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A NEW ALGORITHM FOR INDUCED SUBGRAPH
ISOMORPHISM

Nadia M. G. AL-SAIDI*, Nuha A. RAJAB?, and Hayder N. ABDUL-
RAHMAN?

Many algorithms to solve subgraph isomorphism problems have been
proposed and proven to be NP-hard, but they did not demonstrate promising results
especially on the large and dense graphs. In this paper, a new algorithm for
determining an induced subgraph isomorphism between pattern and target graphs is
proposed. It is based on decomposition of a graph into components and refinements.
The incident matrices are used to help in rearranging the vertices in a descending
order and reducing the search efforts. The algorithm is analyzed from complexity
point of view to demonstrate its effectiveness after applying it on several types of
graphs.
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1. Introduction

The common algorithms for finding subgraph isomorphism are those that are
based on backtracking in a search tree, where different algorithms are used to
prevent the search tree from large growing. Ullman algorithm [1], is the best
known one, and there is also the general graph matching suggested by Cordella et
al., [2] is another one. Solving this problem in polynomial time has received a lot
of research attention (see, for example, Dessmark et al.[3], Eppstein [4]). The
subgraph isomorphism problems that are based on heuristic search techniques are
the most interesting techniques in recent researches (see, for example, Akinniyi et
al., [5], Cortadella and Valient [6], Larrosa and Valiente [7]). In practice, the one
that considered to be efficient is the algorithm that described by Foggia et al. [8].

This algorithm reduces the computational cost of the matching process by
using a set of feasibility rules. VF2 is a procedure introduced by Cordella et al.,
[9]. It improves Ullmann’s refinement by reducing the number of backtracks with
the help of a forward checking technique, and thereby reducing the total search
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space by using advanced data structures. Krissinel and Henrick [10], introduces an
algorithm to enumerate all possible mappings of subgraph of the two graphs
recursively. Finding simple path and cyclic in randomized method is presented by
Alon et.al., [11]. Based on building a “plan graph”, a new algorithm for finding a
graph-subgraph mapping is described by Betz [12]. A multi vertex matching is
introduced also in some papers, (see, for example [13-15]), where a matching is
done between a vertex in one graph with a set of vertices in the others. Other
general techniques handling graph matching are given also in [16-21]. They
proposed a deterministic matching method for verifying both graph and subgraph
isomorphism, the search space is explored by means of depth-first search
technique, given by Lipest et.al., [22].

During comparison in the networks to report error and noise, numerous error-
tolerance mechanisms are introduced to handle the problem of graph and
subgraph isomorphism. They are more suitable for real life networks that are
essential incorrect and incomplete because they are error-tolerance [23-25]. An
emerging approach based on graph database appears to speed up pattern
processing. In this approach that adopts filtering and refinement, some subgraph
of the target large graph are filtered because they cannot contain pattern graph;
Zheng et al., [26] is an example of one of the methods that follows this approach.
In addition to the current Section, this paper contains four more Sections that
organized as follows: Some notations and definitions are presented in Section 2.
Our proposed heuristic search algorithm with a demonstrative example is
presented in Section 3. The analysis and discussion for the proposed algorithm are
reported in Section 4. Finally, the paper is concluded in Section 5.

2. Notations and Definitions

The common notations and the fundamental definitions used in this work are
introduced in this section. For the readers who are interested in more details, we
refer them to [27-28].

Definition 2.1 The neighborhood (or open neighborhood) of a vertex v, denoted
by N(v), is the set of the vertices adjacent to v; N(v) = {u eV (G) | (u,v) €
E(G)}, and the closed neighborhood is N[v] = N(v) U {v}.

Definition 2.2 The mapping L: V — N is called vertex-labeled of a graph G (or
simply labeled). The label of a vertex v is given by L(v).

Definition 2.3 A graph G = (V,E) is said to be dense if for every v eV,
deg (v) > n/2,where |V| = n.

