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DIRECT SUMS OF S −DECOMPOSABLE  
AND S − SPECTRAL OPERATOR SYSTEMS 

Cristina SERBĂNESCU1, Mariana ZAMFIR2 

In this paper is trying to extend and generalize several results of the spectral 
theory for a single S − decomposable ( S − spectral) operator to S − decomposable 
( S − spectral) operator systems. The goal of the work is to establish the behaviour of 
S − decomposable ( S − spectral) systems related to direct sums, by showing that the 
direct sum of two systems is an S − decomposable ( S − spectral) system if and only 
if both systems are S − decomposable ( S − spectral). These spectral decompositions 
are related to differential equations and to systems of differential equations ([9]) 
and can have applications in quantum mechanics and fractal theory. 

Keywords: Taylor spectrum; S − spectral capacity; S − decomposable system; 
S − spectral measure; S − spectral system; direct sum. 

1. Introduction 

Along this paper, we consider n^  to be the space of all elements 
( )1 2, ,..., nz z z z= , with , 1jz j n∈ ≤ ≤^ , X  and Y  to be two complex Banach 

spaces, ( )XB  to be the algebra of all linear bounded operators on X , ( )P X  to 

be the set of all projectors on X  and ( )XS  to be the family of all linear closed 

subspaces of X  Moreover, if nS ⊂ ^  is a compact fixed set, we denote by F n
S  

(respectively, by B n
S ) the family of all closed subsets nF ⊂ ^  (respectively, the 

family all Borelian subsets nB ⊂ ^ ) which have the property that F S = ∅∩  or 
F S⊃  (respectively, B S = ∅∩  or B S⊃ ). 

Let ( ) ( )1 2, , ..., na a a a X= ⊂B  be a system of commuting operators, i.e. 
, 1 ,i j j ia a a a i j n= ≤ ≤ . The system a  is called nonsingular on X  if the 

associated Koszul complex ( ),E X a  is exact, where 
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or, equivalent, the complex ( ),F X a  is exact, where 
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For an integer p , it can be defined the homology module of ( ),E X a  as 

( ) ( ) ( )1 1
1, Ker : / Im :p p p p

p p pH X a δ δ+ −
+= Λ →Λ Λ →Λ  

and respectively, the cohomology module of chain complex ( ),F X a  by 

( ) ( ) ( ) [ ] [ ]( )1 1 1, Ker : / Im : 6 , 12p p p p p p pH X a δ δ+ − −= Λ →Λ Λ →Λ . 

The Taylor spectrum of a  on X  is denoted by ( ),a Xσ  and it is the 

complementary in n^  of the set of ( )1 2, ,..., n
nz z z z= ∈^  such that the system 

( )1 1 2 2, , ..., n nz a z a z a z a− = − − −  is nonsingular on X  ([6], [12]). The analytic 

spectrum of x X∈  with respect to a  is denoted by ( ),a xσ  and it is defined as 

the complementary in n^  of the set of ( )1 2, ,..., n
nz z z z= ∈^  such that there are 

an open neighborhood V of z  and n  X -valued analytic functions 1 2, ,..., nf f f  
on V , satisfying the equation ( ) ( ) ( ) ( )1 1 1 ... ,n n nx a f a f Vζ ζ ζ ζ ζ= − + + − ∈  

([6]). The spectrum of x X∈  with respect to a  is denoted by ( ),sp a x  and it is 

the complementary in n^  of the reunion of all open sets nV ⊂ ^  such that there 
is a form ( )1 , ,n d z C V Xψ σ− ∞⎡ ⎤∈Λ ⎣ ⎦∪  satisfying the equality ( )s x α ψ= ⊕∂ ,  

i.e.  

( ) ( ) ( ) ( )

( ) [ ] [ ]( )

1 2 1 1 1 2 2 2 1
1

2
2

... ...

