U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 1, 2017 ISSN 2286-3540

COMPACT NODE COUNTING EXPLORATION
ALGORITHM

Bogdan-Florin FLOREA!, Ovidiu GRIGORE?, Mihai DATCU?®

In this paper, we propose an exploration algorithm based on a modification
of the original node counting algorithm which provides compact spatial exploration
capabilities for reflex agents and it is capable of multi-agent operation by using a
pheromone map as information storage and exchange medium. The algorithm
proposed in this paper outperforms in terms of cumulative path length all other
popular exploration algorithms based on reflex agents that we included in the
comparison.

Keywords: autonomous agents, cooperative systems, intelligent agents, mobile
agents, reflex agents, spatial exploration

1. Introduction

There has been interest in the scientific community for efficient self-
healing and self-organizing spatial exploration techniques that can be used for
spatial exploration, with applications both on Earth and in extraterrestrial
environments. The exploration algorithm that we propose in this paper builds on
the NCA (Node Counting Algorithm) [1] by using a different cost structure for
changing its behavior at the exploration frontier in order to obtain a compact
exploration pattern, which favors the exploration of unexplored cells which are
adjacent to the already explored cells.

The compact exploration approach is interesting for the spatial exploration
of terrains of unknown and potentially very large size, which are typically
encountered in extraterrestrial exploration. By using an exploration algorithm
which produces a compact explored area, it is possible to study the explored area
more thoroughly and to get relevant information about the explored environment.

The exploration algorithm proposed in this paper can be used for building
a resilient self-organizing and self-healing multi-agent exploration system.

L University POLITEHNICA of Bucharest, Bucharest, Romania, e-mail: bogdan.florea@ai.pub.ro

2 University POLITEHNICA of Bucharest, Bucharest, Romania, e-mail: ovidiu.grigore@ai.pub.ro

3 University POLITEHNICA of Bucharest, Bucharest, Romania, and Deutsches Zentrum fiir Luft
und Raumfahrt, Oberpfaffenhofen, WeRling 82234, Germany, e-mail: mihai.datcu@dlr.de

mailto:bogdan.florea@ai.pub.ro

114 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu

2. Theory
2.1 The collaborative exploration problem

For the purpose of our research we have modelled the terrain as an 8-
connected discrete grid (V, E) as shown in Fig. 1. For each intelligent agent, we
have considered a visibility horizon (sensor range) of one cell as shown in Fig. 2.

We have used a pheromone map as an information storage and
communication medium for the agents. For the purpose of this research, we have
considered that a communication and localization system is already available for
the agents and that the pheromone map and the discovered obstacle map is shared
between the agents in the multi-agent exploration scenario.

=N ¥q ¥g =N Vg
| |
Ty Pip
| |
Tyy Vyg P15
| |
Vg Vg Vap
| |
L3 3 V23 24 3z

Fig. 1. A 5x5 terrain modelled as an 8-connected discrete grid. The vertices corresponding to
obstacles are coloured in black

Fig. 2. The visibility horizon of an agent (the agent is marked with black colour)

Compact node counting exploration algorithm 115

The single agent exploration problem for a finite size terrain consists into
finding a path that visits all the accessible cells with a cost as low as possible:

) n-1
P= argmin Y folei_si), 1)
(Vo.Va,VaoVpg) =1
Vi ‘I’Vi—l , | :l,ﬁ
f,(v;)=Li=1n-1

where:
P=(Vg,V1,Vo---V,_1) €V " is the path
v 4 u means that v is adjacent to u
&i_1j = {Vi_1, Vi | is the edge connecting the vertex v;_; to vi
fo (ei_l,i) is the cost function

_ 1L, —f,(v) A (v connectedtov)
fa(")—{o, ° other?Nise

1, if vis anobstacle
fo(V)= {0, otherwise

The collaborative exploration problem for finite terrains consists into
finding a set of path for the intelligent agents so that the cumulative cost of the
paths is as low as possible:

(Pl, P,...Py)= argmin foc(R). (2)

(P, Py--Py) i—1
{vev| fa (v)=Licvertice(P ,Py--Py)

where:

foc(P)= z:ﬂ:_llfc (j_1;) is the cumulative cost of the path P

Pi is the path followed by the i agent from the team

N
Vertices(Py, P, ---Py)= JVertices(R)
i=1
Vertices(P,) is the set of vertices visited by the path P;

116 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu

Since the algorithm presented in this paper is not optimal, for our
formalism we have considered the “argmin” operator as a best-effort search for a
solution, which returns a solution, but not necessarily the optimal one.

