

DIRECT SUMS OF S – DECOMPOSABLE AND S – SPECTRAL OPERATOR SYSTEMS

Cristina SERBĂNESCU¹, Mariana ZAMFIR²

In this paper is trying to extend and generalize several results of the spectral theory for a single S – decomposable (S – spectral) operator to S – decomposable (S – spectral) operator systems. The goal of the work is to establish the behaviour of S – decomposable (S – spectral) systems related to direct sums, by showing that the direct sum of two systems is an S – decomposable (S – spectral) system if and only if both systems are S – decomposable (S – spectral). These spectral decompositions are related to differential equations and to systems of differential equations ([9]) and can have applications in quantum mechanics and fractal theory.

Keywords: Taylor spectrum; S – spectral capacity; S – decomposable system; S – spectral measure; S – spectral system; direct sum.

1. Introduction

Along this paper, we consider \mathbb{C}^n to be the space of all elements $z = (z_1, z_2, \dots, z_n)$, with $z_j \in \mathbb{C}$, $1 \leq j \leq n$, X and Y to be two complex Banach spaces, $\mathbf{B}(X)$ to be the algebra of all linear bounded operators on X , $\mathbf{P}(X)$ to be the set of all projectors on X and $\mathbf{S}(X)$ to be the family of all linear closed subspaces of X . Moreover, if $S \subset \mathbb{C}^n$ is a compact fixed set, we denote by \mathbf{F}_S^n (respectively, by \mathbf{B}_S^n) the family of all closed subsets $F \subset \mathbb{C}^n$ (respectively, the family all Borelian subsets $B \subset \mathbb{C}^n$) which have the property that $F \cap S = \emptyset$ or $F \supset S$ (respectively, $B \cap S = \emptyset$ or $B \supset S$).

Let $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ be a system of commuting operators, i.e. $a_i a_j = a_j a_i$, $1 \leq i, j \leq n$. The system a is called *nonsingular* on X if the associated Koszul complex $E(X, a)$ is exact, where

¹ Lecturer, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania, email: mserbanescu@yahoo.com

² Lecturer, Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, email: zamfirvmariana@yahoo.com

$$\begin{aligned}
E(X, a) : 0 \rightarrow X = \Lambda^n[\sigma, X] &\xrightarrow{\delta_n} \Lambda^{n-1}[\sigma, X] \xrightarrow{\delta_{n-1}} \dots \\
&\xrightarrow{\delta_3} \Lambda^2[\sigma, X] \xrightarrow{\delta_2} \Lambda^1[\sigma, X] \xrightarrow{\delta_1} \Lambda^0[\sigma, X] = X \rightarrow 0
\end{aligned}$$

or, equivalent, the complex $F(X, a)$ is exact, where

$$\begin{aligned}
F(X, a) : 0 \rightarrow X = \Lambda^0[\sigma, X] &\xrightarrow{\delta^0} \Lambda^1[\sigma, X] \xrightarrow{\delta^1} \Lambda^2[\sigma, X] \xrightarrow{\delta^2} \dots \\
&\xrightarrow{\delta^{n-2}} \Lambda^{n-1}[\sigma, X] \xrightarrow{\delta^{n-1}} \Lambda^n[\sigma, X] = X \rightarrow 0 \quad ([6], [12])
\end{aligned}$$

For an integer p , it can be defined the homology module of $E(X, a)$ as

$$H_p(X, a) = \text{Ker}(\delta_{p+1} : \Lambda^{p+1} \rightarrow \Lambda^p) / \text{Im}(\delta_p : \Lambda^p \rightarrow \Lambda^{p-1})$$

and respectively, the cohomology module of chain complex $F(X, a)$ by

$$H^p(X, a) = \text{Ker}(\delta^p : \Lambda^p \rightarrow \Lambda^{p+1}) / \text{Im}(\delta^{p-1} : \Lambda^{p-1} \rightarrow \Lambda^p) \quad ([6], [12]).$$

The *Taylor spectrum of a on X* is denoted by $\sigma(a, X)$ and it is the complementary in \mathbb{C}^n of the set of $z = (z_1, z_2, \dots, z_n) \in \mathbb{C}^n$ such that the system $z - a = (z_1 - a_1, z_2 - a_2, \dots, z_n - a_n)$ is nonsingular on X ([6], [12]). The *analytic spectrum of $x \in X$ with respect to a* is denoted by $\sigma(a, x)$ and it is defined as the complementary in \mathbb{C}^n of the set of $z = (z_1, z_2, \dots, z_n) \in \mathbb{C}^n$ such that there are an open neighborhood V of z and n X -valued analytic functions f_1, f_2, \dots, f_n on V , satisfying the equation $x = (\zeta_1 - a_1)f_1(\zeta) + \dots + (\zeta_n - a_n)f_n(\zeta)$, $\zeta \in V$ ([6]). The *spectrum of $x \in X$ with respect to a* is denoted by $sp(a, x)$ and it is the complementary in \mathbb{C}^n of the reunion of all open sets $V \subset \mathbb{C}^n$ such that there is a form $\psi \in \Lambda^{n-1}[\sigma \cup d\bar{z}, C^\infty(V, X)]$ satisfying the equality $s x = (\alpha \oplus \bar{\partial})\psi$, i.e.

