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DIRECT SUMS OF S -DECOMPOSABLE
AND S -SPECTRAL OPERATOR SYSTEMS

Cristina SERBANESCU', Mariana ZAMFIR?

In this paper is trying to extend and generalize several results of the spectral
theory for a single S —decomposable (S —spectral) operator to S — decomposable
(S —spectral) operator systems. The goal of the work is to establish the behaviour of
S —decomposable ( S — spectral) systems related to direct sums, by showing that the
direct sum of two systems is an S —decomposable (S — spectral) system if and only
if both systems are S —decomposable (S — spectral). These spectral decompositions
are related to differential equations and to systems of differential equations ([9])
and can have applications in quantum mechanics and fractal theory.

Keywords: Taylor spectrum; S —spectral capacity; S—decomposable system;
S — spectral measure; S — spectral system; direct sum.

1. Introduction

Along this paper, we consider C” to be the space of all elements
z =(zl,22,...,zn), with z;€ C,1<£j<n, X and Y to be two complex Banach

spaces, B(.X') to be the algebra of all linear bounded operators on X, P(X) to
be the set of all projectors on X and S(X ) to be the family of all linear closed

subspaces of X Moreover, if S < C”" is a compact fixed set, we denote by F¢
(respectively, by BY) the family of all closed subsets F = C" (respectively, the

family all Borelian subsets B < C") which have the property that F (S = or
F o S (respectively, B[1S=J or Bo S).
Let a=(ay, ay, ..,a,)=B(X) be a system of commuting operators, i.e.

ajaj=aja;,1<i,j<n. The system a is called nonsingular on X if the

associated Koszul complex E(X,a) is exact, where
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5” 5"[*
E(X.q):0 X =A"[,X] 5 A" [0, X] > ..
P P S
oA [0, X] oA [0, X]5A [0, X]=X >0
or, equivalent, the complex F(X,a) is exact, where
0 1 52
F(X,a):05 X =A"[0,X] > A [0, X]>A? [0, X] ...
n-2 n—1
.= Ao, X] > Ao, X]=X -0 ([6].[12]).
For an integer p, it can be defined the homology module of £ (X ,a) as
Hp(X,a)=Ker(6 e : AP 5 AP)/Im(5, AP > AP
and respectively, the cohomology module of chain complex F (X ,a) by
HP(X,a)=Ker(87: AP - AP ) /im( 577 AP > A7) ([6], [12]).
The Taylor spectrum of a on X is denoted by o(a,X) and it is the

complementary in C" of the set of z=(zy,z5,...,z,,) € C" such that the system
z—a=(zy-ay, zy—ay, ...z, —a,) is nonsingular on X ([6], [12]). The analytic
spectrum of x € X with respect to a is denoted by O'(a,x) and it is defined as

the complementary in C" of the set of z=(zy,z5,...,z,,) € C" such that there are

an open neighborhood V of z and n X -valued analytic functions f7, f5,.... f,

on V', satisfying the equation x=(¢—ay) f1({)+ ... +({—a,) f2($). eV
([6]). The spectrum of x € X with respect to a is denoted by Sp(a,x) and it is

the complementary in C” of the reunion of all open sets ¥ = C" such that there
isaformyeA”! [(7 UdzC® (V,X)J satisfying the equality s x = (a @5)1// ,
1.e.

X(Sl ANSy)NLAS, )={(zl—a1)s1+(zz—a2)s2 +...+(Zn—an)8n+ai_d21+
21

+%d52+...+%dzn}\'//(z) ([6]. [7])-

z2 Zn

In [5], J. Eschmeier proved that o (a,x)=sp(a,x).
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The system az(al, a, ...,an) cB(X) verifies the cohomology condition
(L) (respectively, the condition (Lg)) if gl (COO (G.X),a @5) =0, for any

open set G C" ([6]) (respectively, for any open G C”, with GNS=T,

[11]), where C* (G, X) is the space of all continuous functions admitting partial

derivatives of any order. We consider for ¥ < C" closed ([6]):
Xa(F)z{x;xeX, O'(a,x)cF} and X[a](F):{x;xeX, sp(a,x)cF}.

