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In this paper, we prove the existence and uniqueness of best proximity points

for non-self mappings satisfying the R-proximal contraction condition of the first or

the second kind, in the setting of complete gauge spaces. The class of R-functions is a
consistent one, and includes many other important classes, such as simulation functions

or manageable functions. Moreover, a direct connection could be established between the

classes of Geraghty functions and R-functions, respectively. Based on these connections,
some classical best proximity points outcomes are recovered as corollaries.

Keywords: approximately compact set, simulation function, Geraghty’s proximal con-

tractions, R-function, R-proximal contraction of the first kind and second kind, best
proximity point.

MSC2010: 47H10 54H25.

1. Introduction

Fixed point theory is an extremely important tool in the field of nonlinear analysis,
which provides necessary and sufficient conditions for the existence of solutions to nonlinear
equations of the form Tx = x, where T is a self mapping. When T is not a self mapping, this
equation might not have a solution. That is the reason why researchers became interested
in finding approximate solutions to such equations. Best proximity point theory focuses
on strategies to find approximate solutions to the nonlinear equation x = Tx, where T is
a non-self mapping. Several authors explored best proximity point theorems for different
types of proximal contractions. In [3], Basha defined the notion of a proximal contraction
with respect to a non-self mapping and proved some best proximity point theorems. This
notion was further generalized by Basha and Shahzad [4]. In [6], there are established some
best proximity point results by the use of generalized weak contractions with discontinuous
control functions. In [11], some coincidence point results are proved, by means of (Z, g)-
contractions. In [15], various types of Geraghty proximal contractions are used in order to
study best proximity properties. In [16], Nashine et al. introduced the notions of rational
proximal contraction of the first and of the second type, and stated several existence and
uniqueness results, while in [17] Shatanawi and Pitea studied best proximity points and
best proximity coupled points in a complete metric space with (P)-property. In [13], an
algorithmic approach for proximal points was proposed. Recently, several researchers have
discussed the existence of best proximity points for mappings satisfying a proximal contrac-
tion involving some auxiliary functions. In [14], the notion of Z-contraction with respect to
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a simulation function was introduced. Also, some auxiliary functions were given by Hierro
and Shahzad [12].

The structure of gauge spaces has been extensively used, due to the fact that it allows
generalizations of some classic results, which can be obtain, therefore, as particular cases.
In [10], Frigon proved fixed point results for generalized contractions on gauge spaces. In
[1], some homotopy invariant results are presented in this setting, by means of generalized
contractive mappings. Fixed point theorems are stated in [5], with respect to mappings
which fulfill generalized weakly contractive conditions on ordered gauge spaces. In [7], fixed
point theorems are proved in this framework, with regard to α − ψλ-contractions. In [8],
this setting is used to develop results which are applied to solve a second order nonlinear
initial value problem. This context was also chosen in [9], in order to develop some fixed
point results. Later on, these results were extended by several authors [2].

The purpose of this paper is to prove the existence and uniqueness of best proximity
points for non-self mappings satisfying proximal contraction type conditions, based on an
auxiliary function over the structure of gauges spaces.

2. Preliminaries

We begin by giving some definitions to illustrate and characterize the gauge spaces.

Definition 2.1 ([8]). Let X be a nonempty set. A function d : X ×X → [0,∞) is called a
pseudo metric on X if for each x, y, z ∈ X, the following axioms hold:

(i) d(x, x) = 0;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.2 ([8]). Let X be a nonempty set endowed with the pseudo metric d. The
d-ball of radius ε > 0 centered at x ∈ X is the set

B(x, d, ε) = {y ∈ X : d(x, y) < ε}.

In the following, A is a family of indices. Among the classes of pseudo metrics, we are
interested in the next one, which possesses properties adequate to developing our theory.

Definition 2.3 ([8]). A family F = {dv|v ∈ A} of pseudo metrics on a nonempty set X is
said to be separating if for each pair (x, y) ∈ X ×X, with x 6= y, there exists dv ∈ F, with
dv(x, y) 6= 0.

Definition 2.4 ([8]). Let X be a nonempty set and F = {dv|v ∈ A} be a family of pseudo
metrics on X. The topology T(F) having as subbasis the family of balls

B(F) = {B(x, dv, ε) : x ∈ X, dv ∈ F, and ε > 0}
is called the topology induced by the family F of pseudo metrics. The pair (X,T(F)) is called
a gauge space. If we consider F as being separating, note that (X,T(F)) is Hausdorff.