Definition 2.4 If V(H) € V(G) and E(H) < E(G), for any two graphs H and G,
then H is said to be a subgraph from G denoted by H < G.

Definition 2.5 A Graph H = (V’°,E”) is called an induced subgraph of G denoted
by H 2 G if and only if E” € E whose endpoints are both in 1.
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Definition 2.6 The matrix Q = (bi,j)nxm is called an incidence matrix of the

undirected graph G, where nand mare the numbers of vertices and edges
respectively, and

b = {1 if wv;isincidenton g;

H 0 otherwise

Definition 2.7 A subset M; < E is called a matching of G if no vertex in V' is
incident on more than one edge in M (i.e. no two edges of M, have a vertex in
common). The process of finding vertices and edges correspondence to the graphs
Gp = (Vp, Ep), and Gy = (V, E7), that satisfies some constraints is called graph
matching such that, it ensures that similar substructures in one graph are mapped
to similar substructures in the other.
Definition 2.8 For the graphs G, = (Vp ,Ep) and Gy = (Vp, Ep), there is a
subgraph isomorphism from G, to Gy if there is an injective function f:Vp =V
and a subgraph S < G such that, f is a graph isomorphism from G, to S satisfies:
Forall v eV, f(v) =v €Vp, f71H) =v
Forall e = (v4,v,) € Ep, there exists a distinct edge é = (f(v,), f (v3)) € Er.
Definition 2.9 A subgraph isomorphism from Gp = (V, , Ep) to Gy = (Vy, E7), IS
called an induced subgraph isomorphism if there is an induced subgraph from
Gr denoted by Gg, such that Gp = Gs. In this case, a corresponding bijection
between vertices of G, and G is said to be an induced sub-isomorphism between
two graphs.

3. The Proposed Algorithm

In this section, a new algorithm is proposed to find an induced subgraph
isomorphic between two graphs Gp = (Vp, Ep), Which is known as the pattern
graph, and G = (V, E7), the target graph, such that, G is a dense, undirected,
and connected graph, with |V;| > |Vp|, and G, is an undirected, connected graph.

The proposed method presents a heuristic algorithm for induced subgraph
isomorphism based on decomposing graph into components and refinements to
construct identification for induced subgraph isomorphism, such that, each
component represents all paths with minimum number of edges between v; and v;

denoted by Ly,

The structure of the graph in this algorithm is determined depending on the
paths and distances between the vertices. The proposed method is applied in four
phases algorithm designed as follows:

Phase 1: The labeling of the graph is performed in this part based on the
incidence matrix that helps to rearrange the vertices in a descending order
according to the degree of the vertices. For a given graph G, the degree of all
vertices, deg(vy), deg(vz),..., deg(vy), is computed such that, the degree sequence
of G is exist, which helps to obtain the incidence matrix in descending order.
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Hence, the random search is improved and the searching time is decreased. This
can be illustrated in the following steps:

Input |V| = n, the order of G; |E| = m, the size of G.

Input the incident matriX Q. = [q;;].

Compute the degree of vertices, deg(v;) = qym+1) = Xj=1qij, L =1, ..., n.
Rearrange rows of @y, in descending order such that, deg(vg,) > deg(vg,) =

e 2 deg(an).

Relabeled the vertices of the given graph, such that, the vertex in the first row is
labeled as v, and so on.

Phase 2: This part is to determine all the induced subgraphs in the given graphs
based on the minimal paths between any two vertices in order to construct the
induced matrix I(u,v),xn, for any two vertices u and v in G, all distances are
computed and all paths with minimum length between v; and v; are determined

and denoted by Ly This can be illustrated in the following steps:

Compute the distance matrix Dy, = [6¢,; = d(vi, v;) > 1].