Let S, be a compact minimal set having H”_I(COO(G,X),aQr)é):O,

for any open set G C" with GNS, =9 (minimal means that S, is the
intersection of all compact sets satisfying the specified property). The set S, is
called the analytic spectral residuum of the system a ([2], [14]); S, < O'(a,X ) .
If S, =, then the system a verifies the cohomology property (L) ([14D.

2. Preliminaries

Definition 2.1. ([2]) An application Eg:Fg —S(X) is said to be S-

spectral capacity if it verifies the conditions:
(1) E5(2)={0}, E5(C")=x;

o0 o0
2) (ES[ﬂFiJzﬂfS(Fi), for any family {Fi}ieN cFg;
i=1 i=1

(3) for any open finite S-covering Gg U {G j }m of C" we have

M

Il
—_

X=Eg(Gs)+ Y Es(G).
J
The system az(al, a,, ...,an) cB(X

~—

is called S —decomposable if there

is an S-spectral capacity E g such that:
(4) a;Eg(F)cEg(F),forany FeFg and forany 1< j<n;
(5) o(a.Eg(F)) = F,forany FeFg.
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Definition 2.2. ([1]) A mapping Eg:B% — P(X) is called a ((C”,X)
type S — spectral measure if it meets the properties:
(1) Eg(2)=0, ES(C”):IX;

(2) Es(B1NBy)=Eg(B1)Es(By), for By, By €Bj;

m=1

o0 o0
3) ES[U Bm]x—ZES(Bm)x, for B, €BYS,B,NB,=3, if
m =1

m#p,xeX.
The system az(al,az,...,an)cB(X) is called S —spectral if there is a

(Cn,X ) type S —spectral measure E g such that:
(4) a;Eg(B)=Eg(B)a,,forany BeB and forany 1< j<n;

5) O'(a,ES (B)X)CE, forany BeBY.

Lemma 2.1. (2], [15]) If a=(ay,...a,)=B(X) and b=(by,...b,)c
c B(Y ) are two commuting operator systems, then the Taylor spectrum of the
system a®b=(a) ®by,ar ®b,,..,a,®b,)c B(X ®Y) verifies the equality

o(a®b,X®Y)=0(a,X)Uoc(b,Y).

Proposition 2.1. ([2], [15]) The operator systems az(al,...,an)CB(X)
and b:(bl,...,bn)CB(Y) verify the cohomology condition (L) (respectively,
(Ls)) if and only if the system a®b =(a, ®by,...,a, (—Dbn)c B(X ®Y) verifies
the same condition (L) (respectively, (LS ) ).

Proposition 2.2. ([2], [15]) If a=(ay,...a,) =B(X) and b=(by,...b,) c
c B(Y ) are two operator systems that verify condition (L), then the following
equalities hold:

1) o(a®b,x®y)=0(a,x)Uoc(b,y), xe X, yeY;

2) sp(a@b,x@y)=sp(a,x)USp(b,y), xeX,yeY;

3) (X®Y) g, (F)=X 4 (F)®Y,(F), FcC" closed.

Proposition 2.3. ([11]) An operator system a z(al,az,...,an) c B(X) is
S —decomposable if and only if the following conditions are established.
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(I) a verifies the cohomology condition (LS), the space X, (F) is
closed and a(a,Xa (F))C F, forany F ng ,FoS;

(II) for any open S —covering Gg U{Gj}n? | of C" and for any xe X
]:

we have:

X=Xg+X]+Xy+...+X,,, with G(a,xS)CGS, O'(a,xj)ch, I<j<m.

3. Direct sums of S —decomposable and S — spectral systems

Proposition 3.1. Let a=(ay,as,...,a,)cB(X) and b=(by,by,....b,)<
CB(Y ) be two commuting operator systems that verify condition (L), or
condition (Lg ), or conditions (LS1 )for a and (L52 ) Jor b. Then the spaces
X,(F) and Y,(F) are closed and o(a,X,(F))<F, o(b,Y,(F))cF,

for F < C" closed, or for Fng,with F>oS, orfor Fng,with FNS=J

(when S, =0, S), =) if and only if the space (X@Y)a@b(F) is closed and

o(a®b(XOY) g, (F))<F.