... 6 , 7 .

n n n n

n
n

x s s s z a s z a s z a s d z
z

d z d z z
z z

ψ

⎡ ∂
∧ ∧ ∧ = − + − + + − + +⎢ ∂⎣

⎤∂ ∂
+ + + ∧⎥∂ ∂ ⎦

 

In [5], J. Eschmeier proved that ( ) ( ), ,a x sp a xσ = . 
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The system ( ) ( )1 2, , ..., na a a a X= ⊂B  verifies the cohomology condition 

( )L  (respectively, the condition ( )SL ) if ( )( )1 , , 0nH C G X α− ∞ ⊕ ∂ = , for any 

open set nG ⊂ ^  ([6]) (respectively, for any open nG ⊂ ^ , with G S =∅∩ , 

[11]), where ( ),C G X∞  is the space of all continuous functions admitting partial 

derivatives of any order. We consider for closednF ⊂ ^  ([6]): 
( ) ( ){ }; , ,aX F x x X a x Fσ= ∈ ⊂  and [ ] ( ) ( ){ }; , ,aX F x x X sp a x F= ∈ ⊂ . 

Let aS  be a compact minimal set having ( )( )1 , , 0nH C G X α− ∞ ⊕ ∂ = , 

for any open set nG ⊂ ^  with aG S =∅∩  (minimal means that aS  is the 
intersection of all compact sets satisfying the specified property). The set aS  is 
called the analytic spectral residuum of the system a  ([2], [14]); ( ),aS a Xσ⊂ . 

If aS =∅ , then the system a  verifies the cohomology property ( )L  ([14]). 

2. Preliminaries 

Definition 2.1. ([2]) An application ( ): F n
S S X→ SΕ  is said to be S-

spectral capacity if it verifies the conditions: 

(1) ( ) { } ( )0 , n
S S X∅ = =^Ε Ε ; 

(2) ( )
1 1

,S i S i
i i

F F
∞ ∞

= =

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∩ ∩Ε Ε  for any family { } F n

i SiF ∈ ⊂` ;  

(3) for any open finite S-covering { } 1
m

S j j
G G

=
∪  of n^  we have  

( ) ( )
1

m
S jS S

j
X G G

=
= + ∑Ε Ε . 

The system ( ) ( )1 2, , ..., na a a a X= ⊂B  is called S − decomposable if there 
is an S-spectral capacity SΕ  such that: 

(4) ( ) ( )j S Sa F F⊂Ε Ε , for any F n
SF ∈  and for any 1 j n≤ ≤ ; 

(5) ( )( ), Sa F Fσ ⊂Ε , for any F n
SF ∈ . 
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Definition 2.2. ([1]) A mapping : B n
S SE → ( )P X  is called a ( ),n X^  

type S − spectral measure if it meets the properties: 

(1) ( ) ( )0, n
S S XE E I∅ = =^ ; 

(2) ( ) ( ) ( )1 2 1 2S S SE B B E B E B=∩ , for 1 2, B n
SB B ∈ ; 

(3) ( )
11

S m S m
mm

E B x E B x
∞ ∞

==

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

∑∪ , for B ,n
m S m pB B B∈ =∅∩ , if 

m p≠ , x X∈ . 
The system ( ) ( )1 2, ,..., na a a a X= ⊂B  is called S − spectral if there is a 

( ),n X^  type S − spectral measure SE  such that: 

(4) ( ) ( )j S S ja E B E B a= , for any B n
SB∈  and for any 1 j n≤ ≤ ; 

(5) ( )( ), Sa E B X Bσ ⊂ , for any B n
SB∈ . 

Lemma 2.1. ([2], [15]) If ( ) ( )1,..., na a a X= ⊂B  and ( )1,..., nb b b= ⊂  

( )Y⊂ B  are two commuting operator systems, then the Taylor spectrum of the 

system ( ) ( )1 1 2 2, ,..., n na b a b a b a b B X Y⊕ = ⊕ ⊕ ⊕ ⊂ ⊕  verifies the equality 

( ) ( ) ( ), , ,a b X Y a X b Yσ σ σ⊕ ⊕ = ∪ . 

