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UAV FUZZY LOGIC CONTROL SYSTEM STABILITY
ANALYSIS IN THE SENSE OF LYAPUNOV

Eusebiu MARCU?, Corneliu BERBENTE?

This article presents the stability analysis in the sense of Lyapunov for a
fuzzy logic control system of an unmanned aerial aircraft (UAV). The first section
presents an introduction to linear dynamic systems and their stability analysis and
the second section presents the equations of motion an aircraft in small
perturbations hypothesis. In the third section the fuzzy logic controller is presented
and in the forth section the analysis of the stability of the system is presented. In the
fifth section the experimental simulation results for a specific aircraft are presented
and in the sixth the conclusions are stated.
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aerial vehicle
1. Introduction

A linear dynamic system is a dynamic system based on the use of linear
operator. The mathematical model of a linear dynamic system is represented by a
linear differential equation of first order.

d

—x=A4-x (1)

dt
where x € R"is the state vector and 4 is a nxn constant matrix. The linear
systems are commonly used in control theory, e.g. state space representation of a
physical system, represented by (2) — continuous time-invariant/autonomous
system.

x(t) = Ax(¢) + Bu(t)

y(t) = Cx(t) + Du(t)
where x € R"is the state vector, y € R?is the output vector, u € R” is the
control vector, A4 is the system matrix, B is the control matrix, C is the output
matrix and D is feedback matrix — dim(A4) =nxn,dim(B) =nx p,dim(C)=gxn
dim(D)=¢gx p [1].
The stability of the origin for a linear system can be determined by the Routh-
Hurwitz stability criterion by determining the eigenvalues of a matrix, i.e. the

roots of its characteristic polynomial. A polynomial in one variable with real
coefficients is called a Hurwitz polynomial if the real parts of all roots are strictly
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negative. The Routh—Hurwitz theorem implies a characterization of Hurwitz
polynomials by means of an algorithm that avoids computing the roots [2]. For
general dynamic systems, a general way to establish Lyapunov stability or
asymptotic stability is by means of Lyapunov functions [3].

The purpose of the paper is to present a stability analysis for a fuzzy logic
controller [4] for an unmanned aerial vehicle in the sense of Lyapunov.

2. Aircraft equations of motion

Experience has shown that in many cases, the dynamic behavior of
airplanes can be satisfactorily represented by assuming that the perturbations
away from steady state flight are small. These equations are called the small
perturbation equations and may be presented in two independent sets —
longitudinal and lateral-directional equations [5].
The perturbed longitudinal equations with dimensional stability derivatives:
u=-gbcost +Xu+X,u+X, +X;0,

Ua —U,0=-g0sinG, + Zu+Z,a+Z,a+Z,0+Z;0,

N : ®3)
O=Mu+Mu+M, a+M, a+M,a+M,0+M,;0,

g=0,w= Ua
The perturbed lateral-directional equations with dimensional stability derivatives:
UB+Uy = gpcosé,+Y,B+Y 9+ Yy +Y, 5, +Y, 6,

¢_Iqll// = LﬂIB+Lp¢+Lrl// +L§u5a +L5,‘5r
W ~Bg=N,S+N, B+N, g+ Ny +N,5,+N,35,

p=¢r=y,v=Up
Where 6, - steady state pitch attitude angle; «, £ - angle of attack and side slip
0, ¢,y - aircraft attitude; o,,9,,0, - aileron, elevator and rudder deflections

. . . - I = I
g - adimensional dynamic pressure 4, = Ixz B, :[—

The dynamic stability analysis can be more easily predicted from an
approximation to the equations (3) and (4) as follows:

o for longitudinal equations, short period and phugoid approximations

o for lateral-directional equations, dutch-roll and spiral approximations.

