U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 3, 2016 ISSN 2286-3540

HIDING DATA INSIDE A CLOUD

Sorin Radoveneanu', Catalin Leordeanu?, Valentin Cristea®

Maintaining data confidentiality is one of the most important
problems of protection against attacks or against accidental misuse. The
rapid development of the Internet, along with storage and data transfer
technologies, increased the complexity of such problems. Therefore, robust
and secure data storage is an important issue for which a single appropriate
solution is difficult to find. Among the most common techniques we find
steganography and cryptography, which address target different objectives.

This paper proposes a solution which combines the two techniques in or-
der to improve confidentiality. Due to the proposed solution an attacker
is unable to understand the secret message and through the inclusion of
steganography techniques the existence of the message is hidden inside an
image. We prove that the proposed solution is efficient and that it pro-
vides data confidentiality, making it useful to transfer data over unsecured
channels, or for data storage on an environment for which the user has no
absolute control, such as a Cloud System.

Keywords: confidentiality, steganography, privacy, plausible deniability

1. Introduction

As the Internet is an open communication medium, any transferred files
are exposed to attacks. They can be intercepted or modified in transit, without
the knowledge of the sender or the intended destination. Data stored on remote
servers, such as Cloud-based ones, is even more exposed to attacks([1]. Cloud
data storage services offer very few security guarantees, and the users have no
direct control over their data[2].

Encryption helps protect the data by modifying the data and making
it very difficult to understand by an attacker. However, only encryption al-
gorithms are not enough to protect very sensitive data. Given enough time
or computing power an attacker could attempt to break the encryption and
understand the secret data, or the owner of the data could be constrained
to reveal the secret key through other means. Steganography|3| is a different

I Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest,
Romania, e-mail: sorin.radoveneanu@cti.pub.ro

2Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest,
Romania, e-mail: catalin.leordeanu@cs.pub.ro

3Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest,
Romania, e-mail: valentin.cristea@cs.pub.ro

17

18 Sorin Radoveneanu, Catalin Leordeanu, Valentin Cristea

approach to the issue of data confidentiality, which attempts to hide the ex-
istence of the sensitive data. This method also offers plausible deniability for
the owner of the secret data.

For example, one of the most common methods in steganography is called
“LSB insertion”and it is used to hide secret messages into images. The prin-
ciple of this method is based on the modification of the least significant bit
from the 24 bit representation of each pixel, to form a secret message. Since
only the least significant bit is modified the difference in the image will be
minimal and the secret message will only be read by someone who knows of its
existence. This paper aims to exceed these limitations and propose a robust
data hiding solution which offers a sufficient level of confidentiality, as well as
plausible deniability for the owner.

The rest of the paper is structured as follows. Section 2 describes similar
research efforts, with an emphasis on deniable encryption solutions. Section 3
describes the proposed solution and the flow of operations to store and retrieve
a secret message. Section 5 contains experimental results using the proposed
solution and Section 6 concludes this paper and outlines directions for future
research.

2. Related work

There are many research efforts which handle data confidentiality. One
such solution is covered by the Deniable File Systems (DFS)[5]. This refers
to file systems which can hide a small part of itself. It differs from classic
Encrypted File Systems through the fact that the folders and files are not
visible.However, a disadvantage of the Deniable File Systems is the fact that it
covers the entire partition or file system. It is not very useful if the user only
wishes to hide a small secret message inside another file. StegFS[7] is also a
file system which is able to hide the existence of different sets of data. It is
actually an extension of the Ext2fs file system for linux and the data can be
encrypted as part of different security levels. An attacker would not be able
to know if he has discovered the secret keys to all the security levels.

Another solution to ensure data confidentiality is TrueCrypt[6]. It falls
into the category of Deniable File Systems, which we mentioned earlier. It is
able to use different cryptographic algorithms, such as AES, Serpent, Twofish
and others to encrypt in real-time an entire disk or a partition. It can also
offer plausible deniability through the creation of a hidden disk partition,
which is kept inside a visible partition. It has however a number of security
vulnerabilities[6] and it is also difficult to configure.