$$\begin{aligned}
x(s_1 \wedge s_2 \wedge \dots \wedge s_n) &= \left[(z_1 - a_1)s_1 + (z_2 - a_2)s_2 + \dots + (z_n - a_n)s_n + \frac{\partial}{\partial \bar{z}_1} d\bar{z}_1 + \right. \\
&\quad \left. + \frac{\partial}{\partial \bar{z}_2} d\bar{z}_2 + \dots + \frac{\partial}{\partial \bar{z}_n} d\bar{z}_n \right] \wedge \psi(z) \quad ([6], [7]).
\end{aligned}$$

In [5], J. Eschmeier proved that $\sigma(a, x) = sp(a, x)$.

The system $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ verifies *the cohomology condition* (L) (respectively, *the condition* (L_S)) if $H^{n-1}(C^\infty(G, X), \alpha \oplus \bar{\partial}) = 0$, for any open set $G \subset \mathbb{C}^n$ ([6]) (respectively, for any open $G \subset \mathbb{C}^n$, with $G \cap S = \emptyset$, [11]), where $C^\infty(G, X)$ is the space of all continuous functions admitting partial derivatives of any order. We consider for $F \subset \mathbb{C}^n$ closed ([6]):

$$X_a(F) = \{x; x \in X, \sigma(a, x) \subset F\} \text{ and } X_{[a]}(F) = \{x; x \in X, sp(a, x) \subset F\}.$$

Let S_a be a compact minimal set having $H^{n-1}(C^\infty(G, X), \alpha \oplus \bar{\partial}) = 0$,

for any open set $G \subset \mathbb{C}^n$ with $G \cap S_a = \emptyset$ (minimal means that S_a is the intersection of all compact sets satisfying the specified property). The set S_a is called *the analytic spectral residuum* of the system a ([2], [14]); $S_a \subset \sigma(a, X)$. If $S_a = \emptyset$, then the system a verifies the cohomology property (L) ([14]).

2. Preliminaries

Definition 2.1. ([2]) An application $\mathcal{E}_S : \mathcal{F}_S^n \rightarrow \mathbf{S}(X)$ is said to be *S-spectral capacity* if it verifies the conditions:

$$(1) \quad \mathcal{E}_S(\emptyset) = \{0\}, \quad \mathcal{E}_S(\mathbb{C}^n) = X;$$

$$(2) \quad \mathcal{E}_S\left(\bigcap_{i=1}^{\infty} F_i\right) = \bigcap_{i=1}^{\infty} \mathcal{E}_S(F_i), \text{ for any family } \{F_i\}_{i \in \mathbb{N}} \subset \mathcal{F}_S^n;$$

(3) for any open finite S -covering $G_S \cup \{G_j\}_{j=1}^m$ of \mathbb{C}^n we have

$$X = \mathcal{E}_S(\overline{G}_S) + \sum_{j=1}^m \mathcal{E}_S(\overline{G}_j).$$

The system $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ is called *S-decomposable* if there is an S -spectral capacity \mathcal{E}_S such that:

$$(4) \quad a_j \mathcal{E}_S(F) \subset \mathcal{E}_S(F), \text{ for any } F \in \mathcal{F}_S^n \text{ and for any } 1 \leq j \leq n;$$

$$(5) \quad \sigma(a, \mathcal{E}_S(F)) \subset F, \text{ for any } F \in \mathcal{F}_S^n.$$

Definition 2.2. ([1]) A mapping $E_S : \mathcal{B}_S^n \rightarrow \mathbf{P}(X)$ is called a (\mathbb{C}^n, X) type S – spectral measure if it meets the properties:

$$(1) \quad E_S(\emptyset) = 0, \quad E_S(\mathbb{C}^n) = I_X;$$

$$(2) \quad E_S(B_1 \cap B_2) = E_S(B_1)E_S(B_2), \text{ for } B_1, B_2 \in \mathcal{B}_S^n;$$

$$(3) \quad E_S\left(\bigcup_{m=1}^{\infty} B_m\right)x = \sum_{m=1}^{\infty} E_S(B_m)x, \quad \text{for } B_m \in \mathcal{B}_S^n, B_m \cap B_p = \emptyset, \text{ if } m \neq p, x \in X.$$