Each agent is capable to perform computations and to take actions by
taking into account the information from the sensors over the visibility horizon of
one cell and being able to sense the obstacles (inaccessible cells) and the values
from the pheromone map.

When exploring unknown environments, the obstacle information acquired
from the sensors is used to build a map of the environment, by sensing and
recording the obstacle cells.

2.2 The proposed algorithm
2.2.1 Using a pheromone map to avoid revisiting cells

Similarly to the Node Counting Algorithm [1], we have used a pheromone
map, in which the entry corresponding to each cell from the grid is incremented
each time the agent visits that location.

We have used the following cost in order to penalize repeated visits of the
same cells:

cl(eij): pheromoneMap(vj) , 3)

where:
eij Is the edge connecting the vertex v; to the vertex v;
pheromoneMap(vj) is the pheromone value corresponding to the vertex

2.2.2 Modeling the compactness constraints as costs

For the purpose of this algorithm, we have modelled the compactness cost
as a local cost which penalizes the actions that lead to a lower compactness of the
explored area.

We have defined the compactness cost as follows:

CZ(eij)= 2(2_ fe(u)—-2f4(u)) , 4)

ueVv
vidu

where:

Compact node counting exploration algorithm 117

f _ {1, if vertexv is alreadyexplored
e(V)= 0, otherwise

This cost also penalizes the agent for exploring areas that are not adjacent
to obstacles, creating therefore an affinity for expanding the exploration frontier
towards the areas close to obstacles.

2.2.3 The exploring algorithm

The exploration algorithm is based on reflex agents, each agent choosing
the successor cell that it is going to visit according to the following rule:

succ(v;) =argmin fc(ej;), (5)

Vi

where:
lo)-{2h ol

Each reflex agent works according to the following algorithm:

Initialize pheromoneMap with zeros

Initialize successor with the starting position

While exploration not complete do:
successor = succ(successor)

Mark successor as visited
Increment pheromoneMap(successor)
End

3. Results and discussion

For the comparative analysis, we have used the shape factor as a global
measure of the compactness of the explored area:

4-7-A

sf = o2

, (6)

118 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu

where:
A is the area of the explored region (considering the holes that surround

obstacles to be filled)
P is the perimeter of the explored region (the frontier).

The value of the shape factor indicates the compactness of the explored
region. For a circular region it has a value of one and it decreases as the shape

deviates from circular form.

0,45 T T T T

0.2f

Shape Factor

<

-

=

(4]
T

0,1F

0,05

T e o ————

0 1000 2000 3000 4000 5000
Time Step

Fig. 3. Shape factor comparison. (The shape factor for the compact node counting algorithm is
represented with continuous line and the shape factor for the original node counting algorithm is
represented with dashed line)

From Fig. 3, it can be seen that in contrast to the original node counting
algorithm, the shape factor of the explored area obtained using the algorithm
proposed in this paper deteriorates significantly less as the exploration continues
over time. In the following tables we have also shown that our approach oriented
towards compactness brings a speed benefit.

Compact node counting exploration algorithm 119

Fig. 5. Typical exploration pattern of the original node counting exploration algorithm

In Fig. 4 and 5, it can be observed qualitatively that there is a significant
difference in terms of the compactness of the explored area between the algorithm
proposed by us and the original node counting algorithm, resulting into a lower
number of “holes” in the explored area pattern. Our investigation has shown that

120 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu

this behavior, along with a slight affinity for expanding the exploration frontier
around the obstacles as imposed by the costs defined at the exploration frontier,
also brings an improvement in terms of the exploration speed (measures as the
cumulative path length).

Besides the shape factor, we have also investigated the exploration speed
of the algorithm that we have proposed in this paper, comparing it with several
exploration algorithms from the literature. We have compared it with the original
node counting algorithm [1], with the exploration algorithm based on Thrun’s rule
[7], with vertex ant walk [6] and with learning real-time A* algorithm with a
look-ahead of one cell.

