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1. Introduction and main theorems

In the last three decades, the interest for variable exponent spaces have been increas-
ing year by year due to themselves and their applications in electrorheological fluid and
differential equations[5, 12]. In [11, 15], the authors obtained the atomic and molecular
decompositions of Hardy spaces with variable exponent and studied the boundedness of a
class of singular integral operators. The results show that they are not only the generalized
forms of the classical function spaces with invariable exponent, but also there are some new
breakthroughs in the research techniques. These new real variable methods help people
further understand those spaces. Rencently, Xu and Yang introduce the Morrey-Herz-type
Hardy spaces with variable exponents and establish the boundedness of singular integral
operators on these spaces in [17].

In 1985, Yabuta introduced certain θ-type Calderón-Zygmund operators to facilitate
certain classes of pseudodifferential operators [18]. Following the terminology of Yabuta,
we recall the so-called θ-type Caldern-Zygmund operators. Let θ be a non-negative and
non-decreasing function on (0,∞) satisfying∫ 1

0

θ(t)

t
dt <∞. (1.1)

A measurable function K(·, ·) on Rn ×Rn is said to be a θ-type Caldern-Zygmund kernel if
it satisfies

|K(x, y)| ≤ C|x− y|−n and (1.2)

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ C

|x− y|n
θ(
|x− z|
|x− y|

), as |x− y| ≥ 2|x− z|. (1.3)
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Definition 1.1. [18] Let Tθ be a linear operator from S into its dual S′. One can say that
Tθ is a θ-type Caldern-Zygmund operator (also called Dini-type singular integral) if

(i) Tθ can be extended to be a bounded linear operator on L2(Rn) ;
(ii) there is a θ-type Calderón-Zygmund kernel K(x, y) such that

Tθf(x) :=

∫
Rn
K(x, y)f(y)dy, as f ∈ C∞c (Rn) and x /∈ suppf. (1.4)

As θ(t) = tδ(δ > 0), Tθ coincide with the classical Caldern-Zygmund operator with standard
kernel.

Many authors concentrate on the properties of Tθ on various function spaces. In
[9], J. Lan established the boundedness of Tθ on the weighted Lebesgue and Hardy spaces.
Ri-Zhang obtained the bounedness of Tθ on Hardy spaces with non-doubling measures and
non-homogeneous metric measure spaces in [13, 14]. Wang proved the boundedness of Tθ and
[b, Tθ] on the generalized weighted Morrey spaces in [16]. After that, the authors established
the boundedness of Tθ on variable exponent Herz spaces and weighted variable exponent
Morrey spaces in [19, 20]. Inspired by the results mentioned previously, a natural and
interesting problem is to consider whether Tθ and its commutator [b, Tθ] are bounded on
Morrey and Morrey-Herz-type Hardy spaces with variable exponents or not. The purpose of
this paper is to give an surely answer. We now formulate our other main results as follows.

Theorem 1.1. Suppose that θ satisfies (1,1) and K(·, ·) satisfies (1.2)-(1.3). Let p(·) ∈
B(Rn). Then there exists a constant C > 0 such that

‖Tθ(f)‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn).

Theorem 1.2. Let b ∈ BMO(Rn). Suppose that p(·) ∈ B(Rn) and θ satisfies
∫ 1

0
θ(t)
t |log t|dt <

∞, then there exists a constant C > 0 such that

‖[b, Tθ](f)‖Lp(·)(Rn) ≤ C‖b‖∗‖f‖Lp(·)(Rn).

Theorem 1.3. Suppose that θ satisfies (1,1). Let u ∈Wp(·) and p(·) ∈ B(Rn). Then there
exists a constant C > 0 such that

‖Tθ(f)‖Mp(·),µ(Rn) ≤ C‖f‖Mp(·),µ(Rn).

Theorem 1.4. Suppose that θ satisfies
∫ 1

0
θ(t)
t |logt|dt <∞ and u satisfies

∞∑
j=0

(j + 1)
‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

u(x, 2j+1r)

u(x, r)
≤ C. (1.5)

Let b ∈ BMO(Rn) and p(·) ∈ B(Rn). Then there exists a constant C > 0 such that

‖[b, Tθ](f)‖Mp(·),µ(Rn) ≤ C‖f‖Mp(·),µ(Rn).

