three fuzzy sets: Low, Medium and High. The Distance linguistic 
variable is also defined using three fuzzy sets: Near, Medium and Far.  

 
Fig. 2. Space partitioning 

The specific angles – DeflectionAngle and RelativeAngle – are defined using 17 
fuzzy sets – Fig. 2. Yoke (X and Y), Rudder are defined using three fuzzy sets – 
Positive, Zero and Negative and the ThrottleLever linguistic variable is defined 
using three fuzzy sets: Idle, Medium, Full. The rules for Altitude conditional 
variable are defined – for Distance variable, three rules are also defined. All these 
rules are added to the inference system together with the method of obtaining the 
output value for each input value: CentroidDefuzzier.  
The simulation environment used in this research is Microsoft® ESP™/Lockhead 
Martin Prepar3D and uses the following equations of motions [5]: 
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From the mathematical point of view, this can be seen as a system of differential 
equations with the unknowns U, V, W, ΦΘΨ ,, , P, Q, R. Using an elimination 
process, the number of unknowns can be reduce to six: ether U, V, W, P, Q, R or 
U, V, W, ΦΘΨ ,, . 
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In both cases, the solutions can be determined by numercal integration and in the 
case of Microsoft® ESP™/Lockhead Martin Prepar3D the numerical method 
used is a modified version of Euler’s method: 

TPPPP nn
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In order to find the position and attitude of an aircraft, Hamilton’s quaterion 
method is used (from the coordonate system of the aircraft to the coordonate 
system of the Earth) for avoiding the singularites at 90± [7]. 

4. Fuzzy logic control system Lyapunov stability analysis  

In order to analyze the stability of the fuzzy logic control system described 
above, one must consider the following theorems: 
Theorem 1 (Asymptotic stability theorem): Let x = 0 be an equilibrium point of 

nDfxfx ℜ→= :),( , and let ℜ→DV : be a continuous differentiable function 
such that: 

(i) V(0) = 0, V(x) > 0 in D – {0}, 0)( <xV  in D – {0}, 
thus x= 0 is asymptotically stable. 
Proof: See [6]. 
Theorem 2: A function g(x) is the gradient of the scalar function V(x) if and only 
if the matrix 
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is symmetric. 
Proof: See [6]. 
The essence of the method is to assume that the gradient of the (unknown) 
Lyapunov function V(.) is unknown up to some free parameters. Then by 
integrating the assumed gradient, the Lyapunov function is found. 
Theorem 3: If P is a positive definite matrix and: 

1. ∞→= PxxxV T)( as ∞→x , V(0)=0, 
2. nXxxV ℜ⊂∈∀≤ ,0)( for all fuzzy logic subsystems, 
3. the set { }0)(| =∈ xVXx  contains no trajectory of the system except the 

trivial trajectory x(t)=0 for 0≥t ,  
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then the fuzzy logic control system with AND-SUM-COG fuzzy logic controller (of 
Mamdani type) and the process defined in (2), is globally asymptotically stable in 
origin. 
Proof: See [8]. 
Using the variable gradient method, assume )()( xgxV =∇ . Thus: 
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The free parameters in the function g(x) are constraint to satisfy certain symmetry 
conditions from Theorem 2. 
For the four equations sets (6) – (9), one must determine the numerical values of 
the coefficients based on the flight condition and corresponding airplane 
configuration, airplane mass and mass distribution (pitching moment of inertia), 
dimensionless stability derivatives and the dimensional stability derivatives. 

 Short period approximation 

The equation for short period approximation can be written in the 
following form uxbxfx ⋅+= )()( . 
Consider the system in equation (1), )(xfx = : 
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To study the stability of the equilibrium point ( )0,0 == θα , the Lyapunov 
function is found as follows:  
Step 1. For this system, consider a candidate gradient: 
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To simplify the solution, assume j
ig are constant and since 

j

i

i

j

x
g

x
g

∂
∂

=
∂
∂

, [ ]222121112112 )( xhkxkxxhxgkhh ++=⇒== . 

