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9-TYPE CALDERON-ZYGMUND OPERATORS ON MORREY AND
MORREY-HERZ-TYPE HARDY SPACES WITH VARIABLE
EXPONENTS

Yanqi Yang®, Shuangping Tao?

In this paper, the authors establish the boundedness of the 6-type Caldern-
Zygmund Operators Ty and their commutators on the variable exponent Morrey spaces.
Moreover, the various norm estimates for Ty are also obtained on the variable exponents
Morrey-Herz-type Hardy spaces.
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1. Introduction and main theorems

In the last three decades, the interest for variable exponent spaces have been increas-
ing year by year due to themselves and their applications in electrorheological fluid and
differential equations[l, 12]. In [I1], 5], the authors obtained the atomic and molecular
decompositions of Hardy spaces with variable exponent and studied the boundedness of a
class of singular integral operators. The results show that they are not only the generalized
forms of the classical function spaces with invariable exponent, but also there are some new
breakthroughs in the research techniques. These new real variable methods help people
further understand those spaces. Rencently, Xu and Yang introduce the Morrey-Herz-type
Hardy spaces with variable exponents and establish the boundedness of singular integral
operators on these spaces in [17].

In 1985, Yabuta introduced certain #-type Calderén-Zygmund operators to facilitate
certain classes of pseudodifferential operators [18]. Following the terminology of Yabuta,
we recall the so-called f-type Caldern-Zygmund operators. Let # be a non-negative and
non-decreasing function on (0, c0) satisfying

/1 @dt < 0. (1.1)
o ¢

A measurable function K(-,-) on R™ x R™ is said to be a 6-type Caldern-Zygmund kernel if
it satisfies

K (2,)] < Cla — 3| ™" and (12)
C |z — 2|
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Definition 1.1. [I8] Let Ty be a linear operator from § into its dual 8’. One can say that
Ty is a O-type Caldern-Zygmund operator (also called Dini-type singular integral) if

(i) Ty can be extended to be a bounded linear operator on L?(R") ;

(ii) there is a 6-type Calderén-Zygmund kernel K (z,y) such that

Tof(z) = | K(z,y)f(y)dy, as f € C°(R") and x ¢ suppf. (1.4)
RVL
As 0(t) = t°(6 > 0), Ty coincide with the classical Caldern-Zygmund operator with standard
kernel.

Many authors concentrate on the properties of Ty on various function spaces. In
[9], J. Lan established the boundedness of Ty on the weighted Lebesgue and Hardy spaces.
Ri-Zhang obtained the bounedness of Ty on Hardy spaces with non-doubling measures and
non-homogeneous metric measure spaces in [I3}[14]. Wang proved the boundedness of Ty and
[b, Tp] on the generalized weighted Morrey spaces in [16]. After that, the authors established
the boundedness of Ty on variable exponent Herz spaces and weighted variable exponent
Morrey spaces in [19, 20]. Inspired by the results mentioned previously, a natural and
interesting problem is to consider whether Ty and its commutator [b, 7] are bounded on
Morrey and Morrey-Herz-type Hardy spaces with variable exponents or not. The purpose of
this paper is to give an surely answer. We now formulate our other main results as follows.

Theorem 1.1. Suppose that 0 satisfies (1,1) and K(-,-) satisfies (1.2)-(1.8). Let p(-) €
B(R™). Then there exists a constant C > 0 such that

1Ty ()l rer @ny < CIfI Lo @ny-

Theorem 1.2. Letb € BMO(R"™). Suppose that p(-) € B(R™) and 0 satisfies fol @Hog t|dt <
00, then there exists a constant C' > 0 such that

11 Tol ()| Locr gy < ClBNNF Lre) my-

Theorem 1.3. Suppose that 0 satisfies (1,1). Let u € Wy,y and p(-) € B(R™). Then there
exists a constant C' > 0 such that

1T (O, @y < Cllfllave, .y @n)-

Theorem 1.4. Suppose that 0 satisfies 01 @Hogﬂdt < 0o and u satisfies

i(ﬂ - IXEanllroe w2 (1.5)
= IXB(2it1mll ey @y w(w,r)  —

Let b € BMO(R™) and p(-) € B(R™). Then there exists a constant C > 0 such that
16 Tol (NI, .y, ®e) < Cllfllne