Theorem 1.5. Let 0 < q ≤ ∞, p(·) ∈ B(Rn), and 0 ≤ λ < ∞. Suppose that α(·) is
log-Hölder continuous both at the origin and infinity, 2λ ≤ α(·), nδ2 ≤ α(0), α∞ < nδ1 + δ
with some δ > max{α(0)− nδ1, α∞ − nδ1}, where δ1 as in Lemma 2.1. If θ satisfies (1,1),
then there exists a constant C > 0 independent of f such that

‖Tθf‖MK̇
α(·),λ
p(·),q

≤ C‖f‖
HMK̇

α(·),λ
p(·),q

.

Throughout this paper, χE denotes the characteristic function of E and fE = 1/|E|
∫
E
f .

p′(·) means the conjugate exponent of p(·), namely, 1/p(x) + 1/p′(x) = 1 holds. The symbol
C stands for a positive constant, which may vary from line to line.
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2. Definitions and preliminaries

In this section, some preliminary definitions and lemmas will be given.

Definition 2.1. [10] Let α(·) be a real-valued function on Rn. If there exist C > 0 such
that for any x, y ∈ Rn, |x− y| < 1/2,

|α(x)− α(y)| ≤ C

− log(|x− y|)
,

then α(·) is said local log-Hölder continuous on Rn. If

|α(x)− α(0)| ≤ C

log(e+ 1/|x|)
,

then α(·) is said log-Hölder continuous at origin. If there exist α∞ ∈ R and a constant
C > 0 such that all x ∈ Rn,

|α(x)− α∞| ≤
C

log(e+ |x|)
,

then α(·) is said log-Hölder continuous at infinity.

Let p : Rn −→ [1,∞) be a measurable function. We denote p− = ess inf
x∈Rn

p(x), p+ =

ess sup
x∈Rn

p(x). Then P(Rn) consists all p(·) satisfying p− > 1 and p+ <∞. Let B(Rn) be the

set of all functions p(·) ∈ P(Rn) satisfying the condition that the Hardy-littlewood maximal
operator M is bounded on Lp(·)(Rn), where Lp(·)(Rn) is defined by[8]

Lp(·)(Rn) = {f is measurable :

∫
Rn

(
|f(x)|
η

)p(x)dx <∞ for some constant η > 0}

with the Luxemburg-Nakano norm

‖f‖Lp(·)(Rn) = inf{η > 0 :

∫
Rn

(
|f(x)|
η

)p(x)dx ≤ 1}.

Definition 2.2. [4] Let p(x) ∈ P(Rn) and u(x, r) : Rn × (0,∞)→ (0,∞). If there exists a
constant C > 0 such that

∞∑
j=0

‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

u(x, 2j+1r) ≤ Cu(x, r), (2.1)

then one says u is a Morrey weighted function. We denote the class of Morrey weight
functions by Wp(·).

Definition 2.3. [4] Let u(x, r) ∈ Wp(·). The Morrey spaces with variable exponent are
defined by

Mp(·),µ(Rn) := {f is measurable : ‖f‖Mp(·),µ(Rn) <∞}, (2.2)

where

‖f‖Mp(·),µ(Rn) = sup
x∈Rn,R>0

1

u(x,R)
‖fχB(x,R)‖Lp(·)(Rn). (2.3)

Remark 2.1. (1) If u(x, r) ≡ 1, then Mp(·),µ(Rn) is the Lebesgue spaces with variable

exponent Lp(·)(Rn). (2) Notice that if p(x) ≡ p, 1 < p < ∞, is a constant function, then
formula (2.1) can be written in the following form [4]∫ ∞

r

u(x, t)

tn/p+1
dt ≤ Cu(x, r)

rn/p
, r > 0, x ∈ Rn. (2.4)

(3) Let p(·) ∈ B(Rn) and u(x, r) = |B(x, r)|1/p(x)−1/q(x) with p(x) ≤ q(x). Denote kp(·) =
sup{q > 1 : p(·)/q ∈ B(Rn)} and ep(·) to be the conjugate exponent of kp′(·). As 1 < s <
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kp′(x) , 1/p(x) − 1/q(x) < 1 − 1/s, it is easy to see u(x, r) satisfying condition (2.1). That
is because of the following fact [4]

‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

≤ C2jn(1/s−1), r > 0, x ∈ Rn, j ∈ N. (2.5)

Let k ∈ Z, Bk = {x ∈ Rn : |x| ≤ 2k}, Ck = Bk\Bk−1, and χk = χCk .