The system $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ is called S – spectral if there is a (\mathbb{C}^n, X) type S – spectral measure E_S such that:

$$(4) \quad a_j E_S(B) = E_S(B) a_j, \text{ for any } B \in \mathcal{B}_S^n \text{ and for any } 1 \leq j \leq n;$$

$$(5) \quad \sigma(a, E_S(B)X) \subset \overline{B}, \text{ for any } B \in \mathcal{B}_S^n.$$

Lemma 2.1. ([2], [15]) If $a = (a_1, \dots, a_n) \subset \mathbf{B}(X)$ and $b = (b_1, \dots, b_n) \subset \mathbf{B}(Y)$ are two commuting operator systems, then the Taylor spectrum of the system $a \oplus b = (a_1 \oplus b_1, a_2 \oplus b_2, \dots, a_n \oplus b_n) \subset \mathbf{B}(X \oplus Y)$ verifies the equality

$$\sigma(a \oplus b, X \oplus Y) = \sigma(a, X) \cup \sigma(b, Y).$$

Proposition 2.1. ([2], [15]) The operator systems $a = (a_1, \dots, a_n) \subset \mathbf{B}(X)$ and $b = (b_1, \dots, b_n) \subset \mathbf{B}(Y)$ verify the cohomology condition (L) (respectively, (L_S)) if and only if the system $a \oplus b = (a_1 \oplus b_1, \dots, a_n \oplus b_n) \subset \mathbf{B}(X \oplus Y)$ verifies the same condition (L) (respectively, (L_S)).

Proposition 2.2. ([2], [15]) If $a = (a_1, \dots, a_n) \subset \mathbf{B}(X)$ and $b = (b_1, \dots, b_n) \subset \mathbf{B}(Y)$ are two operator systems that verify condition (L) , then the following equalities hold:

$$1) \quad \sigma(a \oplus b, x \oplus y) = \sigma(a, x) \cup \sigma(b, y), \quad x \in X, y \in Y;$$

$$2) \quad \text{sp}(a \oplus b, x \oplus y) = \text{sp}(a, x) \cup \text{sp}(b, y), \quad x \in X, y \in Y;$$

$$3) \quad (X \oplus Y)_{a \oplus b}(F) = X_a(F) \oplus Y_b(F), \quad F \subset \mathbb{C}^n \text{ closed.}$$

Proposition 2.3. ([11]) An operator system $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ is S – decomposable if and only if the following conditions are established:

(I) a verifies the cohomology condition (L_S) , the space $X_a(F)$ is closed and $\sigma(a, X_a(F)) \subset F$, for any $F \in \mathcal{F}_S^n$, $F \supset S$;

(II) for any open S – covering $G_S \cup \{G_j\}_{j=1}^m$ of \mathbb{C}^n and for any $x \in X$

we have:

$$x = x_S + x_1 + x_2 + \dots + x_m, \text{ with } \sigma(a, x_S) \subset G_S, \sigma(a, x_j) \subset G_j, 1 \leq j \leq m.$$

3. Direct sums of S – decomposable and S – spectral systems

Proposition 3.1. Let $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ and $b = (b_1, b_2, \dots, b_n) \subset \mathbf{B}(Y)$ be two commuting operator systems that verify condition (L) , or condition (L_S) , or conditions (L_{S_1}) for a and (L_{S_2}) for b . Then the spaces $X_a(F)$ and $Y_b(F)$ are closed and $\sigma(a, X_a(F)) \subset F$, $\sigma(b, Y_b(F)) \subset F$, for $F \subset \mathbb{C}^n$ closed, or for $F \in \mathcal{F}_S^n$, with $F \supset S$, or for $F \in \mathcal{F}_S^n$, with $F \cap S = \emptyset$ (when $S_a = \emptyset$, $S_b = \emptyset$) if and only if the space $(X \oplus Y)_{a \oplus b}(F)$ is closed and $\sigma(a \oplus b, (X \oplus Y)_{a \oplus b}(F)) \subset F$.

Proof. According to Proposition 2.1, when a and b verify condition (L) (respectively, (L_S)), then the system $a \oplus b$ verifies condition (L) (respectively (L_S)). Let us first suppose that the subspaces $X_a(F)$, $Y_b(F)$ are closed and

$$\sigma(a, X_a(F)) \subset F, \sigma(b, Y_b(F)) \subset F$$

for $F \subset \mathbb{C}^n$ closed (respectively, for $F \in \mathcal{F}_S^n$).