4)

UAV stability using transfer functions

The classic approach to analyze the stability of an aircraft is to determine the
open-loop transfer functions based of the equations of motion for every mode.
The equations set expressed in (3) and (4) can be written in a matrix format given
by for both longitudinal and lateral-directional modes.
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By applying Laplace transform on equations (3) and (4), the system equations are

[5]:

_s—Xu -X. -X, gcosé, u(s)/o,(s) X,
-Z U, -7,)-2, —(z,+U,)s+gsing, | al(s)!5,(s)|=| Z,
—(m, M) —(Mys+ M, +M, ) $*—M,s 0(s)/5,(s)| | M,
I sU, =Y, —(sYp+gCOSHl) S(Ul—Yr) L(s)]o(s) Y
-1, s =L —(s%4, +sL,)| §(s)/5(s) | =| L,
—N,-Ny, —(SZEI+NPS) s? 5N, w(s)/o(s) N

Using the approximations stated above, one can write the transfer functions for
every mode, as follows:
- short period approximation transfer functions:

sU,-Z, U Ja(s)/o,(s)| | Zs
—(Mys+M,) =My | 6(s)16.(5) || My, ©

- phugoid approximation transfer functions:
s—X, g |uls)/o,(s)|_|Xa ()
| —Z, -Us|0(s)I6.(s)] |2

— dutch-roll approximation transfer functions:

sU =Y, s(U =Y ) B)16()]_[ Y,

N, sz—Nrs__l//(s)/ﬁ(s)}:{Nj ®)
—spiral and roll approximations transfer functions:

_—Lﬁ —s(s(7l+L,)__ﬂ(s)/§(s) | Ls

-N, s’-Ns __z//(s)/é'(s)}_{NJ ©)

#s) _ Ly,

S.(s) s° —sL,

Next, the roots of the characteristic equation are determined or Routh-Hurwitz
criterion is applied after computing the coefficients of the characteristic equation
for a given aircraft and flight condition [2].

For closed-loop systems, the closed-loop system transfer function is determined
(the controller’s transfer function must be determined) and then the behavior of
the roots of the characteristic equations as a function of gain K is studied by
means of root-locus or Bode methods [5].

3. Fuzzy logic controller for an UAV
In order to study how an airplane or UAV responds to actuation of the
primary controls — elevator, aileron, rudder and throttle — the state and the control

(®)
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vectors for longitudinal and lateral motions must be defined. The state of the
airplane may include position and velocity vectors relative to a reference frame,
airplane attitude (@, ,), rotation rates(p,q,r), aerodynamic angles — angle of

attack and sideslip (a, ﬂ) and acceleration components. The control vector is
defined by:
C:[é‘u’é‘e’é‘r’é‘t]

where ¢, is aileron deflection, ¢, is elevator deflection, &, is rudder deflection and
o, is throttle deflection.

The process of using state information to govern the control inputs is
known as closing the loop, and the resulting system as a closed-loop control or
feedback control. Fig. 1 presents a general block diagram describing the feedback
situation in a flight control system.

A classic fuzzy logic system is built in two phases [9]: the first phase is defining
the systems variables (linguistic variables), the fuzzy database and the inference
engine (rules database). The second phase is building the fuzzy logic controller
which reads the sensors raw data, pre-process the raw data which transforms into
fuzzy logic specific data in order to perform the fuzzy logic operations:
fuzzification (transforming the fuzzy logic specific data into degrees of
membership), inferencing the data (the rules are applied over the data) and

defuzzification.
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Fig. 1. UAV closed loop block diagram
The relative angle (p) is defined as the difference between the aircraft’s

current heading — 4, and the destination heading — %, . The deflection angle (9) is

defined as the angle formed by the destination direction and aircraft’s current
position vector. Therefore, one can write p [0,360), 5 [0,360) - Fig. 2.

Once the fuzzy sets are defined the linguistic variables can be defined; a number
of eight linguistic variables: Altitude, Distance, DeflectionAngle, RelativeAngle,
YokeX, YokeY, Rudder, and ThrottleLever. These linguistic variables are of two
kinds: conditional and action linguistic variable. Altitude, Distance,
DeflectionAngle, and RelativeAngle are condition variables; YokeX, YokeY,
Rudder, and ThrottleLever are action variables. The Altitude linguistic variable is
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defined using three fuzzy sets: Low, Medium and High. The Distance linguistic
variable is also defined using three fuzzy sets: Near, Medium and Far.
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Fig. 2. Space partitioning

The specific angles — DeflectionAngle and RelativeAngle — are defined using 17
fuzzy sets — Fig. 2. Yoke (X and Y), Rudder are defined using three fuzzy sets —
Positive, Zero and Negative and the ThrottleLever linguistic variable is defined
using three fuzzy sets: ldle, Medium, Full. The rules for Altitude conditional
variable are defined — for Distance variable, three rules are also defined. All these
rules are added to the inference system together with the method of obtaining the
output value for each input value: CentroidDefuzzier.