Some of the tools we will use in the sequel are presented in the next definition.

Definition 2.5 ([8]). Let (X,T(F)) be a gauge space with respect to the family F = {dv|v ∈
A} of pseudo metrics on X. Let {xn} be a sequence in X and x ∈ X. Then

(i) the sequence {xn} converges to x, if for each v ∈ A and ε > 0 there exists N0 ∈ N
such that dv(xn, x) < ε for all n ≥ N0. We denote it as xn →F x.

(ii) the sequence {xn} is a Cauchy sequence, if for each v ∈ A and ε > 0 there exists
N0 ∈ N such that dv(xn, xm) < ε for all n,m ≥ N0.

(iii) (X,T(F)) is complete if each Cauchy sequence is convergent.
(iv) a subset of X is said to be closed if it contains the limit of each convergent

sequence included in it.
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Mongkolkeha et. al. [15] introduced two types of Geraghty proximal contractions and
proved best proximity point theorems in connection with them. In order to define these
notions, we need the following one.

Definition 2.6. A function Φ: [0,∞) → [0, 1) is called a Geraghty function if for each
{tn} ⊂ [0,∞), the relation Φ(tn)→ 1 necessarily implies tn → 0.

We are now in a position to recollect the notions introduced by Mongkolkeha et. al.
[15].

Definition 2.7 ([15]). Let (X, d) be a metric space and A,B be nonempty subsets of X. A
mapping T : A→ B is called a Geraghty proximal contraction of the first kind if there exists
a Geraghty function φ : [0,∞)→ [0, 1), such that d(u1, Tx1) = d(A,B) = d(u2, Tx2) implies
that

d(u1, u2) ≤ φ(d(x1, x2))d(x1, x2), for all u1, u2, x1, x2 ∈ A.

Definition 2.8 ([15]). Let (X, d) be a metric space, and A,B be nonempty subsets of X.
A mapping T : A→ B is called a Geraghty proximal contraction of the second kind if there
exists a Geraghty function φ : [0,∞) → [0, 1), such that d(u1, Tx1) = d(A,B) = d(u2, Tx2)
implies that

d(Tu1, Tu2) ≤ φ(d(Tx1, Tx2))d(Tx1, Tx2), for all u1, u2, x1, x2 ∈ A.

Khojasteh [14] introduced an implicit type function, known as simulation function.
Later on, this notion was modified by Hierro [11].

Definition 2.9. [14] A simulation function is a mapping ζ : [0,∞)× [0,∞)→ R satisfying
the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t, for all t, s > 0;
(ζ3) if {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0,

then

lim supn→∞ ζ(tn, sn) < 0.

The third condition is symmetric in both arguments of ζ. However, in practice, they
have different meaning and play different roles. Hierro et al. [11] slightly modified the above
definition in order to highlight this difference, and also to enlarge the family of simulation
functions. For this purpose they replaced condition (ζ3) of the above definition by the
following one:

(ζ3a) if {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0
and tn < sn for all n ∈ N, then lim supn→∞ ζ(tn, sn) < 0.

Remark 2.1 ([11]). Note that every simulation function in the sense of Khojasteh [14] is
also a simulation function in the sense of Hierro et al. [11], but the converse is not true.

Hierro and Shahzad [12] used the idea of simulation function in order to define the
following family of functions.

Definition 2.10 ([12]). Let D ⊆ R be a nonempty subset. A mapping % : D × D → R is
known as an R-function if it satisfies the following two conditions:

(%1) If {an} ⊂ (0,∞) ∩D is a sequence such that %(an+1, an) > 0 for all n ∈ N, then
an → 0.

(%2) If {an}, {bn} ⊂ (0,∞)∩D are two sequences converging to the same limit L ≥ 0
and verifying L < an and %(an, bn) > 0 for all n ∈ N, then L = 0.

We denote by RD the family of R-functions whose domain is D ×D. In some cases,
for given R-functions % : D ×D → R, we will also consider the following property:
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(%3) If {an}, {bn} ⊂ (0,∞)∩D are two sequences such that bn → 0 and %(an, bn) > 0
for all n ∈ N, then an → 0.