From the equality

$$X_a(F) \oplus Y_b(F) = (X \oplus Y)_{a \oplus b}(F) \tag{1}$$

(see Proposition 2.2 and [10]), we have that $(X \oplus Y)_{a \oplus b}(F)$ is closed. From Lemma 2.1, it results that

$$\sigma(a \oplus b, (X \oplus Y)_{a \oplus b}(F)) = \sigma(a, X_a(F)) \cup \sigma(b, Y_b(F)) \subset F.$$

Conversely, if the space $(X \oplus Y)_{a \oplus b}(F)$ is closed and

$$\sigma(a \oplus b, (X \oplus Y)_{a \oplus b}(F)) \subset F$$

by denoting with P_X and P_Y , respectively, the corresponding projections (i.e. $P_X(X \oplus Y) = X$, $P_Y(X \oplus Y) = Y$), then, according to equality (1), we have

$$P_X((X \oplus Y)_{a \oplus b}(F)) = X_a(F) \text{ and } P_Y((X \oplus Y)_{a \oplus b}(F)) = Y_b(F).$$

Let us now prove that the spaces $X_a(F)$ and $Y_b(F)$ are closed. One can easily verify that P_X and P_Y commute with every $a_j \oplus b_j$, $1 \leq j \leq n$, and since $(X \oplus Y)_{a \oplus b}(F)$ is ultrainvariant to $a \oplus b$, it follows that it is invariant to P_X and P_Y . Consequently, P_X, P_Y are also projections in $(X \oplus Y)_{a \oplus b}(F)$, hence the images X_1 and Y_1 through P_X and P_Y of the space $(X \oplus Y)_{a \oplus b}(F)$ are closed subspaces and

$$X_1 \oplus Y_1 = (X \oplus Y)_{a \oplus b}(F), \sigma(a, X_1) \subset F, \sigma(b, Y_1) \subset F.$$

It follows that $X_1 \subset X_a(F)$, $Y_1 \subset Y_b(F)$; furthermore, we have $X_a(F) \oplus Y_b(F) = X_1 \oplus Y_1$, whence $X_1 = X_a(F)$, $Y_1 = Y_b(F)$.

Theorem 3.1. *Let $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ and $b = (b_1, b_2, \dots, b_n) \subset \mathbf{B}(Y)$ be two systems. Then $a \oplus b = (a_1 \oplus b_1, a_2 \oplus b_2, \dots, a_n \oplus b_n) \subset \mathbf{B}(X \oplus Y)$ is an S -decomposable system if and only if a and b are S -decomposable.*

Proof. From Proposition 2.1, it results that a and b verify (L_S) if and only if $a \oplus b$ verifies (L_S) , and by Proposition 2.2 and Lemma 2.1 we have

$$\begin{aligned} (X \oplus Y)_{a \oplus b}(F) &= X_a(F) \oplus Y_b(F) \\ \sigma(a \oplus b, (X \oplus Y)_{a \oplus b}(F)) &= \sigma(a, X_a(F)) \cup \sigma(b, Y_b(F)) \subset F \end{aligned}$$

for $F \in \mathbf{F}_S^n$, with $F \supset S$.

According to Proposition 3.1, we have that the systems a and b satisfy the condition (I) from the hypothesis of Proposition 2.3 (i.e. a and b verify (L_S) , $X_a(F)$ and $Y_b(F)$ are closed, $\sigma(a, X_a(F)) \subset F$, $\sigma(b, Y_b(F)) \subset F$, $F \in \mathbf{F}_S^n$, with $F \supset S$) if and only if the system $a \oplus b$ verifies the same condition (I) (i.e. $a \oplus b$ verifies condition (L_S) , the space $(X \oplus Y)_{a \oplus b}(F)$ is closed, $\sigma(a \oplus b, (X \oplus Y)_{a \oplus b}(F)) \subset F$, for $F \in \mathbf{F}_S^n$, with $F \supset S$).

In the same manner, if $G_S \cup \{G_j\}_{j=1}^m$ is an open S – covering of \mathbb{C}^n , then by using the equalities

$$\begin{aligned} (x_S \oplus y_S) + (x_1 \oplus y_1) + \dots + (x_m \oplus y_m) &= (x_S + x_1 + \dots + x_m) \oplus (y_S + y_1 + \dots + y_m) \\ \sigma(a \oplus b, x_j \oplus y_j) &= \sigma(a, x_j) \cup \sigma(b, y_j), \quad 1 \leq j \leq m \\ \sigma(a \oplus b, x_S \oplus y_S) &= \sigma(a, x_S) \cup \sigma(b, y_S) \end{aligned}$$

it follows that a and b verify the condition (II) from Proposition 2.3 if and only if $a \oplus b$ verifies the same condition. Consequently, according to Proposition 2.3, a and b are S – decomposable if and only if $a \oplus b$ is S – decomposable.