Proposition 2.1. ([2], [15]) The operator systems ( ) ( )1,..., na a a X= ⊂B  

and ( ) ( )1,..., nb b b Y= ⊂B  verify the cohomology condition ( )L  (respectively, 

( )SL ) if and only if the system ( ) ( )1 1,..., n na b a b a b B X Y⊕ = ⊕ ⊕ ⊂ ⊕  verifies 

the same condition ( )L  (respectively, ( )SL ). 

Proposition 2.2. ([2], [15]) If ( ) ( )1,..., na a a X= ⊂B  and ( )1,..., nb b b= ⊂  

( )Y⊂ B  are two operator systems that verify condition ( )L , then the following 
equalities hold: 

1) ( ) ( ) ( ), , , , ,a b x y a x b y x X y Yσ σ σ⊕ ⊕ = ∈ ∈∪ ; 

2) ( ) ( ) ( ), , , , ,sp a b x y sp a x sp b y x X y Y⊕ ⊕ = ∈ ∈∪ ; 

3) ( ) ( ) ( ) ( ) ,  n
a ba bX Y F X F Y F F⊕⊕ = ⊕ ⊂ ^  closed . 

Proposition 2.3. ([11]) An operator system ( ) ( )1 2, ,..., na a a a X= ⊂B  is 
S − decomposable if and only if the following conditions are established: 
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(I) a  verifies the cohomology condition ( )SL , the space ( )aX F  is 

closed and ( )( ), aa X F Fσ ⊂ , for any F ,n
SF F S∈ ⊃ ; 

(II) for any open S − covering { } 1
m

S j j
G G

=
∪  of n^  and for any x X∈  

we have: 

1 2 ...S mx x x x x= + + + + , with ( ) ( ), , , , 1S S j ja x G a x G j mσ σ⊂ ⊂ ≤ ≤ . 

3. Direct sums of S − decomposable and S − spectral systems 

Proposition 3.1. Let ( ) ( )1 2, ,..., na a a a X= ⊂B  and ( )1 2, ,..., nb b b b= ⊂  

( )Y⊂ B  be two commuting operator systems that verify condition ( )L , or 

condition ( )SL , or conditions ( )1SL  for a  and ( )2SL  for b . Then the spaces 

( )aX F  and ( )bY F  are closed and ( )( ), aa X F Fσ ⊂ , ( )( ), bb Y F Fσ ⊂ , 

for nF ⊂ ^  closed, or for F n
SF ∈ , with F S⊃ , or for F n

SF ∈ , with F S =∅∩  
(when aS =∅ , bS =∅ ) if and only if the space ( ) ( )a bX Y F⊕⊕  is closed and 

( ) ( )( ), a ba b X Y F Fσ ⊕⊕ ⊕ ⊂ . 

Proof. According to Proposition 2.1, when a  and b  verify condition ( )L  

(respectively, ( )SL ), then the system a b⊕  verifies condition ( )L  (respectively 

( )SL ). Let us first suppose that the subspaces ( )aX F , ( )bY F  are closed and  

( )( ), aa X F Fσ ⊂ , ( )( ), bb Y F Fσ ⊂  

for nF ⊂ ^  closed (respectively, for F n
SF ∈ ). 

From the equality  

( ) ( ) ( ) ( )a b a bX F Y F X Y F⊕⊕ = ⊕  (1) 

(see Proposition 2.2 and [10]), we have that ( ) ( )a bX Y F⊕⊕  is closed. From 

Lemma 2.1, it results that 

( ) ( )( ) ( )( ) ( )( ), , ,a ba ba b X Y F a X F b Y F Fσ σ σ⊕⊕ ⊕ = ⊂∪ . 