Proposition 2.1 ([12]). If %(t, s) ≤ s− t, for all t, s ∈ (0,∞) ∩D, then (%3) holds.

Lemma 2.1 ([12]). Every simulation function is an R-function which also fulfills (%3).

The following examples defines an R-function which is not a simulation function,
proving that this notion is more general.

Example 2.1 ([12]). Let % : [0,∞)× [0,∞)→ R,

%(t, s) =

{
1
2s− t, if t < s;

0, if t ≥ s.
Then % is an R-function on [0,∞) that also satisfies condition (%3). But % is not a simulation
function.

In addition, a straightforward connection between Geraghty functions and R-functions
is provided below.

Lemma 2.2 ([12]). If φ : [0,∞)→ [0, 1) is a Geraghty function, then %́φ : [0,∞)× [0,∞)→
R,

%́φ(t, s) = φ(s)s− t, for all t, s ∈ [0,∞),

is an R-function on [0,∞) satisfying condition (%3).

The following proposition points out an interesting property of R-functions, which is
going to be helpful in our development.

Proposition 2.2 ([12]). If % ∈ RD, then %(a, a) ≤ 0, for all a ∈ (0,∞) ∩D.

3. Main Results

In this section, we will introduce proximal contraction conditions by using a family
of R-functions and prove some results that ensure the existence of best proximity points of
such mappings.

Let (X,T(F)) be a gauge space with respect to the family F = {dv|v ∈ A} of psuedo
metrics, where A is a family of indices. Then range of F is defined as

ran(F) = {dv(x, y) : x, y ∈ X and v ∈ A} ⊆ [0,∞).

A sequence {xn} is called asymptotically regular on (X,T(F)) if dv(xn, xn+1)→ 0 as n→∞,
for each v ∈ A.

Let A, B be nonempty subsets of a gauge space (X,T(F)) induced by the family
F = {dv|v ∈ A} of psuedo metrics. Then, let us define

dv(A,B) = inf{dv(a, b) : a ∈ A, b ∈ B}
A0 = {a ∈ A : dv(a, b) = dv(A,B) for each v ∈ A, for some b ∈ B}
B0 = {b ∈ B : dv(a, b) = dv(A,B) for each v ∈ A, for some a ∈ A} .

The set B is said to be approximately compact with respect to A, if for some x ∈ A, every
sequence {yn} of B, satisfying the condition dv(x, yn)→ dv(x,B) as n→∞, for all v ∈ A,
has a convergent subsequence.

Subsequently, we consider that A and B are nonempty subsets of a gauge space
(X,T(F)) induced by the family F = {dv|v ∈ A} of psuedo metrics. A point x ∈ A is said
to be a best proximity point of T : A → B if dv(x, Tx) = dv(A,B) for each v ∈ A. Also
note that for a mapping T : A→ B such that A0 is nonempty and T (A0) ⊆ B0, there exists
a sequence {xn} ⊆ A0 based on x0 ∈ A0 with dv(xn+1, Txn) = dv(A,B), for each v ∈ A.
Such a sequence is called a proximal Picard sequence.
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In the following definition, we introduce the notion of R-proximal contractions of the
first kind, on the structure of gauge spaces.

Definition 3.1. A mapping T : A → B is said to be an R-proximal contraction of the
first kind if there exists an R-function % ∈ RD such that ran(F) ⊆ D and dv(u1, Tx1) =
dv(A,B) = dv(u2, Tx2) implies that

%(dv(u1, u2), dv(x1, x2)) > 0, for each v ∈ A, (1)

where u1, u2, x1, x2 ∈ A, provided that at least one of the elements dv(u1, u2), dv(x1, x2) is
not null.

Inspired by this definition, by replacing the R-functions with simulation functions, we
could similarly define the concept of Z-proximal contraction.

Definition 3.2. A mapping T : A → B is said to be an Z-proximal contraction of the
first kind if there exists a simulation function function ζ : [0,∞) × [0,∞) → R such that
dv(u1, Tx1) = dv(A,B) = dv(u2, Tx2) implies that

ζ(dv(u1, u2), dv(x1, x2)) > 0 for each v ∈ A,

where u1, u2, x1, x2 ∈ A, provided that at least one of the elements dv(u1, u2), dv(x1, x2) is
not null.