Theorem 1.5. Let 0 < ¢ < oo, p(-) € B(R™), and 0 < X\ < oo. Suppose that a(-) is
log-Holder continuous both at the origin and infinity, 2X < a(+), ndy < a(0), ax < ndy + 6
with some § > max{a(0) — nd1, veo — no1}, where 1 as in Lemma 2.1. If 0 satisfies (1,1),
then there exists a constant C > 0 independent of f such that

p(),u(R™)

1T0.f Iy geecrn < ClFI gy oo n-
p(-).q r(-).q

Throughout this paper, x g denotes the characteristic function of E and fp = 1/|E| [, f.
p'(+) means the conjugate exponent of p(-), namely, 1/p(x) 4+ 1/p'(x) = 1 holds. The symbol
C' stands for a positive constant, which may vary from line to line.
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2. Definitions and preliminaries
In this section, some preliminary definitions and lemmas will be given.

Definition 2.1. [10] Let a(-) be a real-valued function on R™. If there exist C' > 0 such
that for any x,y € R", | — y| < 1/2,

C
a(@) —a(y)| < ————F—>
)
then «f(-) is said local log-Holder continuous on R™. If
C
la(z) — a(0)

< - -
< log(e +1/|z|)’
then «f(-) is said log-Holder continuous at origin. If there exist ao, € R and a constant
C > 0 such that all x € R™,

0(2) — o] < 1 C
_ S —
= log(e + [x])
then a(-) is said log-Holder continuous at infinity.
Let p : R® — [1,00) be a measurable function. We denote p_ = ess ian p(x), py =
IG n

ess sup p(x). Then P(R™) consists all p(-) satisfying p_ > 1 and p; < co. Let B(R™) be the
weRTI
set of all functions p(-) € P(R™) satisfying the condition that the Hardy-littlewood maximal

operator M is bounded on LP()(R™), where LP()(R™) is defined by[S]

LPO(R™) = {f is measurable : / (M)p(x)dx < oo for some constant > 0}
n n

with the Luxemburg-Nakano norm

ey =t > 0: [ peras <1y

Definition 2.2. [4] Let p(z) € P(R™) and u(z,r) : R” x (0,00) — (0,00). If there exists a
constant C' > 0 such that

(o)
> Pxaten ez @y u(z, 2*r) < Cula,r), (2.1)
=0 ||XB(I,2j+1r)||LP(')(Rn)

then one says u is a Morrey weighted function. We denote the class of Morrey weight
functions by W,.).

Definition 2.3. [4] Let u(x,r) € W,). The Morrey spaces with variable exponent are
defined by

Mp(),u(R") := {f is measurable : || f|x,, , &) < oo}, (2.2)

where )
ny = — P() (R - 2.3
£l ) A 1fXB(,Rr)lLre) e (2.3)

Remark 2.1. (1) If u(z,r) = 1, then M, ,(R") is the Lebesgue spaces with variable
exponent LP()(R™). (2) Notice that if p(x) = p, 1 < p < oo, is a constant function, then
formula (2.1) can be written in the following form [4]

= u(z, 1) u(z,r) n
/r tn/p+1dt§0¢n/p , r>0, zeR™ (2.4)

(3) Let p(-) € B(R") and u(z,r) = |B(z,r)|}/P@)~1/2@) with p(z) < g(z). Denote k., =
sup{q > 1:p(-)/q € B(R")} and e, to be the conjugate exponent of ky (). As 1 < s <
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Epzy » 1/p(x) —1/q(x) < 1—1/s, it is easy to see u(x,r) satisfying condition (2.1). That
is because of the following fact [4]

”XB(m,r) HLP(')(]R")

<o/ >0, 2 R, jEN. (2.5)
HXB(CE,QJ+1’I")||LP(‘)(]RW)