Proof. According to Proposition 2.1, when a and b verify condition (L)
(respectively, (Lg )), then the system a @ b verifies condition (L) (respectively
(Lg )). Let us first suppose that the subspaces X , (F ), Y}, (F) are closed and

o(a.X,(F))<F,o(b.Y,(F))cF

for F <= C" closed (respectively, for F e Fg ).
From the equality

Xo(F)®Y,(F)=(X®Y),q,(F) (1)

(see Proposition 2.2 and [10]), we have that (X ®Y) o, (F) is closed. From

o (
Lemma 2.1, it results that

ola®b(XOY),q, (F))=0(aX(F)Uo(bY,(F)= F.

a
Conversely, if the space (X ®Y) o (F) is closed and

)
o(a®b(XOY), 0, (F)) F
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by denoting with Py and Py, respectively, the corresponding projections (i.e.
Py(X®Y)=X, Py(X®Y)=Y), then, according to equality (1), we have
Py ((X@Y)a@b (F)) =X, (F) and Py ((X@Y)a@b (F)) =Y, (F).

Let us now prove that the spaces X, (F ) and Y, (F') are closed. One can

casily verify that Py and Py commute with every a ; ®b;,1<j<n , and since

(X@®Y) o, (F) is ultrainvariant to a ® b, it follows that it is invariant to Py
and Py. Consequently, Py, Py are also projections in (X ®Y) o (F), hence

the images X and Y; through Py and Py of the space (X @Y) F) are

a(—Bb(

closed subspaces and

X181 =(X®Y) F),o(a,X|)cF,o(b,Y])CF.

a(—Bb(
It follows that X;cX,(F), Y cY,(F); furthermore, we have
X, (F)®Y,(F)=X @Y, whence X|=X,(F), Y =Y,(F).
Theorem 3.1. Let a=(ay,ay,...a,)c=B(X) and b=(by,b,,...b,)c
cB(Y) be two systems. Then a®b=(a,®by,a, @bz,...,an(-an)CB(X@)Y)

is an S —decomposable system if and only if a and b are S — decomposable.
Proof. From Proposition 2.1, it results that ¢ and b verify (L S) if and

only if a @ b verifies (L s ), and by Proposition 2.2 and Lemma 2.1 we have

(X®Y) g (F)= X, (F) @, (F)

G(a(-Bb,(X(JBY)a@b (F)) =o(a,X,(F))Uc(b,Y,(F))cF

for FeFg,with Fo .

According to Proposition 3.1, we have that the systems a and b satisfy
the condition (I) from the hypothesis of Proposition 2.3 (i.e. @ and b verify

(Ls), X,(F) and Y, (F) are closed, o(a,X,(F))=F. o(b,Y,(F))cF,

F eFg,with F > if and only if the system a @b verifies the same condition
(1) (i.e. a®b verifies condition (Lg ), the space (X @ Y) @p(F) is closed,

o(a®b,(XOY) g, (F)|F for FeF{, with F>5).
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In the same manner, if Gg U{Gj}rfl | is an open S - covering of C",
J:
then by using the equalities
(xS @yS)+(x1€r)y1)+...+(xm@ym)z(xs +x1+...+xm)€r)(yS +y1+...+ym)
O'(a@b,xj @yj)=0<a,xj)U0'(b,yj), 1<j<m
o(a®bxg®yg)=0c(a,xg)Uo(b,yg)
it follows that a and b verify the condition (II) from Proposition 2.3 if and only

if a® b verifies the same condition. Consequently, according to Proposition 2.3,
a and b are S —decomposable if and only if a @b is S —decomposable.