Definition 2.4. [17] Let 0 < q ≤ ∞, p(·) ∈ P(Rn), 0 ≤ λ <∞ and α(·) be a bounded real-

valued measurable function on Rn. The homogeneous Morrey-Herz spaces spaces MK̇
α(·),q
p(·),λ

is defined by MK̇
α(·),q
p(·),λ (Rn) = {f ∈ Lp(·)loc (Rn\{0}) : ‖f‖

MK̇
α(·),q
p(·),λ (Rn)

<∞}, where

‖f‖
MK̇

α(·),q
p(·),λ (Rn)

= sup
L∈Z

2−Lλ{
L∑

k=−∞

‖2α(·)kfχk‖qLp(·)}
1/q.

Next we recall the definition of Morrey-Herz-type Hardy spaces with variable expo-
nents which was firstly introduced by Xu and Yang in [17]. Let GNf be the grand maximal
function of f defined by

GNf(x) = sup
φ∈AN

|φ∗∇(f)(x)|, x ∈ Rn,

where AN = {φ ∈ S(Rn) : sup
|ν|,|β|≤N,∀x∈Rn

|xνDβφ(x)| ≤ 1} and N > n + 1 and φ∗∇ is the

nontangential maximal operator defined by φ∗∇(f)(x) = sup
|y−x|<t

|φt ∗ f(y)|, where φt(x) =

t−nφ(xt ).

Definition 2.5. [17] Let α(·) ∈ L∞(Rn), 0 < q ≤ ∞, p(·) ∈ P(Rn), 0 ≤ λ < ∞, and
N > n + 1. The homogeneous Morrey-Herz-type Hardy space with variable exponents

HMK̇
α(·),q
p(·),λ is defined by

HMK̇
α(·),q
p(·),λ = {f ∈ S′(Rn) : ‖f‖

HMK̇
α(·),q
p(·),λ

= ‖GNf‖MK̇
α(·),q
p(·),λ

<∞}.

Definition 2.6. [17] Let p(·) ∈ P(Rn) and α(·) be log-Hölder continuous both at the origin
and infinity. Suppose that αr = α(0), as r < 1, and αr = α∞, as r ≥ 1, nδ1 ≤ αr <∞ and
nonnegative integer s ≥ [αr − nδ1], where δ1 is as in Lemma 2.1.

(1) A function a on Rn is called a central (α(·), p(·))-atom, if it satisfies (a) supp a ⊂
B(0, r); (b) ‖a‖Lp(·) ≤ |B(0, r)|−αr/n; (c)

∫
Rn a(x)xβdx = 0, |β| ≤ s.

(2) A function a on Rn is called a central (α(·), p(·))-atom of restricted type, if it
satisfies (a) supp a ⊂ B(0, r), r ≥ 1; (b) ‖a‖Lp(·) ≤ |B(0, r)|−αr/n; (c)

∫
Rn a(x)xβdx =

0, |β| ≤ s
Lemma 2.1. [6] If p(·) ∈ B(Rn), then there exist constants δ1, δ2 > 0, such that for all
balls B ⊂ Rn and all measurable subsets S ⊂ B,

‖χB‖Lp(·)(Rn)

‖χS‖Lp(·)(Rn)

.
|B|
|S|

,
‖χS‖Lp′(·)(Rn)

‖χB‖Lp′(·)(Rn)

.

(
|S|
|B|

)δ1
,
‖χS‖Lp(·)(Rn)

‖χB‖Lp(·)(Rn)

.

(
|S|
|B|

)δ2
.

Lemma 2.2. [17] Let 0 < q < ∞, p(·) ∈ B(Rn), 0 ≤ λ < ∞, and α(·) ∈ L∞ be 2λ ≤ α(·),
nδ1 ≤ α(0), α∞ < ∞ with δ1 as in Lemma 2.1. Then f ∈ HMK̇

α(·),q
p(·),λ if and only if

f =
∑∞
k=−∞ λkak, where each ak is a central (α(·), p(·))-atom with support contained in Bk

and sup
L∈Z

2−Lλ
∑L
k=−∞ |λk|q <∞. Moreover,

‖f‖
HMK̇

α(·),q
p(·),λ

≈ inf sup
L∈Z

2−Lλ(

L∑
k=−∞

|λk|q)1/q.
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Lemma 2.3. [8] Let p(·), p1(·), p2(·) ∈ P(Rn). Then