The simulation environment used in this research is Microsoft® ESP™/Lockhead
Martin Prepar3D and uses the following equations of motions [5]:

mU VR +WQ)=-mgsin0+F, +F,
m(V + UR ~WP)=mgsingcos6 + F, +F,
m(W—UQ+VP)=mgcos¢cose+FAz +F,
IXXP_[XZR_IXZPQ+([ZZ _IYY)RQZLA +L;

[yO—(I —1,,)PR+1,,(PP~R*)=M , + M, (10)
IZZR_[XZP"'(IYY_IXX)PQ+IX2QR:NA +N;
P=®-¥sin®

R =0cos® + ¥ cos@sind
0 =Y cos®cosd —Osind
From the mathematical point of view, this can be seen as a system of differential
equations with the unknowns U, V, W, ¥,0,®, P, O, R. Using an elimination

process, the number of unknowns can be reduce to six: ether U, V, W, P, O, R or
UV, W ¥,0,0.
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In both cases, the solutions can be determined by numercal integration and in the
case of Microsofi® ESP™/Lockhead Martin Prepar3D the numerical method
used is a modified version of Euler’s method:

P +P
Pn :Pnl+(%+”jAT (11)

In order to find the position and attitude of an aircraft, Hamilton’s quaterion
method is used (from the coordonate system of the aircraft to the coordonate
system of the Earth) for avoiding the singularites at + 90°[7].

4. Fuzzy logic control system Lyapunov stability analysis

In order to analyze the stability of the fuzzy logic control system described
above, one must consider the following theorems:
Theorem 1 (Asymptotic stability theorem): Let x = 0 be an equilibrium point of
x=f(x),f:D—>R", and let V :D — R be a continuous differentiable function
such that:

(i) V() =0, V(x)>0inD—-{0}, V(x)<0 inD—-{0},

thus x= 0 is asymptotically stable.
Proof: See [6].
Theorem 2: A function g(x) is the gradient of the scalar function V(x) if and only
if the matrix

%8 08, 08
ox, ox,  ox
98 28, %8y
J=|ox, ox, = ox,
98 08, 08,
| Ox,  Ox, ox, |

is symmetric.
Proof: See [6].
The essence of the method is to assume that the gradient of the (unknown)
Lyapunov function V() is unknown up to some free parameters. Then by
integrating the assumed gradient, the Lyapunov function is found.
Theorem 3: If P is a positive definite matrix and.:

1. V(x)=x"Px > was |x| > =, V(0)=0,

2. V(x)<0,Vxe X c R"for all fuzzy logic subsystems,

3. the set {x e X |V(x)= 0} contains no trajectory of the system except the

trivial trajectory x(t)=0 for t > 0,
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then the fuzzy logic control system with AND-SUM-COG fuzzy logic controller (of
Mamdani type) and the process defined in (2), is globally asymptotically stable in
origin.

Proof: See [8].

Using the variable gradient method, assume V¥V (x) = g(x) . Thus:

VIV (x)=g(x)= gx)dx=VV(x)dx =dV (x) =

V(x,) -V (x,) = [V (e = [ g()ax (12)

The free parameters in the function g(x) are constraint to satisfy certain symmetry
conditions from Theorem 2.
For the four equations sets (6) — (9), one must determine the numerical values of
the coefficients based on the flight condition and corresponding airplane
configuration, airplane mass and mass distribution (pitching moment of inertia),
dimensionless stability derivatives and the dimensional stability derivatives.