Remark 3.1. If $a \subset \mathbf{B}(X)$ and $b \subset \mathbf{B}(Y)$ are S – decomposable and $E_{1S} : F_S^n \rightarrow \mathbf{S}(X)$, $E_{2S} : F_S^n \rightarrow \mathbf{S}(Y)$ are their S – spectral capacities, then the application $E_S : F_S^n \rightarrow \mathbf{S}(X \oplus Y)$, $E_S(F) = E_{1S}(F) \oplus E_{2S}(F)$, $F \in F_S^n$, is the S – spectral capacity for $a \oplus b \subset \mathbf{B}(X \oplus Y)$, therefore $a \oplus b$ is S – decomposable (see Definition 2.1 and [10]).

Proposition 3.2. Let E_{1S} be a (\mathbb{C}^n, X) type S – spectral measure and let E_{2S} be a (\mathbb{C}^n, Y) type S – spectral measure. Then $E_S = E_{1S} \oplus E_{2S}$ is a $(\mathbb{C}^n, X \oplus Y)$ type S – spectral measure. Conversely, if E_S is a $(\mathbb{C}^n, X \oplus Y)$ type S – spectral measure and $E_S = E_{1S} \oplus E_{2S}$, then E_{1S} is a (\mathbb{C}^n, X) type S – spectral measure and E_{2S} is a (\mathbb{C}^n, Y) type S – spectral measure, respectively.

Proof. Since E_{1S} and E_{2S} are two S – spectral measures, we apply now Definition 2.2 and we deduce for $i = 1, 2$:

$$\begin{aligned} E_{iS}(\emptyset) &= 0, \quad E_{1S}(\mathbb{C}^n) = I_X, \quad E_{2S}(\mathbb{C}^n) = I_Y; \\ E_{iS}(B_1 \cap B_2) &= E_{iS}(B_1)E_{iS}(B_2), \quad B_1, B_2 \in \mathbf{B}_S^n; \\ E_{iS}\left(\bigcup_{m=1}^{\infty} B_m\right)x &= \sum_{m=1}^{\infty} E_{iS}(B_m)x, \quad B_m \in \mathbf{B}_S^n, \quad B_m \cap B_p = \emptyset, \text{ if } m \neq p, \\ x \in X \text{ (for } i=1) \text{ or } x \in Y \text{ (for } i=2). \end{aligned}$$

Let us prove that $E_{1S} \oplus E_{2S}$ is a $(\mathbb{C}^n, X \oplus Y)$ type S – spectral measure, where $E_{1S} \oplus E_{2S}$ is denoted by E_S and it is defined naturally by the equality

$$E_S(B) = (E_{1S} \oplus E_{2S})(B) = E_{1S}(B) \oplus E_{2S}(B), \quad B \in \mathcal{B}_S^n.$$

We obviously have, for $B_1, B_2 \in \mathcal{B}_S^n$:

$$E_S(\emptyset) = (E_{1S} \oplus E_{2S})(\emptyset) = E_{1S}(\emptyset) \oplus E_{2S}(\emptyset) = 0 \oplus 0 = 0;$$

$$E_S(\mathbb{C}^n) = (E_{1S} \oplus E_{2S})(\mathbb{C}^n) = E_{1S}(\mathbb{C}^n) \oplus E_{2S}(\mathbb{C}^n) = I_X \oplus I_Y = I_{X \oplus Y};$$

$$\begin{aligned} E_S(B_1 \cap B_2) &= (E_{1S} \oplus E_{2S})(B_1 \cap B_2) = E_{1S}(B_1 \cap B_2) \oplus E_{2S}(B_1 \cap B_2) = \\ &= (E_{1S}(B_1) E_{1S}(B_2)) \oplus (E_{2S}(B_1) E_{2S}(B_2)) = \\ &= (E_{1S}(B_1) \oplus E_{2S}(B_1)) (E_{1S}(B_2) \oplus E_{2S}(B_2)) = \\ &= ((E_{1S} \oplus E_{2S})(B_1)) ((E_{1S} \oplus E_{2S})(B_2)) = E_S(B_1) E_S(B_2). \end{aligned}$$