Let k € Z, By = {z € R": |z| < 2%}, Cy = Bi\By_1, and xx = X0y -

Definition 2.4. [I7] Let 0 < ¢ < o0, p(-) € P(R™), 0 < X < oo and «(-) be a bounded real-

valued measurable function on R™. The homogeneous Morrey-Herz spaces spaces M [.(;((,'))’f

is defined by MK;Y((_'))”/{Z(R”) ={fe Lfo(g (R™\{0}) : ||fHMK§(<_~)>1,§(Rn) < oo}, where

L
R =sup?2~ LA 2a()k a 1/
”f”MKp((-)),A (R™) LGI% {k;m H ka”Lp( )}
Next we recall the definition of Morrey-Herz-type Hardy spaces with variable expo-
nents which was firstly introduced by Xu and Yang in [I7]. Let G f be the grand maximal
function of f defined by

Gnf(z) = sup |¢5(f)(2)], z € R",
PEAN

where Ay = {¢ € §(R") : sup |2"DP¢(x)| < 1} and N > n + 1 and ¢% is the
|v],|B|<N,VzeR™
nontangential maximal operator defined by ¢3(f)(z) = sup |¢¢ * f(y)], where ¢¢(x) =

ly—z|<t
(%)

Definition 2.5. [I7] Let a(-) € L>®(R™), 0 < g < o0, p(-) € PR"), 0 < A < oo, and
N > n + 1. The homogeneous Morrey-Herz-type Hardy space with variable exponents
HMEK®")? is defined by

p()s
HMK;Y((.')),’f ={fe8R"): Hf”HMK;"((_'))‘f = ||GNf||MK§(<_,)>,; < 00}

Definition 2.6. [I7] Let p(-) € P(R™) and «(+) be log-Holder continuous both at the origin
and infinity. Suppose that o, = «(0), as r < 1, and o, = @, as r > 1, nd; < @, < 00 and
nonnegative integer s > [, — ndy], where ¢ is as in Lemma 2.1.

(1) A function a on R"™ is called a central (a(-),p(+))-atom, if it satisfies (a) supp a C
B(0,7); (b) lall s < IBO, 7|7/ (¢) [y alz)aPdz =0, |5] < s.

(2) A function a on R™ is called a central (a(-),p(:))-atom of restricted type, if it
satisfies (a) supp a C B(0,7), r > 1; (b) |lallzecy < [B(0,7)]7%/™; (¢) [gn a(z)zPdz =
0, |8l <s

Lemma 2.1. [6] If p(-) € B(R™), then there exist constants d1,d2 > 0, such that for all
balls B C R™ and all measurable subsets S C B,

X8l Lro) @) < 1Bl X5l o) (mmy < (|S|>51 Ixsllzro @ <|5>52
Ixsllzror @y ~ 1S Ixsllro@y ~ \IBI) 7 Ixsllieo @ |B|

Lemma 2.2. [I7] Let 0 < ¢ < o0, p(-) € B(R™), 0 < X < 00, and a(-) € L™ be 2X < a(-),

nd; < a(0), ax < oo with §; as in Lemma 2.1. Then f € HM['(Z?((_'))”;\I if and only if

f=>re . Arag, where each ay, is a central (a(-), p(-))-atom with support contained in By,

_ L
and sup2~LAS"|A]9 < co. Moreover,
LEZ

)~

L

cotra A nfsup2 (D T[Nk
”f”HMK;’((.)),f in ilé}% (k:—oo‘ k7
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Lemma 2.3. [8] Let p(-),p1(:),p2(-) € P(R™). Then
(1) For any f € LP0) and g € LP'()| then fg is integrable on R™ and

/ F@g@)dz < Coll flisolgllieers Cp =1+ 1/p— — 1/ps,

where p_ = ess inf p(z), py = ess sup p(z).
zERP CERn

(2) For any f € L"() and g € LP2(), as 1/p(x) = 1/p1(z) + 1/pa(z), then

1F (@)g@)l s @) < CprpallFllLor 190 racrs Corpe = (L4 1/p— = 1/p4) /7=
Lemma 2.4. [I] If p(-) € B(R™), then there exists constant C' > 0, such that, for all balls
B e R",

V1BllIxsllzeo IxsllLore) < C.