Table 1
Exploration speed comparison (10000 runs with 1 agent on different
30x30 maps)
Algorithm Step count Step count (standard
(average) deviation)
Current algorithm 544.99 309.87
Node counting algorithm 674.20 351.72
Thrun’s rule 679.89 354.73
Vertex ant walk 749.14 410.93
Learning real-time A* 675.52 354.00
Table 2
Exploration speed comparison (10000 runs with 3 agents on different
30x30 maps)
Algorithm Step count Step count (standard
(average) deviation)
Current algorithm 597.05 314.40
Node counting algorithm 718.35 361.64
Thrun’s rule 721.12 362.35
Vertex ant walk 821.77 436.14
Learning real-time A* 720.15 364.00
Table 3

Exploration speed comparison (10000 runs with 6 agents on different
30x30 maps)

Algorithm Step count Step count (standard
(average) deviation)
Current algorithm 698.69 352.94
Node counting algorithm 824.44 426.74
Thrun’s rule 812.27 409.16
Vertex ant walk 966.90 503.45
Learning real-time A* 811.71 411.04

From the table 1, 2 and 3 it can be observed that the proposed algorithm is
faster than the original node counting algorithm and that it outperforms all other

Compact node counting exploration algorithm 121

algorithms included in this comparison in terms of speed. These results were
obtained by running the exploration algorithms on 10000 randomly generated
maps of size 30x30.

In order to have a more through comparison, we have also run the
comparison on a set of 1000 randomly generated maps of size 100x100 and we
have found that the algorithm proposed in this paper consistently outperforms the
other algorithms.

Table 4
Exploration speed comparison (1000 runs with 1 agent on different
100x100 maps)
Algorithm Step count Step count (standard
(average) deviation)
Current algorithm 13397.70 8381.30
Node counting algorithm 15652.30 8991.10
Thrun’s rule 16009.70 9154.40
Vertex ant walk 23649.10 14808.80
Learning real-time A* 15502.40 9414.80
Table 5
Exploration speed comparison (1000 runs with 3 agents on different
100x100 maps)
Algorithm Step count Step count (standard
(average) deviation)
Current algorithm 15765.60 10206.70
Node counting algorithm 17829.30 10942.50
Thrun’s rule 18175.90 12040.80
Vertex ant walk 28781.20 18977.30
Learning real-time A* 18554.80 11835.60
Table 6

Exploration speed comparison (1000 runs with 6 agents on different
100x100 maps)

Algorithm Step count Step count (standard
(average) deviation)
Current algorithm 19217.90 15631.80
Node counting algorithm 21037.70 15010.00
Thrun’s rule 22478.60 17254.10
Vertex ant walk 35717.70 24838.60
Learning real-time A* 21736.80 16201.60

From table 4, 5 and 6, it can be observed that the algorithm proposed in
this paper outperforms the other algorithms included in the comparison on the big
maps data set, in both the single agent and multi-agent exploration scenarios. This
shows that the performance advantage over the other algorithms is consistent and
not limited only to particular scenarios.

122 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu

Performance Graph

1200

1000

800

600

400

200

using 1 agent using 3 agents using 6 agents

m Current Algorithm & Node Counting Alg.
EThrun's Rule & Vertex Ant Walk
OLRTA*

Fig. 6. Performance comparison graph plotted using the data presented in table 1, 2 and 3 (lower is

better)
Performance Graph
40000
35000 —
30000 —
25000 Z
20000
15000 I
10000 | I
5000 | I
0 RS
using 1 agent using 3 agents using 6 agents
M Current Algorithm
B Node Counting Alg.

B Thrun's Rule
B Vertex Ant Walk

Fig. 7. Performance comparison graph plotted using the data presented in table 4, 5 and 6 (lower is
better)

Compact node counting exploration algorithm 123

In Fig. 6 and 7 we have presented an overview of the exploration
performance of the algorithm proposed in this paper, compared with several other
exploration algorithms from the literature. From these figures it can be observed
that the algorithm presented in this paper outperformed the other algorithms in all
scenarios that we have analysed.Since the analysis has been performed on a large
number of maps and on maps of different dimensions, we conclude that our
results are statistically relevant. Although there is some overhead in the multi-
agent scenarios for parallel exploration, this parallel overhead can be observed for
all of the algorithms included in the comparison and it is not specific to our
algorithm.