If [ ]222111)(0 xhxhxgk =⇒= .  
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Step 4. Now, find V(x) by integration: 



44                                             Eusebiu Marcu, Corneliu Berbente  
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Step 5. Verify 0<V  and 0>V . 
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Therefore, V(x) is positive and for ∞→x , then ∞→= PxxxV T)( . 
Considering the configuration of Cessna 172 Skyhawk and cruise at 1240 meters 
(5000 feet), the coefficients are: 
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From the fuzzy control rule base (and from real-time data of the flight dynamic 
model), can be deduced that the variables α and θ  have the same sign and 
opposite sign with respect to eδ (can also be seen from recorded flight data). 
Hence, .0)( <xV  

The condition 3 of the Theorem 3 holds by assuming that 0)(,0)( 12 ≠= txtx . This 
means that 02 ≠x  which means that 2x  cannot stay constant. Therefore, 

0)( =tx is the only trajectory for which .0)( <xV  
Also, the fuzzy logic control system described in 4 has a Mamdani type FLC with 
AND-SUM-COG defuzzification method. 
The equations for dutch-roll and spiral modes have the same design; therefore the 
Lyapunov function will be the same – equilibrium point ( )0,0 == ψβ . 
Considering the same configuration, the coefficients are: 
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 Phugoid approximation 

The equations for phugoid approximation can be written as follows: 
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To study the stability of the equilibrium point ( )0,0 0 =−= uuα , the Lyapunov 
function is found as follows: 
Step 1. Consider a candidate gradient: 
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To simplify the solution, assume j
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Step 4. Now, find V(x) by integration: 
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Step 5. Verify 0<V  and 0>V . 
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0,,0 332211 >⇔> hhhV . Assume 1332211 === hhh  thus,  ( )2
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In order to satisfy the hypothesis from Theorem 3, one should find the matrix P 
and verify that is positive defined.   
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Therefore, V(x) is positive and for ∞→x , then ∞→= PxxxV T)( . 
Considering the configuration of Cessna 172 Skyhawk and cruise at 1240 meters 
(5000 feet), the coefficients are: 
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u

 

From the fuzzy control rule base (and from real-time data of the flight dynamic 
model), can be deduced that the variables α and θ  have the same sign and 
opposite sign with respect to eδ . 
Hence, .0)( <xV  
The condition 3 of the Theorem 3 holds by assuming that 

0)(,0)(,0)( 213 ≠≠= txtxtx . This means that 03 ≠x  which means that 3x  cannot 
stay constant. Therefore, 0)( =tx is the only trajectory for which .0)( <xV  
Therefore, the fuzzy logic control system with the Mamdani type FLC is globally 
asymptotically stable in the equilibrium point. 
The values of the coefficients were determined by using the Advanced Aircraft 
Analysis software program [10]. 

5. Experimental results 

The Fuzzy Logic model was able to control the UAV even if the 
atmospheric conditions were enabled: light snow, maximum visibility (100 m), 
cloud ceiling at 1500m, wind speed 10m/s and wind direction west. Fig. 3 and 
Fig. 4 present a comparison between fuzzy logic control system and an automatic 
control system given the start and end location the airports (given ICAO codes): 
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Table 1 
SBNT airport location 

Parameter Value 
Latitude  05° 54' 41.10" S 

Longitude 35° 14' 51.78" W 
Heading 321° 

Table 2 
Target SBJP airport location  
Parameter Value 
Latitudine 08' 54.17" S 
Longitude 34° 57' 02.45" W 
Heading 137° 

 

 

 
Fig. 3. Fuzzy (upper) vs. automated control system - attitude (radians) 

 

Fig. 4. Fuzzy (left) vs. automatic control system - trajectory (long-lat) 
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6. Conclusions 

The classic approach of analyzing the stability of an UAV is by determine 
the transfer functions for both longitudinal and lateral-directional modes and this 
method is only applicable to linear time-invariant systems 

The present paper presents a different approach in analyzing the stability 
of an UAV in the sense of Lyapunov by implement fuzzy logic control system 
with Mamdani type FLC. The approach used Lyapunov stability theorems, the 
variable gradient method to find the Lyapunov function and a stability theorem for 
fuzzy control systems with Mamdani type fuzzy controller. 

An advantage of the current design of the fuzzy control system is 
extensibility. Future work is concentrated on implementing the A* algorithm to 
extend the model in order to determine the destination location (and a possible 
physical trajectory) in order to avoid certain zones in real-time. Other advantage 
over automatic control (as can be seen in Fig 3 and Fig 4.) is that the variations of 
the attitude angles are not as smooth and a preprogrammed path must be in place 
in order to satisfy the initial conditions (the predefined heading).  
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