The induced matrix I(u,v),x, for any two vertices u, and v is defined by the
article Ly, that represents the set of all paths between the vertices v; and v; with
minimum distance greater than one, such that I(u,v)pxn = [d(vi,vj)lvi,,j];
where,

IUin =

{ei,l1 = (vi,eiﬂ, ...ej,v]-),lz = (vi, €k, ...el,vj), v, I, = (vr, €k ...es,vj)}, if
e; = (v;,v;), where r is the number of different paths between v; and v;.

L, = {I1,,1,, ..., 1.} otherwise.

Phase 3: This phase is designed to find one or more paths that include all vertices
and edges of G that represent its identification. In Phase 1, the vertex v of the
largest degree is chosen, and in Phase 2, the set of the minimal paths is found,
whereas, in this phase, the set of paths incident on v that contains all vertices and
edges in G is determined. If they do not exist, the searching is transformed to the
N(v) such that, the chosen vertex u is the vertex of the largest degree. If the chosen
paths contains all vertices and edges in G, then the search is stopped; otherwise,
continue in this manner until all vertices and edges of a given graph is obtained.
Since the given graph is dense. Therefore, the maximum number of search steps
equals to the number of the paths incidence on one vertex or at most two vertices.
Hence, the searching range is (n/2,n-1). In other words, the identification of the
graph is obtained by the following steps.

Search in I(u, v),x, about the location (i,j) of the paths that contains a maximum
number of vertices and edges to identify the vertex v;, if d(v;, vj)Ivﬂ,j consist of

all the vertices and edges of G, then let I; = Lo, and go to c.
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b. Search in the incidence matrix Q,., about all vertices v; neighbors to the v; (i.e.
v; € N(vy), j = 1,2,...,N(v;)]) to rearrange them in descending order according
to their degree. Now, check for each vy, k = 1,2, ..., IN(v;)], if v, eV(lyw,) then
omits this vertex; otherwise find another path I,,,, with additional new vertices in
the induced matrix to be added with the previous path by union them, such that
I = Ivivju Ly

c. ldentify the graph G = (V, E) by the chosen I;;.

Phase 4: After the identification of the pattern graph I, and target graph I, that
performed in phase 3, the induced subgraph isomorphism is accomplished in this
final phase by searching the entries of the induced matrix I;_.(u, V)pxn-

Search about all induced subgraphs in Gy, which are isomorphic to Gp, i.e.
seeking in I, (u, v)nxn, about the identification I;,. Using the induced matrix in

phase 2, to check whether dGT(vi,vj)IGT is an induced subgraph or not. This
Villj

can be illustrated in the following steps.
a. Foralli j=1,...,ndo the following;

IGTv-v-
1. Find the number of distinct vertices, ar = |U,_, "’ V(IGTvivj).

I
GTViV]'

2. Find the number of distinct edges r = |U;_, E(IGTvivj) .

3. The number of paths y =

Ig, | where I, is the set of all paths.
viv]- vivj
4. Ifap # |V(Gp)|, or Br # |E(Gp)|,go to b.
5. Ifyr =y, thendg (v;,v;)ls, ,isaninduced subgraph isomorphism.
uv vivj

End for.

b. Decomposition of I,
I7il7]'
Forall I, do the following:

ViV]'

i. Let IGTvivj = {ITl,ITZ,...,ITyT}.
ii. Fori,j=1.2,..,yr, Vi<j define ;. ,suchthatl; = {I;,V IT].}.
ij ij
If Iz, =1Ig,, thends, (v;,v;)ls, is an induced subgraph isomorphism to
ij )

pattern graph Gp.
End for.
End for.
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3.1. Theoretical results

To demonstrate the validity of paths used in search procedure to be minimal
paths, and used to represent the induced subgraph that we have been seeking, the
following lemma, propositions, and theorem are proven.