A Dbasic solution for deniable encryption is presented in [8]. It is how-
ever difficult to implement and use. Most other solutions have used the term
“plausible deniability”, which brings it closer to steganography through the
insertion of secret data inside encrypted files.

Hiding Data Inside a Cloud 19

3. Data hiding

Secret
Data

LSB
Insertion

Output
File

Permute F——

LSB
Insertion

Secret
Data

File

Decrypt

F1G. 1. Operation flow for storage and retrieval of secret data

Figure 1 presents the necessary operation flow to obtain a file with an
embedded secret message. As an additional security measure, the encrypted
information is permuted, meaning that the initial data is divided in sub-blocks
of fixed length, which are then shuffled according to a key-based pattern. The
same permutation key is also used to encrypt the data using the AES al-
gorithm. The last step in the storage operation is the insertion of the re-
sulted encrypted secret data into a target file using the LSB method. To
encrypt the data we obtained we used the Advanced Encryption Standard
(AES) algorithm[13] using keys of 256bits. Currently, the use of 256bit keys
for AES is considered secure[14].

To obtain the secret information from a file, the operation flow is similar.
First, the embedded message is extracted through the same LSB method. After
this, the permutation is reversed and then the data is decrypted using the
same key. Of course, we will need the same key as the one used in the storage
operation due to the use of symmetric encryption algorithms.

3.1. LSB insertion

Least Significant Bit(LSB)[4] insertion is one of the most common stegano-
graphical methods today, which is used to hide small amounts of data in audio
or image files. In the case of image steganography, this approach is based on
the modification of the least significant bit and exploits the inability of the
human eye to distinguish very small differences for each pixel. In a similar
way, the human ear cannot detect very small differences for the frequencies in
audio files.

This approach is easier to use in the case of PNG and BMP image files,
which are lossless formats. For a 24 bit encoded image, the RGB values are
encoded using 8 bits each. When adding hidden data we can modify the least
significant bit of each group of 8 bits. Therefore, we could encode 3 bits of
hidden date for each pixel in the image. Based on the existing values for these
bits, we have a 50% chance of changing the existing value of the Red, Green

20 Sorin Radoveneanu, Catalin Leordeanu, Valentin Cristea

or Blue LSB bit from 0 to 1 or from 1 to 0. It is possible to apply this method
for lossy image formats, such as JPG. In this case the approach involves the
modification of DCT(Discrete Cosine Transformation) coefficients [9)].

Such a simple steganography solution has a number of disadvantages.
For example, if an attacker is aware of the existence of the secret data, it is
very simple for him to extract it since it is not encoded in any way. Another
important aspect is the choice of the audio or image file in which to encode the
secret data. If the user chooses a very common or widespread file to encode a
hidden message, then it could be detected by comparing the original hash of
the file.

3.2. Key-based permutation

As an additional security measure, the entire data block is divided into
blocks of the same size, which are then shuffled. The actual permutation
is based on a key derived from the passwords used for the encryption and
the number of blocks that the data has been divided into. The permutation
we used is based on the Key Based Random Permutation (KBRP) algorithm
presented in [10].

This permutation can be divided into three steps:

(1) Initialization of the permutation key. Considering that the data we need
to permute has been divided into N blocks we need to create a vector of
the same size which will be the permutation key. Each element of the
permutation key will be filled according to the ASCII value of a character
from the password. Considering that the password which we use has a
number of characters njN we are left with a number of N-n positions in
the key which we need to fill. This is done by adding two adjacent values
and inserting the result on the first position. Afterwards, the values of
the permutation key are brought into the interval [0, N). Considering that
the character of the password has an ASCII value of X, the value of the
element of the permutation key will be X mod N. This step ends when all
the N positions of the permutation key have been filled.