Remark 3.1. Based on Lemma 2.1, one could notice that each Z-proximal contraction of
the first kind is also an R-proximal contraction of the first kind.

A similar statement could be phrased for Geraghty proximal contractions, although
their definition is slightly different.

Lemma 3.1. Each Geraghty proximal contraction of the first kind with respect to all the
pseudo metrics of the family F is an R-proximal contraction of the first kind.

Proof. Let T : A→ B be a Geraghty proximal contraction of the first kind. Then there exists
a Geraghty function φ : [0,∞) → [0, 1), such that dv(u1, Tx1) = dv(A,B) = dv(u2, Tx2)
implies that

dv(u1, u2) ≤ φ(dv(x1, x2))dv(x1, x2), for all u1, u2, x1, x2 ∈ A and v ∈ A.

We shall prove next that the above inequality becomes strict when at least one of the
elements dv(u1, u2), dv(x1, x2) is not null. Indeed, assuming that dv(u1, u2) 6= 0 it leads to
the conclusion that dv(x1, x2) is not zero also. Hence, we should have in mind the condition
dv(x1, x2) 6= 0.

Let ϕ : [0,∞) → [0, 1) be the function defined by ϕ(t) =
1 + φ(t)

2
. This is also a

Geraghty function and φ(t) < ϕ(t), ∀t ∈ [0,∞). Therefore, if dv(u1, Tx1) = dv(A,B) =
dv(u2, Tx2) and dv(x1, x2) 6= 0, then

dv(u1, u2) ≤ φ(dv(x1, x2))dv(x1, x2) < ϕ(dv(x1, x2))dv(x1, x2).

On the other side, Lemma 2.2 guarantees that %́ϕ : [0,∞)× [0,∞)→ R defined by

%́ϕ(t, s) = ϕ(s)s− t, for all t, s ∈ [0,∞),

is an R-function on [0,∞) satisfying condition (%3). Hence,

%́ϕ(dv(u1, u2), dv(x1, x2)) > 0, for each v ∈ A,

where u1, u2, x1, x2 ∈ A, dv(u1, Tx1) = dv(A,B) = dv(u2, Tx2), provided that dv(x1, x2) is
not null. �



156 Muhammad Usman Ali, Misbah Farheen, Hassan Houmani

Theorem 3.1. Let (X,T(F)) be a complete gauge space induced by a separating family of
pseudo metrics F = {dv|v ∈ A}. Let A and B be nonempty closed subsets of X, such that
B is approximately compact with respect to A, and A0 is nonempty. Let T : A → B be an
R-proximal contraction of the first kind with respect to % ∈ RD, such that T (A0) ⊆ B0.
Further, assume that at least one of the following conditions hold:

(a) T is continuous;
(b) The function % satisfies condition (%3);
(c) %(t, s) ≤ s− t for all t, s ∈ (0,∞) ∩D.

Then there exists a unique element x ∈ A such that dv(x, Tx) = dv(A,B), for each v ∈ A.

Proof. Let x0 ∈ A0 be an arbitrary point and {xn} be a proximal Picard sequence of T
based on x0; that is, dv(xn+1, Txn) = dv(A,B), for all n ∈ N and v ∈ A. For a given index
v ∈ A, consider the sequence avn = dv(xn, xn+1), for all n ∈ N. Let us assume first that
avn0

= 0 for some positive integer n0. Then

dv(A,B) ≤ dv(xn0
, Txn0

)

≤ dv(xn0
, xn0+1) + dv(xn0+1, Txn0

)

= avn0
+ dv(A,B)

= dv(A,B).

Hence xn0 is a best proximity point for T .
Assume now that {avn} ⊆ (0,∞), for all n ∈ N. Since T is an R-proximal contraction

of the first kind with respect to % ∈ RD, we get

%(avn+1, a
v
n) = %(dv(xn+1, xn+2), dv(xn, xn+1)) > 0

Applying condition (%1), we obtain, as n→∞,

dv(xn, xn+1) = avn → 0.