Lemmal:

Let G = (V,E) be a simple connected dense graph, and |V| = n, then the
distance between every non adjacent pair of vertices u and v, is d(u, v) = 2 or 3.
Proof:

Since G is a simple connected dense graph, and |V| = n, thendeg(v) >

%,v v € V the distance d(u, v) refer to the length of a minimal path between u

and v. If u and v are non-adjacent vertices, and there exist a vertex w € N(u) N
N(v), where N(u), and N(v) are the neighborhoods of the vertices u, and v
respectively, then it is obvious that d (u, v) = 2, because G is a connected graph.
If weé{Nw)nN(v)}, andw € N(u), then 3x € V,suchthatx € {N(w) n
N(v)}, and x € N(u), since deg(v) > g, then d(u,v) = 3.

If x e N(v), and x & {N(u) U N(w)}, then there exist a vertex y such that
y € {N(w) n N(x)}, that means d(u,v) = 4, but this contradiction with |V| = n,
since deg(v) > % for all v € V, which implies [V| =u+ v+ N(u) + N(v) +
y=3+2§=n+3.Hence,d(u,v)=3. 0
Proposition 1

In a dense, simple, connected graph, every path is an induced subgraph.
Proof:
Since the graph is dense then by Lemma 1, all paths are of length two or three. It
is clear that all minimal paths of length two is an induced subgraph, for the paths
of length 3, let p; = {u, e;, wy, e, w,, €5, v}, be such a path, neither u and w, nor
,w; and v are adjacent, which is a contradiction with length three; then p5 is an
induced subgraph. 0
The following Proposition, determines the lower and upper bounds of the number
of paths between two vertices in a dense graph. This will helps to reduce the
search space, and to improve the efficiency of the proposed method from the
complexity point of view.
Proposition 2
In a dense, simple, connected graph, the number of paths between any two
vertices u, and v is greater than %; and less than n-1.

Proof:
To prove the lower bound, for a dense graph, and by using Lemma

1,deg(v;) > g ,1=1,2,...,n, and the length of minimum paths is 2, or 3.



A new algorithm for induced subgraph isomorphism 177

The first case; when the length of minimum paths is 2, s.t. I3w; € {N(u) N N(v)}.
If all paths between u and v is of length two then |[N(u) N N(v)]| >% , then the

number of paths of length 2 is|N(u) n N(v)|.

The second case; if the length of the minimum paths is 3, and {N(u) N N(v)} =
@, then there exist two set of vertices w; € N(u), and x; € N(v), such that
deg(w;) = deg(x;) > 7, also w;, and x; are adjacent for all i=1, 2,..., %, then

there exist at least % different paths of length 3.

To prove the upper bound, when the dense graph is a complete graph, then
deg(v)= n-1 for all v, such that, the result is trivial and there exist n-1paths
between u and v. O
Theorem 1

Let G = (V,E) be a simple, connected, dense graph. If the distance between
any non-adjacent pair of vertices u and v is a minimum, then the subgraph
between u, and v defined on the set of minimal paths of length 2 or 3 is induced.
Proof

Let G be a simple, connected, dense graph, and P={P,, P,, ..., P;} be a set of
paths of length 2 or 3 between any pair of non-adjacent vertices u, and v. Let
S =V (S),E(S)) <G be asubgraph contains the set of paths P. To prove that S
is induced, the following three cases are proven:

Case (1): If Ni_,V(P) =0 and NIL,E(P) =@ (i.e. all P;s have distinct
vertices and edges), then each path P;,i = 1,2, ..., t, is an induced subgraph with
the set of vertices V; = {u, v;, v} because v; € Ni_, V(P;). Also since Ve =
{x,y} € E(S),3x,y € V(S),then the subgraph S on the set vertices V(P) =
{u, vy, v,, ..., v, v} is an induced subgraph.

Case (2): If there exist a vertex v; such that v; € {V(P;) N V(P;)}, then there exist
an edgee; € {E(P,)NE(P;)}, such that the subgraphsS = (V(S),E(S));
where V(S) = Ut V(P); and E(S) = U‘_; E(P); is an induced subgraph, since
all edges incident on V(S) belongs to E(S), for illustration.