Short period approximation

The equation for short period approximation can be written in the
following formx = f(x) +b(x) - u .
Consider the system in equation (1), x = f(x):
Xp = €y Xy +CpX,
X, = CpXy +CpX, (13)
X, =a,x,= 0= q
To study the stability of the equilibrium point (a =0,0= 0), the Lyapunov
function is found as follows:
Step 1. For this system, consider a candidate gradient:
g(x)= [gl gz]: [hilxl +hpx, X+ hzzxz]-
Step 2. Impose the symmetry conditions. Thus:

o oV g, Og,

= < = —
Ox,0x;  Ox,0x, ox, Ox
To simplify the solution, assume g/are constant and since
% _0g
ox; Ox; ’
If k=0= g(x) =[x, hyx,].
Step 3. Find V(x):
V(x) = g(x)- f(x) =V (x) = hycyyxi + (hiyCyy + ypCoy) X,y + ypCps (15)
Step 4. Now, find V(x) by integration:

(14)

j

2 =hy =k:>g(x)=[hux1+kx2 kxl+h22x2].
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X Xy 1
V(x)= J.hllslds1 + J.hzzszds2 = E (hlle + hzzxzz) (16)
0 0

Step 5. Verify V' <0 and ¥ >0.
V>0&s hy,hy,>0. Assume, h,=h,=1 and V(x)= %(xf +x22). Therefore:

V(%) = i +(Cpp + €)X, +Cpp;
In order to satisfy the hypothesis from Theorem 3, one should find the matrix P
and verify that is positive defined.

V(x)=x"Px= E(xf + x22)<:> [x, xz]{pll plz}{xl} = E(xf + xi):
2 Pn PoX| 2 a7

1 1/2 0
pn:pzz:E,plzzpzl:O:)P: 0 1/2 >0

Therefore, V(x) is positive and for |x| — «, thenV (x) = x"Px — .

Considering the configuration of Cessna 172 Skyhawk and cruise at 1240 meters
(5000 feet), the coefficients are:

= é— _ _3.704<0,c, +¢, =14 M, + 2= — 33827 <0,

1 1

Cp=M,+M, =-61245<0

From the fuzzy control rule base (and from real-time data of the flight dynamic
model), can be deduced that the variables «and & have the same sign and
opposite sign with respect to o, (can also be seen from recorded flight data).
Hence, ¥ (x) <0.
The condition 3 of the Theorem 3 holds by assuming thatx, (f) =0, x,(z) # 0. This
means that x,=#0 which means that x, cannot stay constant. Therefore,
x(¢) = 01is the only trajectory for which ¥ (x) <0.
Also, the fuzzy logic control system described in 4 has a Mamdani type FLC with
AND-SUM-COG defuzzification method.
The equations for dutch-roll and spiral modes have the same design; therefore the
Lyapunov function will be the same — equilibrium point( = 0, = 0).
Considering the same configuration, the coefficients are:

Y
¢y =2 =-02479<0,c, +c, =Y, -U, + N, =-1.8424 <0
U, - dutch roll

¢, =N, =-12583<0

s =
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_ AN, +L,
AN, +L,
c,, =N, =-26109<0,4, =0,a =0°

AN, +L
AN AL N, =-1.9882<0
AN, +L

B

N, =-0.881<0,c), +c, =—

Phugoid approximation

The equations for phugoid approximation can be written as follows:
X, = CpX; +CpX,
X, =X
2 3 (18)

X3 = Cqy Xy + Ca3X3
x,=u,x,=0,x,=0=¢q
To study the stability of the equilibrium point(a = 0,u —u, =0), the Lyapunov

function is found as follows:
Step 1. Consider a candidate gradient:

Py, + hypX, + hygxy
g(x)= [gl &> g3]= Py X, + hyp X, + hoygx,
Py X, + hapx, + hygxs
Step 2. Impose the symmetry conditions. Thus:
oV oV og, Og,
= = = —_—
Ox,0x;  Ox,0x, ox, Ox
To simplify the solution, assume g/are constant and since
% %
ox; Ox; ’

T

(19)

j

Iy =My =hy =hyy =hy =hy =k =

glx)= [hllxl +hx, +hg ko +hyx, +hoey ko +kx, + hssxa]-
If k=0=g(x)= [hnxl hy,x, h33x3]'

Step 3. Find V (x):

V) =VV-f(x)=g()- f(X) =[x, hpx, D] f(x) =

) (20)
Vi(x)= h’llcllxlz + IyCrp XXy + Ry Xy Xy + PggCyy X X5 + h33023x§ .
Step 4. Now, find V(x) by integration:
X Xy X3 1
V(x)= J hy,s,ds, + Ihzzszdsz + Ih33s3ds3 = E(hlle + hzzxf + h33x32) (21)
0 0 0

Step 5. Verify V <0 and ¥ >0.
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V>0 hy, by, by >0. Assume hy, = h,, = hy, =1 thus, V(x)z%(xf+x22+x32).