Conversely, if the space ( ) ( )a bX Y F⊕⊕  is closed and  

( ) ( )( ), a ba b X Y F Fσ ⊕⊕ ⊕ ⊂  
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by denoting with XP  and YP , respectively, the corresponding projections (i.e. 

( )XP X Y X⊕ = , ( )YP X Y Y⊕ = ), then, according to equality (1), we have 

( ) ( )( ) ( )X aa bP X Y F X F⊕⊕ =  and ( ) ( )( ) ( )Y ba bP X Y F Y F⊕⊕ = . 

Let us now prove that the spaces ( )aX F  and ( )bY F  are closed. One can 
easily verify that XP  and YP  commute with every , 1j ja b j n⊕ ≤ ≤ , and since 

( ) ( )a bX Y F⊕⊕  is ultrainvariant to a b⊕ , it follows that it is invariant to XP  

and YP . Consequently, ,X YP P  are also projections in ( ) ( )a bX Y F⊕⊕ , hence 

the images 1X  and 1Y  through XP  and YP  of the space ( ) ( )a bX Y F⊕⊕  are 

closed subspaces and 
( ) ( )1 1 a bX Y X Y F⊕⊕ = ⊕ , ( ) ( )1 1, , ,a X F b Y Fσ σ⊂ ⊂ . 

It follows that ( )1 aX X F⊂ , ( )1 bY Y F⊂ ; furthermore, we have 

( ) ( ) 1 1a bX F Y F X Y⊕ = ⊕ , whence ( )1 aX X F= , ( )1 bY Y F= . 

Theorem 3.1. Let ( ) ( )1 2, ,..., na a a a X= ⊂B  and ( )1 2, ,..., nb b b b= ⊂  

( )Y⊂ B  be two systems. Then ( ) ( )1 1 2 2, ,..., n na b a b a b a b X Y⊕ = ⊕ ⊕ ⊕ ⊂ ⊕B  
is an S − decomposable system if and only if a  and b  are S − decomposable. 

Proof. From Proposition 2.1, it results that a  and b  verify ( )SL  if and 

only if a b⊕  verifies ( )SL , and by Proposition 2.2 and Lemma 2.1 we have 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( ), , ,

a ba b

a ba b

X Y F X F Y F

a b X Y F a X F b Y F Fσ σ σ

⊕

⊕

⊕ = ⊕

⊕ ⊕ = ⊂∪
 

for F n
SF ∈ , with F S⊃ . 

According to Proposition 3.1, we have that the systems a  and b  satisfy 
the condition (I) from the hypothesis of Proposition 2.3 (i.e. a  and b  verify 
( )SL , ( )aX F  and ( )bY F  are closed, ( )( ), aa X F Fσ ⊂ , ( )( ), bb Y F Fσ ⊂ , 

F n
SF ∈ , with F S⊃ ) if and only if the system a b⊕  verifies the same condition 

(I) (i.e. a b⊕  verifies condition ( )SL , the space ( ) ( )a bX Y F⊕⊕  is closed, 

( ) ( )( ), a ba b X Y F Fσ ⊕⊕ ⊕ ⊂ , for F n
SF ∈ , with F S⊃ ). 
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In the same manner, if { } 1

m
S j j

G G
=

∪  is an open S − covering of n^ , 

then by using the equalities  
( ) ( ) ( ) ( ) ( )1 1 1 1... ... ...S S m m S m S mx y x y x y x x x y y y⊕ + ⊕ + + ⊕ = + + + ⊕ + + +  

( ) ( ) ( ), , , , 1j j j ja b x y a x b y j mσ σ σ⊕ ⊕ = ≤ ≤∪  

( ) ( ) ( ), , ,S S S Sa b x y a x b yσ σ σ⊕ ⊕ = ∪  
it follows that a  and b  verify the condition (II) from Proposition 2.3 if and only 
if a b⊕  verifies the same condition. Consequently, according to Proposition 2.3, 
a  and b  are S − decomposable if and only if a b⊕  is S − decomposable. 