In order to end the verifications, it remains to establish the countable additivity of E_S :

$$\begin{aligned} E_S\left(\bigcup_{m=1}^{\infty} B_m\right)(x \oplus y) &= (E_{1S} \oplus E_{2S})\left(\bigcup_{m=1}^{\infty} B_m\right)(x \oplus y) = \\ &= \left(E_{1S}\left(\bigcup_{m=1}^{\infty} B_m\right) \oplus E_{2S}\left(\bigcup_{m=1}^{\infty} B_m\right)\right)(x \oplus y) = \\ &= \left(E_{1S}\left(\bigcup_{m=1}^{\infty} B_m\right)x\right) \oplus \left(E_{2S}\left(\bigcup_{m=1}^{\infty} B_m\right)y\right) = \\ &= \left(\sum_{m=1}^{\infty} E_{1S}(B_m)x\right) \oplus \left(\sum_{m=1}^{\infty} E_{2S}(B_m)y\right) = \end{aligned}$$

$$\begin{aligned}
&= \sum_{m=1}^{\infty} \left((E_{1S}(B_m)x) \oplus (E_{2S}(B_m)y) \right) = \sum_{m=1}^{\infty} (E_{1S}(B_m) \oplus E_{2S}(B_m))(x \oplus y) = \\
&= \sum_{m=1}^{\infty} (E_{1S} \oplus E_{2S})(B_m)(x \oplus y) = \sum_{m=1}^{\infty} E_S(B_m)(x \oplus y), \quad x \in X, y \in Y.
\end{aligned}$$

Conversely, we suppose that E_S is a $(\mathbb{C}^n, X \oplus Y)$ type S – spectral measure. Then E_S can be written as $E_S = E_{1S} \oplus E_{2S}$, where $E_{1S}(B) \in \mathbf{B}(X)$, $E_{2S}(B) \in \mathbf{B}(Y)$, for $B \in \mathbf{B}_S^n$.

The mappings $E_{1S} : \mathbf{B}_S^n \rightarrow \mathbf{P}(X)$ and $E_{2S} : \mathbf{B}_S^n \rightarrow \mathbf{P}(Y)$ are obviously linear and from the equalities

$$E_{1S} \oplus E_{2S} = (E_{1S} \oplus E_{2S})^2 = E_{1S}^2 \oplus E_{2S}^2$$

it follows that $E_{1S} = E_{1S}^2$ and $E_{2S} = E_{2S}^2$, hence $E_{1S}(B)$ and $E_{2S}(B)$ are projectors in X and Y , respectively.

In the same manner, one can easily verify that E_{1S} is a (\mathbb{C}^n, X) type S – spectral measure and E_{2S} is a (\mathbb{C}^n, Y) type S – spectral measure; indeed:

$$0 = E_S(\emptyset) = E_{1S}(\emptyset) \oplus E_{2S}(\emptyset), \text{ hence } E_{1S}(\emptyset) = 0 \text{ and } E_{2S}(\emptyset) = 0;$$

$$I_{X \oplus Y} = E_S(\mathbb{C}^n) = E_{1S}(\mathbb{C}^n) \oplus E_{2S}(\mathbb{C}^n), \text{ hence } E_{1S}(\mathbb{C}^n) = I_X \text{ and}$$

$$E_{2S}(\mathbb{C}^n) = I_Y;$$

$$E_S(B_1 \cap B_2) = E_S(B_1)E_S(B_2) \Leftrightarrow$$

$$(E_{1S} \oplus E_{2S})(B_1 \cap B_2) = (E_{1S} \oplus E_{2S})(B_1)(E_{1S} \oplus E_{2S})(B_2) \Leftrightarrow$$

$$E_{1S}(B_1 \cap B_2) \oplus E_{2S}(B_1 \cap B_2) =$$

$$= (E_{1S}(B_1) \oplus E_{2S}(B_1))(E_{1S}(B_2) \oplus E_{2S}(B_2)) \Leftrightarrow$$

$$E_{1S}(B_1 \cap B_2) \oplus E_{2S}(B_1 \cap B_2) =$$

$$= (E_{1S}(B_1)E_{1S}(B_2)) \oplus (E_{2S}(B_1)E_{2S}(B_2)),$$

hence $E_{iS}(B_1 \cap B_2) = E_{iS}(B_1)E_{iS}(B_2)$, $B_1, B_2 \in \mathbf{B}_S^n$, $i=1, 2$.