(2) Elimination of duplicates. If there are any duplicates inside the permuta-
tion key then the first value will be kept unchanged and the rest will be
replaced by the value 0.

(3) Filling the blanks. All the values of the permutation key must be brought
into the interval [1, N]. All the values of 0 will be replaced with values
which are not already present in the permutation key, starting from both
ends of the key. This step ends when all the elements of the permutation
key belong to the interval [1, V].

The permutation is useful because it adds another level of protection for
the data. An attacker would not be able to analyze the cyphertext until he
has reversed the permutation. Since the permutation scheme is based on the
passwords for the files it also does not require any other secret key from the

Hiding Data Inside a Cloud 21

user. After the end of the permutation stage, the result is the final form of
the file containing the secret information. The process of retrieving the stored
information is identical with the storage operations which we described in this
section, but the necessary stages are executed in reverse order.

4. The Chi-Square Attack

Since the LSB method may change the frequency of the displayed colours
of the image, we used the Chi Square Attack[15] to attempt to detect hidden
data. The Chi Square attack uses statistical methods to try to detect the
amount of hidden data.

The algorithm compares the Pairs of Values (PoVs) which are formed
by the pixels during the steganographic process due to the change of the least
significant bit. If the embedded data is equally distributed then the frequencies
of both the odd and even components of the PoVs should be equal. The Chi-
Square attack [16] compares the theoretical expected frequency of the least
significant bit of the image using an equally distributed message, as opposed
to the measured frequency in the sample image. The result is a probability
of existence of embedded data. Since we usually do not have access to the
original image the theoretically expected frequency distribution is calculated
as the arithmetic mean of the odd and even frequencies of the PoVs. We
consider that each pixel can belong to one of k colour categories. In the case
of 8-bit greyscale images there are a total of 128 categories or PoVs, since we
consider a category to contain both an odd and an even value.

Therefore, the theoretically expected frequency in category i after em-
bedding an equally distributed message is:

|{colour|sortedIndexO f(colour)e{2i,2i + 1} }|
2
The measured frequency of occurence for category i is:

n; = |{colour|sortedIndexO f(colour) = 2i}|

*

The 22 statistic, with k& — 1 degrees of freedom, is defined as:
k
(ni —n;)°
Thoa = Z 2
i=1 "
Finally, the probability p that embedded data exists in the image is defined as

the integration of the density function, considering that the distribution of n;
and n; are equal. The probability p is defined as:

1 xk_l x —
P = 1-— kl—kl/ 6_51'%_1(133
22T (55) Jo

When working with images where pixels are represented using 24 bits (8 bits
for each colour channel), the number of categories rises to 223.

22 Sorin Radoveneanu, Catalin Leordeanu, Valentin Cristea

5. Test Cases

For the implementation of the image manipulation part of the solution we
used OpenCV [11]. It is an open source computer vision library, first released
in 1999 under the BSD license, free for both commercial and academic use.
For the AES encryption algorithm we used the BouncyCastle cryptographic
library [12]. Due to the characteristics of LSB steganography, since we can
only add data in the least significant bit, the theoretical limit for the secret
data which we can insert is 12.5% of the total size of the image file.

5.1. Results

We used an image of size 302x446 pixels, to which we added an increasing
amount of hidden data, through the aforementioned methods. The size of the
hidden data was 3,95KB, 9.07KB, 14,6KB and 25KB.

pvalue (%) Chi-Square
100

20
a0

70

a a0 20 120 160 200 240 280 320 260 400

Fi1Gc. 2. Chi-Square attack for an image with 14,6 KB of hidden
data using only the LSB method.

In Figure 2, Figure 3 and Figure 4 we tested the probability p(%) for
14,6 KB of hidden data using the elements of the proposed solution. In Figure
5 we showed all the experiments for the Chi-Square attack side by side to show
the use rate of the hidden data.