Therefore: V(x) = cyyx7 + X, + X,0; + CayX, X, + Cog X2
In order to satisfy the hypothesis from Theorem 3, one should find the matrix P
and verify that is positive defined.

1
V(x)=x"Px= E(xf +x5 +x32)®
bPu P P x (22)

_ 2, .2, .2
[xl X, X3 Pa Pwm Pau |2 _E(xl +X; + X3 ):>
Pun Py Dz s

1 1/2 0 0
pll:p22:p22:51pgj:0:>P: 0 1/2 0 |>0
0 0 1/2

Therefore, V(x) is positive and for x| — o, then¥ (x) = x" Px — .

Considering the configuration of Cessna 172 Skyhawk and cruise at 1240 meters
(5000 feet), the coefficients are:

e, =X,=-00293<0,¢c,, =-g <0,cy =M, + M, =0,c54=M,=-43150<0
From the fuzzy control rule base (and from real-time data of the flight dynamic
model), can be deduced that the variables «and @ have the same sign and
opposite sign with respect to o, .

Hence, ¥V (x) <0.
The condition 3 of the Theorem 3 holds by assuming that
x;() =0,x,(¢) # 0,x,(¢) 0. This means that x, = 0 which means that x, cannot

stay constant. Therefore, x(r) = 0is the only trajectory for which ¥ (x) <0.

Therefore, the fuzzy logic control system with the Mamdani type FLC is globally
asymptotically stable in the equilibrium point.

The values of the coefficients were determined by using the Advanced Aircraft
Analysis software program [10].

5. Experimental results

The Fuzzy Logic model was able to control the UAV even if the
atmospheric conditions were enabled: light snow, maximum visibility (100 m),
cloud ceiling at 1500m, wind speed 10m/s and wind direction west. Fig. 3 and
Fig. 4 present a comparison between fuzzy logic control system and an automatic
control system given the start and end location the airports (given ICAO codes):
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Table 1
SBNT airport location
Parameter Value
Latitude 05°54'41.10" S
Longitude 35°14'51.78" W
Heading 321°
Table 2
Target SBJP airport location
Parameter Value
Latitudine 08'54.17" S
Longitude 34° 57' 02.45" W
Heading 137°

Attitade [radians]

I
500 1000 1500

0
Time [seconds]
5 T .
: Pitch angle
abodo - Roll angle
| i Headirg angle
_é bt A ]
) {‘ ! i :
g2 R S
E I ]
ol 1} ]
p i i
0 500 ] 1000 1500
Time [seconds)

automated control system - attitude (radians)

N

Fig. 4. Fuzzy (left) vs. automatic control system - trajectory (long-lat)
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6. Conclusions

The classic approach of analyzing the stability of an UAV is by determine
the transfer functions for both longitudinal and lateral-directional modes and this
method is only applicable to linear time-invariant systems

The present paper presents a different approach in analyzing the stability
of an UAV in the sense of Lyapunov by implement fuzzy logic control system
with Mamdani type FLC. The approach used Lyapunov stability theorems, the
variable gradient method to find the Lyapunov function and a stability theorem for
fuzzy control systems with Mamdani type fuzzy controller.

An advantage of the current design of the fuzzy control system is
extensibility. Future work is concentrated on implementing the A* algorithm to
extend the model in order to determine the destination location (and a possible
physical trajectory) in order to avoid certain zones in real-time. Other advantage
over automatic control (as can be seen in Fig 3 and Fig 4.) is that the variations of
the attitude angles are not as smooth and a preprogrammed path must be in place
in order to satisfy the initial conditions (the predefined heading).
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