(1) For any f ∈ Lp(·) and g ∈ Lp′(·), then fg is integrable on Rn and∫
Rn
|f(x)g(x)|dx ≤ Cp‖f‖Lp(·)‖g‖Lp(·) , Cp = 1 + 1/p− − 1/p+,

where p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

(2) For any f ∈ Lp1(·) and g ∈ Lp′2(·), as 1/p(x) = 1/p1(x) + 1/p2(x), then

‖f(x)g(x)‖Lp′(·)(Rn) ≤ Cp1,p2‖f‖Lp1(·)‖g‖Lp2(·) , Cp1,p2 = (1 + 1/p− − 1/p+)1/p− .

Lemma 2.4. [1] If p(·) ∈ B(Rn), then there exists constant C > 0, such that, for all balls
B ∈ Rn,

1/|B|‖χB‖Lp(·)‖χB‖Lp′(·) ≤ C.

Lemma 2.5. [7] Let b ∈ BMO(Rn) and m be a positive integer. Then there exists constant
C > 0, such that, for any k, j ∈ Z with k > j,

(1) C−1‖b‖m∗ ≤ supB(1/‖χB‖Lp(·)(Rn))‖(b− bB)mχB‖Lp(·)(Rn) ≤ C‖b‖m∗ ;

(2) ‖(b− bBj )mχB‖Lp(·)(Rn) ≤ C(k − j)m‖b‖m∗ ‖χBk‖Lp(·)(Rn).

Lemma 2.6. [17] Let p(·) ∈ P(Rn), q ∈ (0,∞], and λ ∈ (0,∞]. If α(·) ∈ L∞ is log-Hölder
continuous both at the origin and infinity, then

‖f‖
MK̇

α(·),λ
p(·),q

≈ max{ sup
L≤0,L∈Z

2−Lλ(
∑L
k=−∞ 2kqα(0)‖fχk‖qLp(·))

1/q,

sup
L>0,L∈Z

[2−Lλ(
∑−1
k=−∞ 2kqα(0)‖fχk‖qLp(·))

1/q + 2−Lλ(
∑L
k=0 2kqα∞‖fχk‖qLp(·))

1/q]}.

3. Proofs of main theorems

From the results of weighted norm inequalities and extension of Rubio de Francia
extrapolation to the scale of variable Lebesgue spaces [2, 3], Theorems 1.1-1.2 are immediate
consequences of known results. Thus we omit the details.

Proof of Theorem 1.3. Let f ∈ Mp(·),µ. In order to prove Theorem 1.3, it is enough to
show that the following inequality holds:

1

u(z, r)
‖Tθ(f)χB(z,r)‖Lp(·)(Rn) ≤ C‖f‖Mp(·),µ .

For any z ∈ Rn and r > 0, denote f(x) = f1(x) + f2(x), where f1 = fχB(z,2r), f2 =∑∞
j=1 fj(x), fj(x) = fχB(z,2j+1r)\B(z,2jr), j ∈ N\{0}. Then

1
u(z,r)‖Tθ(f)χB(z,r)‖Lp(·)(Rn) ≤ 1

u(z,r)‖Tθ(f1)χB(z,r)‖Lp(·)(Rn)

+ 1
u(z,r)‖Tθ(f2)χB(z,r)‖Lp(·)(Rn) =: D1 +D2.

Noticing that Tθ is bounded on Lp(·)(Rn), it is easy to see by Lemma 2.1

D1 ≤ C
‖χB(z,2r)‖Lp(·)(Rn )

‖χB(z,r)‖Lp(·)(Rn )

1

u(z, 2r)
‖χB(z,2r)f‖Lp(·)(Rn)

≤ C |B(z, 2r)|
|B(z, r)|

1

u(z, 2r)
‖χB(z,2r)f‖Lp(·)(Rn) ≤ C‖f‖Mp(·),µ

We now turn to estimate D2. Observing that if x ∈ B(z, r), y ∈ B(z, 2j+1r)\B(z, 2jr), then
we have

|x− y| ≥ |y − z| − |x− z| ≥ C2−22(j+1)r. (3.1)
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Thus, Lemma 2.3 yields

|Tθf2(x)| ≤ C
∞∑
j=1

(2j+1r)−n
∫
B(z,2j−1r)\B(z,2jr)

|f(y)|dy

≤ C
∞∑
j=1

(2j+1r)−n‖fχB(z,2j+1r)‖Lp(·)(Rn)‖χB(z,2j+1r)‖Lp′(·)(Rn).