As expected, the experiments where we used all the stages of the proposed
solution (AES+KBRP+LSB) added the most additional data, which is visible
in Figure 5. The Key Based Random Permutation (KBRP) step also adds some
additional data due to the presence of the normalization and padding steps
of the algorithm. However, the most additional data is added by the padding
for the AES encryption algorithm. As a tradeoff for the lack of efficiency this

Hiding Data Inside a Cloud 23

pvalue (%) Chi-Square
100
50) e
80
0 | v o _
60
L - ..'h- . -
50 S el
A e e NN o 2 o e AN
o T ; S !
30
0
10
u] S
a 20 a0 120 160 200 240 280 320 360 400
Fi1a. 3. Chi-Square attack for an image with 14,6KB of hidden
data using AES encryption and LSB.
p-value (%) Chi-Square
100
a0 - Kdd
o -_-"
80
| B
e Hae Y.
60 "'_,..-'--
50 L .
i LA LNy
an = E
30
20
10
|
0 o 40 80 120 160 200 240 - 280 320 360 400

Fi1G. 4. Chi-Square attack for an image with 14,6 KB of hidden
data using the entire confidentiality solution (AES + KBRP +
LSB).

method offers the highest level of security for the hidden data. From the figures
above we can observe a relatively uniform distribution of the PoVs.

24 Sorin Radoveneanu, Catalin Leordeanu, Valentin Cristea

H AES + KBRP + LSB
i AES + LSB

H KBRP + LSB
HLSB

Amount of hidden data(KB)

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% p(%)

Fi1G. 5. The probability p for different amounts of hidden data.

We also performed a set of experiments to determine the performance of
the proposed solution, shown in Figure 6. These experiments were performed
on a machine with an Intel i5 processor and 4GB of RAM.

1985 ms
2000 ms
1800ms 1589 ms
1600 ms
1400 ms 1222 ms
1200 ms
1000 ms 815ms
BOD ms
534 ms
600ms
337 ms
s 1.
200ms ; msl7 ms 6ms méoms ms 7 ms mEms
. — L A — = L~ ey
oms -
1KO 10KO I5K0 50KO T5KO 100 KO

ulSBE mKBRP = AES

Fi1G. 6. Performance in milliseconds of each step of the solution.

Since the overall performance depends only on the amount of hidden
data, we performed experiments where we inserted 1KB, 10KB, 25KB, 50KB,
75KB and 100KB respectively on larger images. The results obtained for the
data insertion and data extraction operations were identical. The actual values
can be seen in Figure 6.

From these results we can draw the conclusion that the operation with the
largest running time is the LSB insertion. This is understandable because the
algorithm needs to sequentially alter the value of each pixel. The KBRP and
AES encryption require the least amount of computational resources, especially

Hiding Data Inside a Cloud 25

for very small amounts of data. Also, the execution time is proportional to
the amount of hidden data.

6. Conclusions and future work

The solution for data confidentiality proposed in this paper can be used
when sending data over an unsecure communication channel, as well as storage
in a remote environment where the user has no security guarantees, such as
a Cloud System. There are many online services offering image storage and
this solution would enable users to hide confidential information from potential
attackers.

As opposed to traditional confidentiality methods the user is therefore
granted plausible deniability regarding the existence of the embedded data,
as well as another layer of protection due to the permutation and encryption
steps. The efficiency of the proposed solution was tested thoroughly using the
Chi-Square attack and we can see the effect of embedding different amounts
of hidden data and for different steps of the workflow. The security of the
solution is directly dependent on the security of the encryption algorithm. For
this solution we used the AES cypher which is currently considered secure. We
also added an additional level of security through a key-based permutation
of the resulting data. The proposed solution combines steganography and
cryptography methods in order to ensure data confidentiality. Usually such a
method is used to hide only small amounts of confidential data and we have
tested for up to 100kB.