Remark 3.1. If acB(X) and bc B(Y) are S —decomposable and
E15:F§ >S(X), E,5:Fg —>S(Y) are their S—spectral capacities, then the
application Eg: F§ >S(X@Y), Eg(F)=E5(F)DE,5(F), F eFyg,is the
S — spectral capacity for a®bc B(X @Y ) , therefore a®b is S —decomposable
(see Definition 2.1 and [10]).

Proposition 3.2. Let Eg be a (Cn,X) type S —spectral measure and let
Esg be a (Cn,Y) type S —spectral measure. Then E¢=E; @ E,g is a
((C”,X@Y) type S —spectral measure. Conversely, if Eg is a (C",X@Y)
type S—spectral measure and Eg=E;s ®E,g, then E|g is a ((C",X) type

S —spectral measure and E,g is a ((Cn,Y ) type S —spectral measure,

respectively.
Proof. Since E;g and E,g¢ are two S —spectral measures, we apply now

Definition 2.2 and we deduce for i =1, 2:
EiS(g):O’EIS(Cn):]XaEZS(Cn):IY;
E;s(BiNBy)=E;s(B1)E;s(B2), By, By €BY;

o0 o0
Eis| U Bw |x=2 Eis(By)x, B, €BS,B,NB,=,if m=p,
m=1

m =1

xeX (fori=1)or xeY (fori=2).
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Letus prove that E;g @ E,g isa (C”,X@Y) type S — spectral measure,
where E;g @ E, ¢ is denoted by E ¢ and it is defined naturally by the equality
Es(B)=(E1s®E;s)(B)=E15(B)®Eyg(B), BB,
We obviously have, for By, B, e BY:
Es(2)=(E1s®E25)(D)=E15(D)®E,5(2)=0©0=0;

o

(
S(c") ElS@Ezs)((C”)zEIS(C”)(JBEZS(C”):IX@[Y=1X®Y;
s(BINBy)=(E|s®Ey5)(BINBy)=E15(BINBy)®Eys(B1NBy)=
=(E15(B1)E15(B1))®(Eas(B1)Ears(B2))=

(ElS )OEs5(B1))(Eis(B2)®Ers(By))=

-

(Els@Ezs ))((Els@Ezs)(Bz))=ES(Bl)ES(Bz)-
In order to end the verifications, it remains to establish the countable
additivity of Eg:

ES[UB Jx@y (EIS(JBEZS)[UB Jx@y

oy

s
™
S

=| Eyg

(—BEzS[ [OJ BmB(x @y):

m =1

= iEIS ] [ZEzs J

3
I

s
w
S

=| Eyg

3
1‘
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= i((ElS(Bm)x)G_)(ELS'(Bm)y)) i:,(ElS( m)@Ezs(Bm))(x@y)=

= i (EIS('BEZS)(Bm)(x C'BY): i Es(Bm)(x @y),xeX, yeY.

Conversely, we suppose that Eg is a (C” , XY ) type S — spectral
measure. Then Eg can be written as Eg =Ej ¢ ® E, g, where Eg(B)eB(X),
E,5(B)eB(Y), for BeBY.

The mappings Ejg:B5 — P(X) and E,g:B§ — P(Y) are obviously
linear and from the equalities

E «@DE :(E ®F )2:E2 ®E2
18 28 18 28 1S5 28

it follows that E,g = Efg and E,g=E3g, hence E,g(B) and E,g(B) are

projectors in X and Y, respectively.

In the same manner, one can easily verify that Eg is a (C”,X) type
S — spectral measure and £ g is a ((C”,Y) type S — spectral measure; indeed:

0=E5(D)=E5(D)®Er5(D), hence Ey5(D)=0 and £55(2)=0;

IX@Y=ES(<C")=EIS(C”)@E25((C”), hence EIS((C”):IX and
Ezs(cn)=ly;

Es(BiNBy)=E5(B)Es(By) <

(EIS ®Ezs)(31032)=(E1S @Ezs)(Bl)(Els @Ezs)(32)<:>

Eis(BiNBy)®Eys(B1NBy)=

:(EIS(BI)CJBEZS(Bl))(ElS(BZ)eBEzS(BZ))<:>

Ei5(BiNBy)®Ey5(B1NB,y

)=
=(E15(B1)E15(B2))®(Ess5(B1)Eas (By)),
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hence E;g(B1NBy)=E,;5(B))E;s(B,), B, By eB§ ,i=1,2.