We can also write, for $B_m \in \mathbf{B}_S^n$, $B_m \cap B_p = \emptyset$, if $m \neq p$, $x \in X$, $y \in Y$:

$$\begin{aligned} E_S\left(\bigcup_{m=1}^{\infty} B_m\right)(x \oplus y) &= \sum_{m=1}^{\infty} E_S(B_m)(x \oplus y) = \sum_{m=1}^{\infty} (E_{1S} \oplus E_{2S})(B_m)(x \oplus y) = \\ &= \sum_{m=1}^{\infty} (E_{1S}(B_m) \oplus E_{2S}(B_m))(x \oplus y) = \sum_{m=1}^{\infty} ((E_{1S}(B_m)x) \oplus (E_{2S}(B_m)y)) = \\ &= \left(\sum_{m=1}^{\infty} E_{1S}(B_m)x \right) \oplus \left(\sum_{m=1}^{\infty} E_{2S}(B_m)y \right) \end{aligned}$$

and

$$\begin{aligned} E_S\left(\bigcup_{m=1}^{\infty} B_m\right)(x \oplus y) &= (E_{1S} \oplus E_{2S})\left(\bigcup_{m=1}^{\infty} B_m\right)(x \oplus y) = \\ &= \left(E_{1S}\left(\bigcup_{m=1}^{\infty} B_m\right) \oplus E_{2S}\left(\bigcup_{m=1}^{\infty} B_m\right) \right)(x \oplus y) = \\ &= \left(E_{1S}\left(\bigcup_{m=1}^{\infty} B_m\right)x \right) \oplus \left(E_{2S}\left(\bigcup_{m=1}^{\infty} B_m\right)y \right) \end{aligned}$$

accordingly

$$E_{1S}\left(\bigcup_{m=1}^{\infty} B_m\right)x = \sum_{m=1}^{\infty} E_{1S}(B_m)x \text{ and } E_{2S}\left(\bigcup_{m=1}^{\infty} B_m\right)y = \sum_{m=1}^{\infty} E_{2S}(B_m)y.$$

Theorem 3.2. Let $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$, $b = (b_1, b_2, \dots, b_n) \subset \mathbf{B}(Y)$ be two commuting operator systems. Then a and b are S -spectral if and only if $a \oplus b = (a_1 \oplus b_1, a_2 \oplus b_2, \dots, a_n \oplus b_n) \subset \mathbf{B}(X \oplus Y)$ is S -spectral.

Proof. Let us suppose that the systems a and b are S -spectral and let E_{1S} and E_{2S} be their S -spectral measures. On account of the above proposition, the application E_S defined by the equality

$$E_S(B) = E_{1S}(B) \oplus E_{2S}(B), \text{ for } B \in \mathbf{B}_S^n$$

is an S – spectral measure of the system $a \oplus b$, which commutes with every operator $a_j \oplus b_j$, because a_j commutes with E_{1S} and b_j commutes with E_{2S} , for any $1 \leq j \leq n$: For any Borelian set $B \in \mathbf{B}_S^n$, we have:

$$\begin{aligned} E_S(B)(a_j \oplus b_j) &= (E_{1S}(B) \oplus E_{2S}(B))(a_j \oplus b_j) = \\ &= E_{1S}(B)a_j \oplus E_{2S}(B)b_j = a_j E_{1S}(B) \oplus b_j E_{2S}(B) = \\ &= (a_j \oplus b_j)(E_{1S}(B) \oplus E_{2S}(B)) = (a_j \oplus b_j)E_S(B). \end{aligned}$$

Furthermore, from the inclusions

$$\sigma(a, E_{1S}(B)X) \subset \overline{B}, \quad \sigma(b, E_{2S}(B)Y) \subset \overline{B}, \quad B \in \mathbf{B}_S^n$$

and by Lemma 2.1 we can conclude that

$$\begin{aligned} \sigma(a \oplus b, E_S(B)(X \oplus Y)) &= \sigma(a \oplus b, E_{1S}(B)X \oplus E_{2S}(B)Y) = \\ &= \sigma(a, E_{1S}(B)X) \cup \sigma(b, E_{2S}(B)Y) \subset \overline{B} \end{aligned}$$

consequently the system $a \oplus b$ is S – spectral.

Conversely, if we assume that $a \oplus b$ is S – spectral and E_S is its S – spectral measure, then using once more the proof of Proposition 3.2, we have that E_S can be written as the form $E_S = E_{1S} \oplus E_{2S}$, where E_{1S} , E_{2S} are the S – spectral measures for a and b , respectively, and $E_{1S}(B)$, $E_{2S}(B)$ are projectors in X and Y , respectively.