This shows that {xn} is an asymptotically regular sequence.
Next, we prove that {xn} is a Cauchy sequence. Suppose to the contrary, that {xn}

is not a Cauchy sequence. Then there exist L > 0, some v ∈ A, and two subsequences
{xm(k)} and {xn(k)} of {xn} such that k ≤ n(k) ≤ m(k) and dv(xn(k)−1, xm(k)−1) ≤ L <
dv(xn(k), xm(k)), for all k ∈ N. Using the fact that {xn} is asymptotically regular, as well as
the triangle inequality, one finds limk→∞ dv(xn(k), xm(k)) = limk→∞ dv(xn(k)−1, xm(k)−1) =
L. Then we have ak = dv(xn(k), xm(k)) → L, bk = dv(xn(k)−1, xm(k)−1) → L, L <
dv(xn(k), xm(k)) = ak, and %(ak, bk) = %(dv(xn(k), xm(k)), dv(xn(k)−1, xm(k)−1)) > 0 for all
k ∈ N. So, condition (%2) guarantees that L = 0, which is a contradiction. Therefore, {xn}
is a Cauchy sequence in A. Since A is a closed subset of the complete space X, there exists
x∗ ∈ A such that xn →F x∗.

Now, we show that x∗ is a best proximity point of T . Three cases are to be studied,
as follows.

Case (a): T is continuous. Then, dv(x
∗, Tx∗) = limn→∞ dv(xn+1, Txn) = dv(A,B)

for each v ∈ A. Hence, x∗ is a best proximity point of T .
Case (b): % satisfies condition (%3). In this case, we use the assumption that B is

approximately compact with respect to A. By using the triangular inequality, we get

dv(x
∗, B) ≤ dv(x

∗, Txn)

≤ dv(x
∗, xn+1) + dv(xn+1, Txn)

= dv(x
∗, xn+1) + dv(A,B)

≤ dv(x
∗, xn+1) + dv(x

∗, B), for all v ∈ A.

Therefore, dv(x
∗, Txn)→ dv(x

∗, B), for each v ∈ A. Now by using the fact that B is approxi-
mately compact with respect to A, the sequence {Txn} has a subsequence {Txnk

} converging
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to an element y in B. It follows that, for each v ∈ A, dv(x
∗, y) = limk→∞ dv(xnk+1, Txnk

) =
dv(A,B), and hence x∗ is an element of A0. As T (A0) ⊆ B0, there exists u ∈ A such that
dv(u, Tx

∗) = dv(A,B) for each v ∈ A. Furthermore, for v ∈ A, consider avn = dv(u, xn+1)
and bvn = dv(x

∗, xn). Then we conclude that bvn → 0 and by the definition of an R-proximal
contraction of the first kind, we get %(avn, b

v
n) = %(dv(u, xn+1), dv(x

∗, xn)) > 0 for all n ∈ N.
Hence, by condition (%3), we get avn → 0. Thus, we conclude that x∗ = u, because the space
is separating. Hence, we have dv(x

∗, Tx∗) = dv(u, Tx
∗) = dv(A,B), for each v ∈ A.

Case (c): %(t, s) ≤ s − t for all t, s ∈ (0,∞) ∩ D. Then, by Proposition 2.1, we are
again in Case (b).

Hence, in each case, x∗ is a best proximity of T . Finally, we show that x∗ is the
unique best proximity point of T . Suppose that u∗ is another best proximity point of T ,
such that x∗ 6= u∗. By (1), we have %(dv(x

∗, u∗), dv(x
∗, u∗)) > 0 for an index v ∈ A (since F

is separating). But this inequality contradicts Proposition 2.2. So, the best proximity point
of T is unique. �

Example 3.1. On X = Rn consider the pseudo metrics defined by

dm((x1, x2, · · · , xn), (y1, y2, · · · , yn)) =

m∑
i=1

|xi − yi|

where m ∈ {1, 2, · · · , n}. Take A = {(0, x1, · · · , xn−1) : x1, · · · , xn−1 ∈ R} and B =
{(1, x1, · · · , xn−1) : x1, · · · , xn−1 ∈ R}. Define T : A → B by T ((0, x1, · · · , xn−1)) =(
1, x1