Lemma 2.5. [7] Let b € BMO(R™) and m be a positive integer. Then there exists constant
C > 0, such that, for any k,j € Z with k > j,

(1) GBI < supp(1/lIxBll oo @n)II(b = b2) X8 oo @y < CLBIIT

(2) [I(6 = bB,)"xBl Lre) @y < C(k = 7)™ IO X B [ Lre) (-
Lemma 2.6. [17] Let p(-) € P(R™), g € (0,00], and A € (0,00]. If a(-) € L is log-Holder
continuous both at the origin and infinity, then

— L
ey = macl sup 27N 2920 )

_ -1 _ L
sup [2 LA( k=—o0 2ka(0) ||lec||%p<->)1/q +2 L)\(Zkzo 2kaces ||ka||%p<-))1/q]}~
L>0,LEZ

3. Proofs of main theorems

From the results of weighted norm inequalities and extension of Rubio de Francia
extrapolation to the scale of variable Lebesgue spaces [2, 3], Theorems 1.1-1.2 are immediate
consequences of known results. Thus we omit the details.

Proof of Theorem 1.3. Let f € M, ,. In order to prove Theorem 1.3, it is enough to
show that the following inequality holds:

1

m“Te(f)XB(z,r)||Lp<~>(Rn) <Ol fllnm,c.y,-

For any z € R™ and r > 0, denote f(x) = fi(z) + fa(x), where fi = fxp2r), fo =
Yooy fi(x), fi(x) = fXB(z2i+1m)\B(z,2ir)> 5 € N\{0}. Then
w1 To(HxBE o @y < samlTo(fXBE Lo @n)
+ae 1Te(f2)X B | Lro @n) =t D1 + D.
Noticing that Ty is bounded on LP()(R™), it is easy to see by Lemma 2.1
||XB(z,2r)||Lp<~><Rn) 1

IXB(z.r) | Lrer@ny ulz, 2r)

|B(z,2r)| 1
<C
~ |B(z,7)| u(z,2r

We now turn to estimate Do. Observing that if z € B(z,7),y € B(z,2/7r)\B(z,27r), then
we have

Dl < c HXB(Z,Qr)fHLP(')(]Rn)

)”XB(Z,?r)f”LP(')(]R") < C||f||Mp(-),u

|t —y| >y — 2| — |x — 2| > C27220+ Dy, (3.1)
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Thus, Lemma 2.3 yields

[Ty fo(x)| < C Y (27Fr) |/ (v)ldy
7j=1

/B(z,le'r)\B(z,er)

Z 2J+1 ) "X B2 ||Lp(-)(]R")

XB(z,29+1r) ||LP’(‘)(R”)'

Hence, ”T@f?(x)XB(z,r)”LP(')(R")
<O @) X2 o IXB2i 10 Lo IXB G oo -

Applying Lemma 2.4 with B = B(z,2/"1r), we get
||XB(z,2j+1r)||Lp'<->(Rn) < C2(j+1)n7"n/||XB(z,2j+1r)||Lp(->(]Rn)-
Therefore, one has

IXBGolleo  u(z,20HDr) |
. u(z’ 2(j+1)T) HfXB(z,23+1T)||Lp(_)

o0
1T f2(2)X Bz I Lot < CZ ”
j:

XB(z,29+1r) | Lo

, 2(j+1)
<CZHXBzT”L(>u(a 7‘)'

1
Sup X yflloee-
HXB(Z’QJ'HT) HLP(') zeR™,r>0 U( ) H Blar) ”Lp

Thus we have Dy < C|| fllm The proof of the Theorem 1.3 is finished.