Hence, ‖Tθf2(x)χB(z,r)‖Lp(·)(Rn)

≤ C
∞∑
j=1

(2j+1r)−n‖fχB(z,2j+1r)‖Lp(·)‖χB(z,2j+1r)‖Lp′(·)‖χB(z,r)‖Lp(·) .

Applying Lemma 2.4 with B = B(z, 2j+1r), we get

‖χB(z,2j+1r)‖Lp′(·)(Rn) ≤ C2(j+1)nrn/‖χB(z,2j+1r)‖Lp(·)(Rn). (3.2)

Therefore, one has

‖Tθf2(x)χB(z,r)‖Lp(·) ≤ C
∞∑
j=1

‖χB(z,r)‖Lp(·)
‖χB(z,2j+1r)‖Lp(·)

· u(z, 2(j+1)r)

u(z, 2(j+1)r)
‖fχB(z,2j+1r)‖Lp(·)

≤ C
∞∑
j=1

‖χB(z,r)‖Lp(·)u(z, 2(j+1)r)

‖χB(z,2j+1r)‖Lp(·)
· sup
z∈Rn,r>0

1

u(z, r)
‖χB(z,r)f‖Lp(·) .

Thus we have D2 ≤ C‖f‖Mp(·),µ . The proof of the Theorem 1.3 is finished. �

Proof of Theorem 1.4. Let b ∈ BMO, f ∈Mp(·),µ. We have

1

u(z, r)
‖[b, Tθ]fχB(z,r)‖Lp(·)(Rn) ≤

1

u(z, r)
‖[b, Tθ]f1χB(z,r)‖Lp(·)(Rn)

+
1

u(z, r)
‖[b, Tθ]f2χB(z,r)‖Lp(·)(Rn) =: E1 + E2,

where f(x) = f1(x) + f2(x), f1(x) and f2(x) are the same as in the proof of Theorem
1.3. With the similar argument for D1 in the proof of Theorem 1.3, we have E1 ≤
C‖b‖∗‖f‖Mp(·),µ . Thus only need to estimate E2.

Lemma 2.3 and (3.1) yield

|[b, Tθ](f2)(x)| ≤ C
∞∑
j=1

(2j+1r)−n|b(x)− bB(z,r)|‖fχB(z,2j+1r)‖Lp(·)(Rn)‖χB(z,2j+1r)‖Lp′(·)

+ C

∞∑
j=1

(2j+1r)−n‖fχB(z,2j+1r)‖Lp(·)‖(bB(z,r) − b)χB(z,2j+1r)‖Lp′(·) .

Thus,

‖[b, Tθ](f2)(x)χB(z,r)‖Lp(·) ≤ C
∞∑
j=1

(2j+1r)−n‖fχB(z,2j+1r)‖Lp(·)‖χB(z,2j+1r)‖Lp′(·)

· ‖(b− bB(z,r))χB(z,r)‖Lp(·) + C

∞∑
j=1

(2j+1r)−n‖fχB(z,2j+1r)‖Lp(·)

· ‖(bB(z,r) − b)χB(z,2j+1r)‖Lp′(·) · ‖χB(z,r)‖Lp(·)
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Applying Lemma 2.5, we get

‖[b, Tθ](f2)(x)χB(z,r)‖Lp(·) ≤ C
∞∑
j=1

j + 1

(2j+1r)n
‖fχB(z,2j+1r)‖Lp(·)‖χB(z,2j+1r)‖Lp′(·)‖χB(z,r)‖Lp(·) .

Together the above inequality with (3.2), we have

‖[b, Tθ](f2)(x)χB(z,r)‖Lp(·)

≤ C
∞∑
j=1

(j + 1)(2j+1r)−n‖fχB(z,2j+1r)‖Lp(·) ·
2(j+1)nrn

‖χB(z,2j+1r)‖Lp(·)
‖χB(z,r)‖Lp(·)

≤ C
∞∑
j=1

(j + 1)
‖χB(z,r)‖Lp(·)u(z, 2(j+1)r)

‖χB(z,2j+1r)‖Lp(·)
· sup
y∈Rn,r>0

1

u(y, r)
‖χB(y,r)f‖Lp(·) .