These results show that the affinity for expanding the exploration frontier
towards areas occupied by obstacles imposed by the structure of the costs that we
designed for this algorithm is beneficial in terms of exploration speed.

This approach, combined with the compactness avoids leaving many
unexplored gaps in the explored area. The other algorithms that don’t have any
compactness affinity are prone to leaving “holes” in the explored area, which need
to be revisited at a later time, therefore decreasing the efficiency of that
exploration algorithms.

4. Conclusions

In this paper, we have introduced an algorithm for compact spatial
exploration, based on reflex agents and with low computational requirements
which outperformed all other four exploration algorithms from the literature that
we included in our comparison.

The compact exploration algorithm introduced by us is capable to keep the
compactness of the explored area by using only local costs, which makes it
computationally efficient.

We have shown that our exploration approach based on compactness has
multiple benefits, including an increase in exploration speed, outperforming all
other algorithms included in the comparison, in both single agent and multi-agent
exploration scenarios, with a performance gain between 8% and 46%.

In this paper, we have shown that it is possible to obtain a compact
exploration pattern while also benefiting from a significant performance gain in
terms of cumulative path length. This contribution is important for the field of
artificial intelligence and robotics, because it can be incorporated in autonomous
robots capable of intelligent spatial exploration with low computational
requirements. This is important for a wide range of applications, ranging from
intelligent extraterrestrial spatial exploration to commercial applications like
autonomous vacuum cleaners.

124 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu

Acknowledgements

The work has been funded by the Sectoral Operational Programme Human
Resources Development 2007-2013 of the Ministry of European Funds through
the Financial Agreement POSDRU/159/1.5/S/132397.

REFERENCES

[1]. A. Pirzadeh, W. Snyder, “A unified solution to coverage and search in explored and
unexplored terrains using indirect control”, in Proceedings of the International Conference
on Robotics and Automation, 1990, pp. 2113-2119.

[2]. Sven Koenig, Yaxin Liu, Terrain Coverage with Ant Robots: A Simulation Study,
AGENTS’01, Montreal, 2011.

[3]. Sven Koenig, Reid G. Simmons, Easy and Hard Testbeds for Real-Time Search Algorithms,
AAAI-96 Proceedings, 1996.

[4]. Richard E. Korf, “Real-Time Heuristic Search”, in Artificial Intelligence, vol. 42, 1990, pp.
189-211.

[5]. Sven Koenig, “Agent Centered Search”, in Artificial Intelligence, vol. 22, no. 4, 2001, pp.
109-131.

[6]. Israel A. Wagner, Michael Lindenbaum, Alfred M. Bruckstein, “On-Line Graph Searching by a
Smell-Oriented Vertex Process”, in AAAI Technical Report WS-97-10, 1997.

[7]. S. Thrun, Efficient Exploration In Reinforcement Learning, Technical Report CMU-CS-92-
102, School of Computer Science, Carnegie-Mellon University, Pittsburgh(Pennsylvania),
1992.

[8]. M. Baglietto, M. Paolucci, L. Scardovi, R. Zoppoli, Information-Based Multi-Agent
Exploration.

[9]. P. E. Hart, N. J. Nilsson, B. Raphael, “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”, in IEEE Transactions on Systems Science and Cybernetics, vol.
SSC-4, no. 2, 1968, pp. 100-107.

[10]. J. Ota, “Multi-agent robot systems as distributed autonomous systems”, in Advanced
Engineering Informatics, vol. 20, 2006, pp. 59-70.

[11]. R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H. Younes,
“Coordination for multi-robot exploration and mapping”, in Proc. of the National
Conference on Atrtificial Intelligence (AAALI), 2000, pp. 851-858.

[12]. M. Mataric and G. Sukhatme, “Task-allocation and coordination of multiple robots for
planetary exploration”, in Proc. of the Int. Conf. on Advanced Robatics, 2001, pp. 61-70.

[13]. W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun, Collaborative multi-robot
exploration, 2000.

[14]. 1. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, “Distributed covering by ant-robots
using evaporating traces”, in IEEE Transactions on Robotics and Automation, vol.15, no. 5,
1999, pp. 918-933.