2 ,
x2

22 , · · · ,
xn−1

2n−1

)
and % : [0,∞) × [0,∞) → R by %(t, s) = s − t. For the n-tuples

x = (0, x1, x2, · · · , xn−1) and y = (0, y1, y2, · · · , yn−1) in A, the equalities dm(u, Tx) =
dm(v, Ty) = dm(A,B) lead to

dm

(
u,
(

1,
x1
2
,
x2
22
, · · · , xn−1

2n−1

))
= dm

(
v,
(

1,
y1
2
,
y2
22
, · · · , yn−1

2n−1

))
= 1,

for all the indices m ∈ {1, 2, · · · , n}. These produce the unique solutions u =
(
0, x1

2 ,
x2

22 , · · · ,
xn−1

2n−1

)
and v =

(
0, y12 ,

y2
22 , · · · ,

yn−1

2n−1

)
∈ A. On the other side,

%(dm(u, v), dm(x, y)) = %
(
dm

((
0,
x1
2
,
x2
22
, · · · , xn−1

2n−1

)
,
(

0,
y1
2
,
y2
22
, · · · , yn−1

2n−1

))
,

dm((0, x1, x2, · · · , xn−1), (0, y1, y2, · · · , yn−1))
)
> 0

for each m ∈ {1, 2, · · · , n}, whenever at least one of the above dm(·, ·) is nonzero. The rest
of the conditions in the Theorem 3.1 are also fulfilled. Thus, we have an unique x ∈ A such
that dm(x, Tx) = dm(A,B), for each m ∈ {1, 2, · · · , n}.

We introduce now our first consequence of this theorem, by means of the notion of
Z-proximal contractions. Having in mind this notion exposed in Definition 3.2, the following
result becomes an immediate consequence of Theorem 3.1 and Remark 3.1.

Corollary 3.1. Let (X,T(F)) be a complete gauge space induced by a separating family of
pseudo metrics F = {dv|v ∈ A}. Let A and B be nonempty closed subsets of X such that
B is approximately compact with respect to A, and A0 is nonempty. Let T : A → B be a
Z-proximal contraction of the first kind such that T (A0) ⊆ B0. Then T has a unique best
proximity point.

Similarly, Theorem 3.1 and Lemma 3.1 lead to a best proximity point outcome for
Geraghty proximal contractions as follows.

Corollary 3.2. Let (X,T(F)) be a complete gauge space induced by a separating family of
pseudo metrics F = {dv|v ∈ A}. Let A and B be nonempty closed subsets of X such that
B is approximately compact with respect to A, and A0 is nonempty. Let T : A → B be a
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Geraghty proximal contraction of the first kind satisfying T (A0) ⊆ B0. Then T has a unique
best proximity point.

In the following definition, we introduce the notion of R-proximal contraction of the
second kind.

Definition 3.3. A mapping T : A → B is said to be an R-proximal contraction of the
second kind if there exists an R-function % ∈ RD such that ran(F) ⊆ D and dv(u1, Tx1) =
dv(A,B) = dv(u2, Tx2) implies that

%(dv(Tu1, Tu2), dv(Tx1, Tx2)) > 0, for each v ∈ A, (2)

where u1, u2, x1, x2 ∈ A, provided that at least one of the elements dv(Tu1, Tu2), dv(Tx1, Tx2)
is not null.

Same as before, we could adequately define the concept of Z-proximal contraction of
the second kind as follows.

Definition 3.4. A mapping T : A → B is said to be an Z-proximal contraction of the
second kind if there exists a simulation function function ζ : [0,∞) × [0,∞) → R such that
dv(u1, Tx1) = dv(A,B) = dv(u2, Tx2) implies that

ζ(dv(Tu1, Tu2), dv(Tx1, Tx2)) > 0 for each v ∈ A,

where u1, u2, x1, x2 ∈ A, provided that at least one of the elements dv(Tu1, Tu2), dv(Tx1, Tx2)
is not null.

Remark 3.2. Obviously, each Z-proximal contraction of the second kind is also an R-
proximal contraction of the second kind. Moreover, similar arguments as in Lemma 3.1
ensure us that each Geraghty proximal contraction of the second kind satisfies also the R-
proximal contractive condition.

The following result ensures the existence and uniqueness of a best proximity point
for R-proximal contractive mappings of the second kind.