Then by (1.5), we have E2 ≤ C‖b‖∗‖f‖Mp(·),µ . Combining the estimates E1, E2, we complete
the proof of Theorem 1.4. �

Proof of Theorem 1.5. Let f ∈ HMK̇
α(·),q
p(·),λ . By Lemma 2.2, f =

∑∞
j=−∞ λjbj ( in

S
′
(Rn)), where each bj is a central (α(·), q(·)) − atom with support contained in Bj . We

denote Φ = sup
L∈Z

2−Lλq
∑L
j=−∞ |λj |q. we have

‖Tθf‖q
MK̇

α(·),q
p(·),λ

≈ max{ sup
L≤0,L∈Z

2−Lλq
L∑

k=−∞

2kqα(0)‖(Tθf)χk‖qLp(·) ,

sup
L>0,L∈Z

2−Lλq(

−1∑
k=−∞

2kqα(0)‖(Tθf)χk‖qLp(·) +

L∑
k=0

2kqα(∞)‖(Tθf)χk‖qLp(·))}

=: max{I, II + III}.

To complete our proof, it suffices to show that I, II, III . CΦ.

I . sup
L≤0,L∈Z

2−Lλq
L∑

k=−∞

2kqα(0)(

∞∑
j=k

|λj |‖[Tθbj ]χk‖Lp(·))q

+ sup
L≤0,L∈Z

2−Lλq
L∑

k=−∞

2kqα(0)(

k−1∑
j=−∞

|λj |‖[Tθbj ]χk‖Lp(·))q =: I1 + I2.

By the result of Theorem 1.1, we have ‖[(Tθbj)χk]‖Lp(·) ≤ C‖bj‖Lp(·) ≤ C2−αjj . Therefore,
as 0 < q ≤ 1, we get

I1 ≤ Cmnq/2 sup
L≤0,L∈Z

2−Lλq ×
L∑

k=−∞

2kqα(0)(

−1∑
j=k

|λj |q2−α(0)jq +

∞∑
j=0

|λj |q2−α∞jq)

≤ sup
L≤0,L∈Z

2−Lλq
L∑

j=−∞
|λj |q + sup

L≤0,L∈Z
2−Lλq

−1∑
j=L

|λj |q
j∑

k=−∞

2α(0)(k−j)q

+ Φ sup
L≤0,L∈Z

∞∑
j=0

2(λ−α∞)jq
L∑

k=−∞

2α(0)kq−Lλq ≤ CΦ.
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As 1 < q <∞, we can obtain

I1 ≤ C sup
L≤0,L∈Z

2−Lλq
L∑

j=−∞
|λj |q + sup

L≤0,L∈Z
2−Lλq

−1∑
j=L

|λj |q
j∑

k=−∞

2α(0)(k−j)q/2

+ Φ sup
L≤0,L∈Z

∞∑
j=0

2(λ−α∞/2)jq
L∑

k=−∞

2α(0)kq−Lλq ≤ CΦ.

Second, we estimate I2. A simple computation shows that there exists a constant δ > 0 such
that Tθ satisfies the following size condition

|Tθf | ≤ C(diam(suppf))δ|x|−(n+δ)‖f‖1, when dist(x, suppf) ≥ |x|
2
.

Thus with the help of Lemma 2.3, we get

|Tθbj(x)| ≤ C|x|−(n+δ)2jδ
∫
Bj

|bj(y)|dy

≤ C2−k(n+δ)2jδ‖bj‖Lp(·)‖χBj‖Lp′ (·)
≤ C2j(δ−αj)−k(δ+n)‖χBj‖Lp′ (·).

Thus, we have by Lemma 2.1 and 2.3

‖(Tθbj)χk‖Lp(·) ≤ C2j(δ−αj)−kδ2−kn(|Bk|‖χBk‖
−1
Lp′(·)

)‖χBj‖Lp′(·)
≤ C2(δ+nδ2)(j−k)−jαj .

Therefore, when 0 < q ≤ 1, we get by noting the fact nδ1 ≤ α(0) < δ + nδ1

I2 ≤ C sup
L≤0,L∈Z

2−Lλq
L∑

k=−∞

2kqα(0)(

k−1∑
j=−∞

|λj |q2[(δ+nδ1)(j−k)−jα(0)]q)

≤ C sup
L≤0,L∈Z

2−Lλq
L∑

j=−∞
|λj |q

−1∑
k=j+1

2(j−k)(δ+nδ1−α(0))q ≤ CΦ.