As future work we intend to improve the performance of the solution.
Since the Least Significant Bit stage uses the most computational resources, its
performance could be improved by using a GPU implementation in CUDA or
OpenCL. Since the operations performed on each pixel can be easily separated
the algorithm is suitable for a parallel implementation.

Acknowledgement

The work has been funded by the “Sectoral Operational Programme Hu-
man Resources Development 2007-2013 of the Ministry of Furopean Funds ”
through the Financial Agreement POSDRU/159/1.5/S/ 134398.

REFERENCES

[1] Kandukuri, Balachandra Reddy, V. Ramakrishna Paturi, and Atanu Rakshit. Cloud
security issues. Services Computing, 2009. SCC’09. IEEE International Conference on,
pp- 517-520, IEEE, 2009.

[2] Wang, Cong, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public au-
diting for data storage security in cloud computing. In INFOCOM, 2010 Proceedings
IEEE, pp. 1-9. IEEE, 2010.

[3] Johnson, Neil F., and Sushil Jajodia. Exploring steganography:Seeing the unseen. Com-
puter 31, no. 2 (1998): 26-34.

26

Sorin Radoveneanu, Catalin Leordeanu, Valentin Cristea

[4]

[12]
[13]

[14]

Fridrich, Jessica, Miroslav Goljan, and Rui Du. Reliable detection of LSB steganogra-
phy in color and grayscale images. In Proceedings of the 2001 workshop on Multimedia
and security: new challenges, pp. 27-30. ACM, 2001.

Anderson, Ross, Roger Needham, and Adi Shamir. The steganographic file system. In
Information Hiding, pp. 73-82. Springer Berlin Heidelberg, 1998.

Czeskis Alexei, David J. St Hilaire, Karl Koscher, Steven D. Gribble, Tadayoshi Kohno,
and Bruce Schneier. Defeating Encrypted and Deniable File Systems: TrueCrypt v5.
la and the Case of the Tattling OS and Applications. In HotSec.2008.

McDonald, Andrew D., and Markus G. Kuhn. Stegfs: A steganographic file system for
linux. In Information Hiding, pp. 463-477. Springer Berlin Heidelberg, 2000.

Canetti, Rein, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption.
In Advances in CryptologyCRYPTO’97, pp. 90-104. Springer Berlin Heidelberg, 1997.
Coz, Ingemar J., Joe Kilian, F. Thomson Leighton, and Talal Shamoon. ” Secure spread
spectrum watermarking for multimedia.” Image Processing, IEEE Transactions on 6,
no. 12 (1997): 1673-1687.

S.M. Hussain, N.M. Ajlouni, Key Based Random Permutation, Journal of Computer
Science 2 (5): 419-421, 2006

Culjak, Ivan, David Abram, Tomislav Pribanic, Hrvoje Dzapo, and Mario Cifrek. ” A
brief introduction to OpenCV.” In MIPRO, 2012 Proceedings of the 35th International
Convention, pp. 1725-1730. IEEE, 2012.

Castle, Bouncy. ”Bouncy castle crypto apis.” URL http://www.bouncycastle.
org/.(Cited on page 82.) (2007).

Miller, Frederic P., Agnes F. Vandome, and John McBrewster.” Advanced Encryption
Standard.” (2009).

Rogawski, Marcin, Kris Gaj, and Ekawat Homsirikamol. ” A high-speed unified hard-
ware architecture for 128 and 256-bit security levels of aes and grstl.” Embedded Hard-
ware Design: Microprocessors and Microsystems (2013).

Westfeld, Andreas, and Andreas Pfitzmann. ” Attacks on steganographic systems.” In
Information Hiding, pp. 61-76. Springer Berlin Heidelberg, 2000.

Zanganeh, Omid, and Subariah Ibrahim.” Adaptive image steganography based on opti-
mal embedding and robust against chi-square attack.” Information Technology Journal
10, no. 7 (2011): 1285-1294.