Theorem 3.2. Let (X,T(F)) be a complete gauge space induced by a separating family of
pseudo metrics F = {dv|v ∈ A}. Let A and B be nonempty closed subsets of X such that
A is approximately compact with respect to B and A0 is nonempty. Let T : A → B be an
R-proximal contraction of the second kind with respect to % ∈ RD. Further, assume that
T is continuous and T (A0) ⊆ B0. Then there exists a unique element x ∈ A such that
dv(x, Tx) = dv(A,B), for each v ∈ A.

Proof. Let x0 ∈ A0 be an arbitrary point and {xn} be a proximal Picard sequence of T based
on x0, that is, dv(xn+1, Txn) = dv(A,B), for all n ∈ N and v ∈ A. For v ∈ A, consider
the sequence defined by avn = dv(Txn, Txn+1), for all n ∈ N. We may assume from the
beginning that {avn} ⊆ (0,∞), otherwise the conclusion is trivial. Since T is an R-proximal
contraction of the second kind with respect to % ∈ RD, we have

%(avn+1, a
v
n) = %(dv(Txn+1, Txn+2), dv(Txn, Txn+1)) > 0.

By applying condition (%1), we get

dv(Txn, Txn+1) = avn → 0, asn→∞ for each v ∈ A.

This shows that {Txn} is an asymptotically regular sequence.
Next, we show that {Txn} is a Cauchy sequence. Suppose the contrary, that {Txn}

is not a Cauchy sequence. Then there exist L > 0, some v ∈ A, and two subsequences
{Txm(k)}, and {Txn(k)} of {Txn} such that k ≤ n(k) ≤ m(k) and dv(Txn(k)−1, Txm(k)−1) ≤
L < dv(Txn(k), Txm(k)), for all k ∈ N. The asymptotical regularity leads to limk→∞ dv(Txn(k),
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Txm(k)) = limk→∞ dv(Txn(k)−1, Txm(k)−1) = L. We have ak = dv(Txn(k), Txm(k)) → L
and bk = dv(Txn(k)−1, Txm(k)−1)→ L. It can be seen that

L < dv(Txn(k), Txm(k))=ak

and
%(ak, bk)=%(dv(Txn(k), Txm(k)), dv(Txn(k)−1, Txm(k)−1)) > 0

for all k ∈ N. By using condition %2, we get L = 0, which is a contradiction. Therefore,
{Txn} is a Cauchy sequence in B. Since B is a closed subset of the complete space X, there
exists y∗ ∈ B such that Txn →F y∗. By using the triangular inequality, we get

dv(y
∗, A) ≤ dv(y

∗, xn+1)

≤ dv(y
∗, Txn) + dv(Txn, xn+1)

= dv(y
∗, Txn) + dv(A,B)

≤ dv(y
∗, Txn) + dv(y

∗, A), for all v ∈ A.

Therefore, dv(y
∗, xn) → dv(y

∗, A), for each v ∈ A. Now, by using the fact that A is
approximately compact with respect to B, the sequence {xn} has a subsequence {xn(k)}
converging to an element x∗ in A. By the hypotheses, T is continuous. Thus, we have
dv(x

∗, Tx∗) = limk→∞ dv(xn(k), Txn(k)−1) = dv(A,B), for each v ∈ A.
The uniqueness of the best proximity point of T can be proved as in Theorem 3.1. �

Based on Remark 3.2 and as direct consequence of the above result we state the
following corollaries.

Corollary 3.3. Let (X,T(F)) be a complete gauge space induced by a separating family of
pseudo metrics F = {dv|v ∈ A}. Let A and B be nonempty closed subsets of X such that
A is approximately compact with respect to B and A0 is nonempty. Let T : A → B be a
continuous Z-proximal contraction of second kind such that T (A0) ⊆ B0. Then T has a
unique best proximity point.

Corollary 3.4. Let (X,T(F)) be a complete gauge space induced by a separating family of
pseudo metrics F = {dv|v ∈ A}. Let A and B be nonempty closed subsets of X such that
A is approximately compact with respect to B and A0 is nonempty. Let T : A → B be a
continuous Geraghty proximal contraction of the second kind satisfying T (A0) ⊆ B0. Then
T has a unique best proximity point.

4. Conclusions

In this paper, we have defined the notions of R-proximal contraction of the first and
second kind in the setting of gauge spaces. Some existence and uniqueness results of best
proximity points have been stated and proved. Also, some results known in literature have
been obtained as consequences of these results.
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