IION"S

Proof of Theorem 1.4. Let b € BMO, f € M, ,. We have

1 1
aer) 116 Tol f X B2y |l Lo () < P 165 Tol Frx Bz | Lo (R

1
T v (omy = By + Ba,
+ U(N)H[ s Tol faX B2, |l Loy () 1+ Es

where f(z) = fi(z) + fa(z), fi(z) and fo(x) are the same as in the proof of Theorem
1.3. With the similar argument for D; in the proof of Theorem 1.3, we have F; <

Cloll«[Ifllnm,.,.,.- Thus only need to estimate Fs.
Lemma 2.3 and (3.1) yield

(o)
|[b, T (f2)(z Z P b(x) = bpean 1 X B2+ L Leo @) IX B 2000 | Lo
o0
Z 2]+1 n”fXB (2,29+1r) HLP( ) H(bB (z,r) — b)XB(Z,2j+1T) ||LP'(')~
j=1
Thus,

o0
116, To] (f2) (%)X Bz I Lot < C2(23+1T)_n||fXB(z,21+1r) Il Lo IXB (2210 | o
j=1

)

N = b)) XBE Lo +C @) T fxpe 2 oo
j=1

. ||(bB(z,r) - b)XB(z,2j+1r)HLP/(-) : HXB(Z,T)”L:D(‘)
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Applying Lemma 2.5, we get

Jj+1
||[b7 Te](fQ)(x)XB(z,T) ||LP('> <C Z 2]+1 HfXB (z 2J+1T)HL1’( ) HXB (z 21+1T)HLP ) ”XB (z,7) ||LI7( ).

Together the above inequality with (3.2), we have

11b; Tol(f2) (€)X Bz || Lo

O3 G+ D@ || 20 e

< Jj+ ) "N fxBz2i+1m | e - XB(z,m) |l Lre)

pt (2,2i+1) (| L ||XB(z,2j+1r)||LP<') (z,m)IIL
- . ||XB(Z T)HLP(')U(Z72(J-+1)T)

<C) (G+1) ’ - sup X By, fllLee
; IXB(z,2i+1m) I Loy yERM >0 U(y’ ) )L

Then by (1.5), we have Ea < C|b][.[| f|a,, . Combining the estimates E1, Ea, we complete
the proof of Theorem 1.4. O

Proof of Theorem 1.5. Let f € HMKS(%)’S.

8'(R™)), where each b; is a central (a(-),¢(-)) — atom with support contained in B;. We

denote ® = sup 2L S°F
LeZ

By Lemma 2.2, f = Y72 X\b; (in

j=—o00

i=—oo [Aj[7. we have

1T f1I%, a<>q~max{ sup 27 Z 2K O (T f)xwl| 0

L<0,LEZ P

-1

sup_ 27529 Y 2O N(To fxll +Z2’“‘“‘ To )Xkl )}

L>0,L€Z Pt

=: max{I, 1T + IIT}.

To complete our proof, it suffices to show that I, I, III < C'®.

IS sup 270N Z gkaa(0)( Z|/\ ITTo0;]xk |l Lo )

L<0,L€EZ e s
k—1

+ sup 271N Z 2k9 O (N |\ [ Tobs]xkl| 1o )T =2 Ta + Ta.
L<0,LEZ P oo

By the result of Theorem 1.1, we have ||[(Tpb;)xx]|lLr¢) < Clbjll1pc) < C27%7. Therefore,
as 0 < g <1, we get

L -1
L <Cm™/? sup 275N x Z gkaa( 0)(Z|)\ |99 0)1q+Z|)\ |99 e74)
L<0,LEZ he—oo s =
J
< sup 2°LM Z IA;]94+  sup Q—LMZ‘)\ | Z 9a(0)(k—3)q
L<0,L€Z - L<0,LeZ
j=—00 j=L k=—o0

+® sup 22()‘ aee)iq Z 20(Oka—LAd < O,

L<0,L€Z Py
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As 1 < g < 00, we can obtain

I, <C sup 271N Z A9 + S 2 “’JZIA 2 Z 9a(0)(k—5)a/2

L<0,LEZ Pl ) s

+® sup 2(A—as/2)iq 2(0)kq— L>‘q<C<I>
L<0, LezZ k_ZOO

Second, we estimate I5. A simple computation shows that there exists a constant 4 > 0 such
that Ty satisfies the following size condition

(Tof| < C(diam(supp )’ |2~ f]l1, when dist(z, suppf) > 2.