Remark 3.1. If ( )a X⊂B  and ( )b Y⊂ B  are S − decomposable and 

( )1 : F n
S S X→ SΕ , ( )2 : F n

S S Y→ SΕ  are their S − spectral capacities, then the 

application ( ): F n
S S X Y→ ⊕SΕ , ( ) ( ) ( )1 2S S SF F F= ⊕Ε Ε Ε , F n

SF ∈ , is the 

S − spectral capacity for ( )a b X Y⊕ ⊂ ⊕B , therefore a b⊕  is S − decomposable 
(see Definition 2.1 and [10]). 

Proposition 3.2. Let 1SE  be a ( ),n X^  type S − spectral measure and let 

2 SE  be a ( ),n Y^  type S − spectral measure. Then 1 2S S SE E E= ⊕  is a 

( ),n X Y⊕^  type S − spectral measure. Conversely, if SE  is a ( ),n X Y⊕^  

type S − spectral measure and 1 2S S SE E E= ⊕ , then 1SE  is a ( ),n X^  type 

S − spectral measure and 2 SE  is a ( ),n Y^  type S − spectral measure, 

respectively. 
Proof. Since 1SE  and 2 SE  are two S − spectral measures, we apply now 

Definition 2.2 and we deduce for 1, 2i = : 

( ) ( ) ( )1 20, ,n n
i S S X S YE E I E I∅ = = =^ ^ ; 

( ) ( ) ( )1 2 1 2i S i S i SE B B E B E B=∩ , 1 2, B n
SB B ∈ ; 

( )
11

i S m i S m
mm

E B x E B x
∞ ∞

==

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

∑∪ , B ,n
m S m pB B B∈ =∅∩ , if m p≠ , 

x X∈  (for 1i = ) or x Y∈  (for 2i = ). 



150                                         Cristina Şerbănescu, Mariana Zamfir 

Let us prove that 1 2S SE E⊕  is a ( ),n X Y⊕^  type S − spectral measure, 

where 1 2S SE E⊕  is denoted by SE  and it is defined naturally by  the equality 

( ) ( )( ) ( ) ( )1 2 1 2 , B n
S S S S S SE B E E B E B E B B= ⊕ = ⊕ ∈ . 

We obviously have, for 1 2, B n
SB B ∈ : 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )( ) ( )( )( ) ( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 1 2 2 1 2

1 1 1 2 2 1 2 2

1 1 2 1 1 2 2 2

1 2 1 1 2 2 1 2

0 0 0;

;

.

S S S S S

n n n n
S S S S S X Y X Y

S S S S S

S S S S

S S S S

S S S S S S

E E E E E

E E E E E I I I

E B B E E B B E B B E B B

E B E B E B E B

E B E B E B E B

E E B E E B E B E B

⊕

∅ = ⊕ ∅ = ∅ ⊕ ∅ = ⊕ =

= ⊕ = ⊕ = ⊕ =

= ⊕ = ⊕ =

= ⊕ =

= ⊕ ⊕ =

= ⊕ ⊕ =

^ ^ ^ ^

∩ ∩ ∩ ∩
 

In order to end the verifications, it remains to establish the countable 
additivity of SE : 

( ) ( ) ( )

( )

( ) ( )

1 2
1 1

1 2
1 1

1 2
1 1

1 2
1 1

S m S S m
m m

S m S m
m m

S m S m
m m

S m S m
m m

E B x y E E B x y

E B E B x y

E B x E B y

E B x E B y

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⊕ = ⊕ ⊕ =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⊕ ⊕ =
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= ⊕ =
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⊕ =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

∪ ∪

∪ ∪

∪ ∪
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( )( ) ( )( )( ) ( ) ( )( )( )

( )( )( ) ( )( )

1 2 1 2
1 1

1 2
1 1

, , .