From the inclusion (Lemma 2.1)

$$\sigma(a, E_{1S}(B)X) \cup \sigma(b, E_{2S}(B)Y) = \sigma(a \oplus b, E_S(B)(X \oplus Y)) \subset \overline{B}$$

it follows that

$$\sigma(a, E_{1S}(B)X) \subset \overline{B}, \quad \sigma(b, E_{2S}(B)Y) \subset \overline{B}, \quad B \in \mathbf{B}_S^n.$$

Moreover, it is easily seen that

$$(a_j \oplus b_j)E_S(B) = E_S(B)(a_j \oplus b_j) \Leftrightarrow$$

$$(a_j \oplus b_j)(E_{1S}(B) \oplus E_{2S}(B)) = (E_{1S}(B) \oplus E_{2S}(B))(a_j \oplus b_j) \Leftrightarrow$$

$$a_j E_{1S}(B) \oplus b_j E_{2S}(B) = E_{1S}(B)a_j \oplus E_{2S}(B)b_j$$

for all $1 \leq j \leq n$, $B \in \mathbf{B}_S^n$, therefore

$$a_j E_{1S}(B) = E_{1S}(B)a_j, \quad b_j E_{2S}(B) = E_{2S}(B)b_j$$

and we deduce that a and b are S – spectral systems.

Corollary 3.1. *Let $a = (a_1, a_2, \dots, a_n) \subset \mathbf{B}(X)$ be an S -spectral system and let $P \in \mathbf{B}(X)$ be a projector which commutes with every operator a_j , $1 \leq j \leq n$. Then the restrictions $a|P X$ and $a|(I-P)X$ are S_i -spectral systems, $i=1, 2$, where $S_1 = S \cap \sigma(a, P X)X$ and $S_2 = S \cap \sigma(a, (I-P)X)$.*

Proof. The assertions of the hypothesis follow from Theorem 3.2, by the equality $a = (a|P X) \oplus (a|(I-P)X)$ and from the fact that the restriction of a spectral system to an invariant subspace is also a spectral system if and only if the subspace is also invariant to the spectral measure of the system (see [6], [1], [16]).

R E F E R E N C E S

- [1]. *I. Bacalu*, Descompuneri spectrale reziduale (Residually spectral decompositions), *Stud. Cerc. Mat.* I (1980), II (1980), III (1981).
- [2]. *I. Bacalu*, *S* – Spectral Decompositions, Ed. Politehnica Press, Bucharest, 2008.
- [3]. *I. Colojoară and C. Foiaş*, Theory of generalized spectral operators, Gordon Breach, Science Publ., New York-London-Paris, 1968.
- [4]. *N. Dunford and J.T. Schwartz*, Linear Operators, Interscience Publishers, New-York, Part I (1958), Part II (1963), Part III (1971).
- [5]. *J. Eschmeier*, On two notions of the local spectrum for several commuting operators, *Michigan Math. J.*, **30**, 1983, pp. 245-248.
- [6]. *Şt. Frunză*, O teorie axiomatică a descompunerilor spectrale pentru sisteme de operatori I și II (An axiomatic theory of spectral decompositions for systems of operators I and II), I, *Stud. Cerc. Mat.*, **27**, 1975, pp. 655-711, and II, **29**, 1977, pp. 329-376.
- [7]. *Şt. Frunză*, The Taylor spectrum and spectral decompositions, *J. Func. Anal.*, **19**, 1977, pp. 390-421.
- [8]. *K.B. Laursen and M.M. Neumann*, An Introduction to Local Spectral Theory, London Math. Soc. Monographs New Series, Oxford Univ. Press., New-York, 2000.
- [9]. *B. Nagy*, Differential operators and spectral decomposition, *Colloquia Mathematica Societatis Jonas Bolyai*, **35**, Functions, Series, Operators, Budapest (Hungary), 1980.
- [10]. *C. Șerbănescu and I. Bacalu*, On certain aspects of the multidimensional S – spectral theory, Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2014.
- [11]. *C. Șerbănescu and I. Bacalu*, Generalizing certain properties of decomposable systems, Recent Advances on Applied Mathematics an Computational Methods in Engineering, ISBN 978-1-61804-292-7, 2015, pp. 26-35.
- [12]. *J.L. Taylor*, A joint spectrum for several commuting operators, *J. Func. Anal.*, **6**, 1970, pp. 172-191.
- [13]. *J.L. Taylor*, Analytic functional calculus for several commuting operators, *Acta. Math.*, **125**, 1970, pp. 1-38.
- [14]. *F.H. Vasilescu*, Analytic Functional Calculus and Spectral Decompositions, D. Reidel Publishing Company, Dordrecht; Editura Academiei, Bucharest, 1982.
- [15]. *M. Zamfir and I. Bacalu*, Direct sums of decomposable systems, *Scient. J. Math. Modelling in Civil Engineering*, **7**, no 2 BIS, 2011, pp. 69-81.
- [16]. *M. Zamfir and I. Bacalu*, On the local spectral properties of operator systems in Banach spaces, *Applied Sciences*, **14**, 2012, pp. 89-97.