2
Thus with the help of Lemma 2.3, we get
[Tty (2] < Clal ™92 [ b, (y)ldy
B;
< C2—k(n+6)2j5||b,||LP ||XB-||Lp’(.)
< 023(6 o;)—k(d+n) ”XB HLP -
Thus, we have by Lemma 2.1 and 2.3
1(Tobs)xwll Loy < C2ICT D=2 (| By |1x, |10 )X, v
< 02(+nd2)(i—k)—ja;
Therefore, when 0 < ¢ < 1, we get by noting the fact nd; < «(0) < § + nd;
k-1
IL,<C sup 9—LAq 9kga(0) A |29(6+nd1)(G—k)—j(0)]q
2<C s k;@ (¥ )
-1
<C sup 27FM WK 9(i=k)(6+né1—a(0))d <« .
L<0,LeZ Z Al Z -
Jj=—o0 k=j+1

When 1 < g < o0, let 1/g+1/¢" = 1. Since nd; < «(0) < 6 4+ ndy, by Holder’s inequality,
we have

L k—1
I, <C sup 27 LM 2(0)kq )\ [2(0+n81)(i—k)—je(0) g
? L<0,LEZ k_z_oo (j_ZOJ sl )
k—1
<C sup 2= LAq 20‘(0 kq by q2j k)(64+nd1—a(0))q/2 < Cd.
L<0,LeZ J;m j_z_:oo| il )

Hence, we have I < C®.
Third, we estimate II. Consider

-1 0
I=<c Z 2kqa(0)(z|>‘j|||(T0bj)Xk||Lp<~>)q

k=—o0 j=Fk
1 k—1

+ D0 2O I ITaby) Xkl = T + T,
k=—o00 j=—o00

When 0 < ¢ <1, we get
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-1

—1 0o
I < C Y 2k 7127 0da 4 7|y 127 i)

k=—o00 j=k =0
1 -1

<C Z Z\)\ |q2a(0 (k=i)a 4 Z 9o O)quP\ ‘qg—am—gq
k=—o00 j=k b — oo

<C Z |)\ |q Z 2a(0 )(k— J)Q+Z|)\ |q2 Qoo Z 90 (0)kgq
j=—o0 k=—o0 Rt

<C Z |\ |q+22 j)\q‘A 92~ Qoo Z 9a(0 kq<C’q)
j=—o00 oo

As 1 < g < 00, we have

I <C Z Z\)\ |2040) (k=) ya Z kaa(0)( ZM |2~ eed)

k=—o0 j=k k——oco
-1 -1 .
< C Z (Z ‘,\j|q2a(0)(k7j)q/2)(z 204(0)(k7j)q'/2)q/q/
k=—o0 j=k j=k
+ QG(O)kq(Z |)\j|q2*aqu/2)(z 2*aoojq//2)q/q'
j=0 =0
-1 j .
<C Z ‘)\j|q Z 90(0)(k— J)Q/2+Z|)\ ‘q2 Qo0jq/2 Z 9a(0)kq
b= h=—e0 J=0 k=—oc0
S S S YD SR
k=—oo Bt e

With a similar argument as in estimating I, we can obtain that 11y < C®.
Finally, we estimate III. Write

L o]
IMI<C sup 2752 "2k (3 |\||[(Tob; )Xkl 1o )
L>0,LeZ b—0 L
Jj=
L k—1
+osup  27FAN T oReoee (NN |[(Toby ) Xkl poc) )T =2 Ty + T,
L>0,Lez k=0 j=—00

Also, with a similar argument as in estimating Iy and I, we can get that III;, I1I, < C'®.
Combining the estimates of I, II, and III, we complete the proof of Theorem 1.5. O

4. Conclusions

With the help of the results obtained in [11] that the #-type Calderén-Zygmund oper-
ator Ty is bounded on the variable exponents Herz spaces, we show that Ty is bounded on the
variable Lebesgue spaces, Morrey spaces and Morrey-Herz-type Hardy spaces. Meanwhile,
its commutator which generated by Ty and a BMO function is also bounded respectively on
the variable exponent Lebesgue spaces and Morrey spaces.
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