S m S m S m S m
m m

S S m S m
m m

E B x E B y E B E B x y

E E B x y E B x y x X y Y

∞ ∞

= =

∞ ∞

= =

= ⊕ = ⊕ ⊕ =

= ⊕ ⊕ = ⊕ ∈ ∈

∑ ∑

∑ ∑
 

Conversely, we suppose that SE  is a ( ),n X Y⊕^  type S − spectral 

measure. Then SE  can be written as 1 2S S SE E E= ⊕ , where ( ) ( )1 BSE B X∈ , 

( ) ( )2 BSE B Y∈ , for B n
SB∈ .  

The mappings 1 : B n
S SE → ( )P X  and 2 : B n

S SE → ( )YP  are obviously 
linear and from the equalities 

( ) 2 2 2
1 2 1 2 1 2S S S S S SE E E E E E⊕ = ⊕ = ⊕  

it follows that 2
1 1S SE E=  and 2

2 2S SE E= , hence ( )1SE B  and ( )2 SE B  are 
projectors in X  and Y , respectively. 

In the same manner, one can easily verify that 1SE  is a ( ),n X^  type 

S − spectral measure and 2 SE  is a ( ),n Y^  type S − spectral measure; indeed: 

( ) ( ) ( )1 20 S S SE E E= ∅ = ∅ ⊕ ∅ , hence ( )1 0SE ∅ =  and ( )2 0SE ∅ = ;  

( ) ( ) ( )1 2
n n n

X Y S S SI E E E⊕ = = ⊕^ ^ ^ , hence ( )1
n

S XE I=^  and 

( )2
n

S YE I=^ ; 

( ) ( ) ( )

( )( ) ( )( )( )( )

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( )( ) ( ) ( )( )

1 2 1 2

1 2 1 2 1 2 1 1 2 2

1 1 2 2 1 2

1 1 2 1 1 2 2 2

1 1 2 2 1 2

1 1 1 2 2 1 2 2 ,

S S S

S S S S S S

S S

S S S S

S S

S S S S

E B B E B E B

E E B B E E B E E B

E B B E B B

E B E B E B E B

E B B E B B

E B E B E B E B

= ⇔

⊕ = ⊕ ⊕ ⇔

⊕ =

= ⊕ ⊕ ⇔

⊕ =

= ⊕

∩

∩

∩ ∩

∩ ∩
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hence ( ) ( ) ( )1 2 1 2 1 2, , B , 1, 2n
i S i S i S SE B B E B E B B B i= ∈ =∩ . 

We can also write, for B ,n
m S m pB B B∈ =∅∩ , if m p≠ , x X∈ , y Y∈ : 

( ) ( )( ) ( )( )( )

( ) ( )( )( ) ( )( ) ( )( )( )

( ) ( )

1 2
1 11

1 2 1 2
1 1

1 2
1 1

S m S m S S m
m mm

S m S m S m S m
m m

S m S m
m m

E B x y E B x y E E B x y

E B E B x y E B x E B y

E B x E B y

∞ ∞ ∞

= ==

∞ ∞

= =

∞ ∞

= =

⎛ ⎞
⎜ ⎟ ⊕ = ⊕ = ⊕ ⊕ =
⎜ ⎟
⎝ ⎠

= ⊕ ⊕ = ⊕ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⊕
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

∪

 

and 

( ) ( ) ( )

( )

1 2
1 1

1 2
1 1

1 2
1 1

S m S S m
m m

S m S m
m m

S m S m
m m

E B x y E E B x y

E B E B x y

E B x E B y

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⊕ = ⊕ ⊕ =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⊕ ⊕ =
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= ⊕
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∪ ∪

∪ ∪

∪ ∪

 

accordingly  

( )1 1
11

S m S m
mm

E B x E B x
∞ ∞

==

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

∑∪  and ( )2 2
11

S m S m
mm

E B y E B y
∞ ∞

==

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

∑∪ . 