Case (3): If the set of vertices are disjoint (i.e. N, V(P;) = @), and there exist an
edge e; = (x,y) such thatx € V(P;),y € V(P;), compute all minimum paths
between any pair of the vertices v,u, x,and y, where u, and v are the ends of the
given path, such that e=(x,y) exist in the induced subgraph that contains these
vertices. 0

4. Results and Analysis

In this paper, a new algorithm for finding an induced subgraph isomorphism
between two graphs known as pattern and target graphs has been proposed. It is
based on searching about all minimal paths between any two vertices to represent
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the induced subgraph in one of them that is isomorphic to the other. This is done
if the searched path (or paths) between two vertices contains all vertices and edges
in their chosen subgraph. Otherwise, additional vertices are added to the path to
be self-content, and in this case, it is considered as a path between more than two
vertices. Hence, the resulting induced subgraph is constructed by joining these
paths together.

4.1 Comparison results

The algorithm is designated to find the induced subgraph in a target graph
isomorphic to the pattern graph. It is divided into four main parts, In the first part,
the labeling for both graphs is performed as well as, rearranging the vertices in
descending order according to the degree of vertices. This will lead to
constricting of a new matrix called induced matrix illustrated in part two, such
that, each entry (i,j) represents an induced subgraph of all minimal paths between
a pair of vertices (v;,vj). This matrix is used to facilitate the search space about the
paths that contains all vertices and edges of the selected subgraph. Therefore, the
graphs are identified using these sets of paths. Finally, the last part is designated
to find all induced subgraph in a pattern graph that are isomorphic to the target
graph by seeking about the identical sets of vertices and edges in both graphs.
After applying this algorithm on different cases, some of the concluding remarks
are abstracted as follows:

e This algorithm can be used for graph isomorphism and induced subgraph
isomorphism.

e Choosing the maximum degree vertex helps to reduce the search space
that is better than random search.

e Using this algorithm for finding all induced subgraph is an advantage upon
some well-known algorithms designated to find only one graph or
subgraph isomorphism.

e Based on minimal path search, it is better and faster than other types of
search based on a chosen starting point randomly. This is because the
determination of start and end vertices will facilitate the search space and
improve the complexity of the search algorithm.

e The density condition on the graph being used for search is another
advantage that leads to a wide area of application of the proposed
algorithm over some known algorithms suitable to be applied for low
connected graphs.

e The worst case arises when the vertices of the given graph is complete, so
this case is overtaken in our algorithm.

The proposed algorithm is compared with Ullmann [1] and VF2 [2]

algorithms in terms of their properties. This comparison is abstracted in Table 1.
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Table 1
Compression between our proposed method and Ullmann andVF2 Methods
Ullmann VF2 The proposed method
Isomorphism and Isomorphism and Isomorphism and
The implementation subgraph subgraph induced subgraph
isomorphism isomorphism isomorphism
Matrix investigation Adjacency | @ ---eee- Distance
. . Determine a partial set Vertex of largest
Starting point Random vertex !
of vertices degree
. . All induced
Output result Single graph Single graph isomorphic subgraph
Search method Depth first search Tree search All paths
Graph structure General General Dense
Permute the rows and State space Minimal paths
Search process . .
column representation between two vertices

5. Conclusions

A new heuristic algorithm for finding all induced subgraph isomorphism
between two graphs is proposed. It is based on minimal paths between any pair of
vertices in both graphs. The vertices are rearranged in descending order according
to the degree of vertices to help in suppressing or preventing the searched path
from appearing in other searchers. Some theoretical results are concluded and
proved to give some consolidation to the proposed algorithm. A comparison of the
properties of the proposed algorithm with the well-known traditional algorithms,
Ullmann and VF2 is performed. The possibility of applying the proposed
algorithm on a highly connected dense graph helps to expand fields of application
that many traditional algorithms failed to cover.
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