We can also write, for B,, eBg, B,,B,=3,if m#p, xeX, ye¥:

Eg DBm]x@Byi J(x ®y)= Z(Els@Ezs)B )J(x®y)=

m=1 m=1

(Els(Bm)@Ezs(Bm)) x®y)= i((ElS( )®(E25(Bm)y)):

I

ke

95)

s
o

3

®E2S[ [OJ BmD(x ®y)=

Cs
S

3

Cs

=| E1s X|® Eyg By |y
m =1 m =1
accordingly
[e 0] [e 0]
ElS U B X = ZEIS )C and EZS U m ZEZS )y
m =1 m =1 m=1

Theorem 3.2. Let az(al,az,...,an)CB(X), bz(bl,bz,...,bn)cB(Y)
be two commuting operator systems. Then a and b are S —spectral if and only if
a®b=(a;®bj,ay®by,...,a,®b,)=B(X®Y) is S - spectral.

Proof. Let us suppose that the systems a and b are S—spectral and let
Eys and E,g be their §-—spectral measures. On account of the above

proposition, the application E g defined by the equality
Eg(B)=E s(B)®E,5(B), for BeB
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is an S —spectral measure of the system a@®b, which commutes with every

operator a ; @b ;, because a ; commutes with £y ¢ and b ; commutes with E; g,

for any 1< j < n: For any Borelian set B € B, we have:
Eg(B)(a;®b;)=(E s(B)®E,5(B))(a;®b;)=

=Ei5(B)a;®Eyg(B)bj=a;E|g(B)®b;Eyg(B)=

=(a;®b;)(E1s(B)®E,5(B))=(a;®b;)Es(B).
Furthermore, from the inclusions
a(a,ElS(B)X)CE, a(b,EZS(B)Y)CE, BeB
and by Lemma 2.1 we can conclude that
o(a®b,E5(B)(X®Y))=0(a®b,E 5(B)X®E,5(B)Y)=

=o(a,Ey5(B)X)Uo(b,Eys(B)Y) B
consequently the system a@®b is S — spectral.
Conversely, if we assume that a@®b is §—spectral and Eg is its

S — spectral measure, then using once more the proof of Proposition 3.2, we have
that E ¢ can be written as the form Eg¢=FE;¢®E,g, where E|g, E,g are the

S — spectral measures for a and b, respectively, and Eyg(B), E,g(B) are

projectors in X and Y, respectively.
From the inclusion (Lemma 2.1)

o(a,Eys(B)X)Uo(b,Ess(B)Y)=0(a®b,Es(B)(X®Y))B
it follows that
o(a,E\s(B)X)cB, o(b,Ey5(B)Y)< B, BeBY.
Moreover, it is easily seen that
(a;@b;)Es(B)=Eg(B)(a;®b;) =

(a;@b;)(E1s(B)®Ess(B))=(E15(B)®Ey5(B))(a;®b;) <
a;E\5(B)®b;Eys(B)=Es(B)a;®E;5(B)b;

forall 1< j<n, BeBY, therefore

a;E\s(B)=Es(B)a;,b;Eys(B)=Ey5(B)b,
and we deduce that a and b are S — spectral systems.
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Corollary 3.1. Let a=(ay,ay,...a,)=B(X) be an S—spectral system
and let Pe B(X ) be a projector which commutes with every operator a ;,
1< j<n. Then the restrictions a|PX and a|(I—P)X are S;—spectral
systems, i=1, 2, where Sy =SNo(a,PX)Xand S, :Sﬂa(a,(]— P )X)

Proof. The assertions of the hypothesis follow from Theorem 3.2, by the
equality a=(a|PX) ® (a (I-P)X ) and from the fact that the restriction of a

spectral system to an invariant subspace is also a spectral system if and only if the
subspace is also invariant to the spectral measure of the system (see [6], [1], [16]).
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