Theorem 3.2. Let ( ) ( )1 2, ,..., na a a a X= ⊂B , ( ) ( )1 2, ,..., nb b b b Y= ⊂ B  
be two commuting operator systems. Then a  and b  are S − spectral if and only if 

( ) ( )1 1 2 2, ,..., n na b a b a b a b X Y⊕ = ⊕ ⊕ ⊕ ⊂ ⊕B  is S − spectral. 
Proof. Let us suppose that the systems a  and b  are S − spectral and let 

1SE  and 2 SE  be their S − spectral measures. On account of the above 

proposition, the application SE  defined by the equality 

( ) ( ) ( )1 2 ,S S SE B E B E B= ⊕  for B n
SB∈  
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is an S − spectral measure of the system a b⊕ , which commutes with every 
operator j ja b⊕ , because ja  commutes with 1SE  and jb  commutes with 2 SE , 

for any 1 j n≤ ≤ : For any Borelian set B n
SB∈ , we have: 

( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 2

1 2 1 2

1 2 .

S j j S S j j

S j S j j S j S

j j S S j j S

E B a b E B E B a b

E B a E B b a E B b E B

a b E B E B a b E B

⊕ = ⊕ ⊕ =

= ⊕ = ⊕ =

= ⊕ ⊕ = ⊕

 

Furthermore, from the inclusions  
( )( )1, Sa E B X Bσ ⊂ , ( )( )2, Sb E B Y Bσ ⊂ , B n

SB∈   

and by Lemma 2.1 we can conclude that 
( )( )( ) ( ) ( )( )
( )( ) ( )( )

1 2

1 2

, ,

, ,

S S S

S S

a b E B X Y a b E B X E B Y

a E B X b E B Y B

σ σ

σ σ

⊕ ⊕ = ⊕ ⊕ =

= ⊂∪
 

consequently the system a b⊕  is S − spectral.  
Conversely, if we assume that a b⊕  is S − spectral and SE  is its 

S − spectral measure, then using once more the proof of Proposition 3.2, we have 
that SE  can be written as the form 1 2S S SE E E= ⊕ , where 1SE , 2 SE  are the 

S − spectral measures for a  and b , respectively, and ( )1SE B , ( )2 SE B  are 
projectors in X  and Y , respectively. 

From the inclusion (Lemma 2.1) 
( )( ) ( )( ) ( )( )( )1 2, , ,S S Sa E B X b E B Y a b E B X Y Bσ σ σ= ⊕ ⊕ ⊂∪  

it follows that 
( )( )1, Sa E B X Bσ ⊂ , ( )( )2, Sb E B Y Bσ ⊂ , B n

SB∈ . 

Moreover, it is easily seen that 
( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( )
1 2 1 2

1 2 1 2

j j S S j j

j j S S S S j j

j S j S S j S j

a b E B E B a b

a b E B E B E B E B a b

a E B b E B E B a E B b

⊕ = ⊕ ⇔

⊕ ⊕ = ⊕ ⊕ ⇔

⊕ = ⊕

 

for all 1 j n≤ ≤ , B n
SB∈ , therefore 

( ) ( ) ( ) ( )1 1 2 2,j S S j j S S ja E B E B a b E B E B b= =  
and we deduce that a  and b  are S − spectral systems. 
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Corollary 3.1. Let ( ) ( )1 2, ,..., na a a a X= ⊂B  be an S − spectral system 

and let ( )BP X∈ be a projector which commutes with every operator ja , 

1 j n≤ ≤ . Then the restrictions |a P X  and ( )|a I P X−  are iS − spectral 

systems, 1, 2i= , where ( )1 ,S S a P Xσ= ∩ X and ( )( )2 ,S S a I P Xσ= −∩ . 
Proof. The assertions of the hypothesis follow from Theorem 3.2, by the 

equality ( ) ( )( )| |a a P X a I P X= ⊕ −  and from the fact that the restriction of a 
spectral system to an invariant subspace is also a spectral system if and only if the 
subspace is also invariant to the spectral measure of the system (see [6], [1], [16]). 
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