When 1 < q < ∞, let 1/q + 1/q′ = 1. Since nδ1 ≤ α(0) ≤ δ + nδ1, by Hölder’s inequality,
we have

I2 ≤ C sup
L≤0,L∈Z

2−Lλq
L∑

k=−∞

2α(0)kq(

k−1∑
j=−∞

|λj |2(δ+nδ1)(j−k)−jα(0))q

≤ C sup
L≤0,L∈Z

2−Lλq
L∑

j=−∞
2α(0)kq(

k−1∑
j=−∞

|λj |q2(j−k)(δ+nδ1−α(0))q/2) ≤ CΦ.

Hence, we have I ≤ CΦ.
Third, we estimate II. Consider

II ≤ C
−1∑

k=−∞

2kqα(0)(

∞∑
j=k

|λj |‖(Tθbj)χk‖Lp(·))q

+

−1∑
k=−∞

2kqα(0)(

k−1∑
j=−∞

|λj |‖(Tθbj)χk‖Lp(·))q =: II1 + II2.

When 0 < q ≤ 1, we get
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II1 ≤ C
−1∑

k=−∞

2kqα(0)(

−1∑
j=k

|λj |q2−α(0)jq +

∞∑
j=0

|λj |q2−α∞jq)

≤ C
−1∑

k=−∞

−1∑
j=k

|λj |q2α(0)(k−j)q +

−1∑
k=−∞

2α(0)kq
∞∑
j=0

|λj |q2−α∞−jq

≤ C
−1∑

j=−∞
|λj |q

j∑
k=−∞

2α(0)(k−j)q +

∞∑
j=0

|λj |q2−α∞jq
−1∑

k=−∞

2α(0)kq

≤ C
−1∑

j=−∞
|λj |q +

∞∑
j=0

2−jλq|λj |q2−α∞jq
−1∑

k=−∞

2α(0)kq ≤ CΦ.

As 1 < q <∞, we have

II1 ≤ C
−1∑

k=−∞

(

−1∑
j=k

|λj |2α(0)(k−j))q +

−1∑
k=−∞

2kqα(0)(

∞∑
j=0

|λj |2−α∞j)q

≤ C
−1∑

k=−∞

(

−1∑
j=k

|λj |q2α(0)(k−j)q/2)(

−1∑
j=k

2α(0)(k−j)q′/2)q/q
′

+ 2α(0)kq(

∞∑
j=0

|λj |q2−α∞jq/2)(

∞∑
j=0

2−α∞jq
′/2)q/q

′

≤ C
−1∑

k=−∞

|λj |q
j∑

k=−∞

2α(0)(k−j)q/2 +

∞∑
j=0

|λj |q2−α∞jq/2
−1∑

k=−∞

2α(0)kq

≤ C
−1∑

k=−∞

|λj |q +

∞∑
j=0

2(λ−α∞/2)jq2−jλq
j∑

i=−∞
|λi|q

−1∑
k=−∞

2α(0)kq ≤ CΦ.

With a similar argument as in estimating I2, we can obtain that II2 ≤ CΦ.
Finally, we estimate III. Write

III ≤ C sup
L>0,L∈Z

2−Lλq
L∑
k=0

2kqα∞(

∞∑
j=k

|λj |‖(Tθbj)χk‖Lp(·))q

+ sup
L>0,L∈Z

2−Lλq
L∑
k=0

2kqα∞(

k−1∑
j=−∞

|λj |‖(Tθbj)χk‖Lp(·))q =: III1 + III2.

Also, with a similar argument as in estimating I1 and I2, we can get that III1, III2 ≤ CΦ.
Combining the estimates of I, II, and III, we complete the proof of Theorem 1.5. �

4. Conclusions

With the help of the results obtained in [11] that the θ-type Calderón-Zygmund oper-
ator Tθ is bounded on the variable exponents Herz spaces, we show that Tθ is bounded on the
variable Lebesgue spaces, Morrey spaces and Morrey-Herz-type Hardy spaces. Meanwhile,
its commutator which generated by Tθ and a BMO function is also bounded respectively on
the variable exponent Lebesgue spaces and Morrey spaces.
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