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In this paper, we introduce and analyze two Mann-type implicit inertial sub-

gradient extragradient algorithms for solving the monotone bilevel equilibrium problem
with a general system of variational inclusions and a common fixed-point problem of a

finite family of strict pseudocontraction mappings and an asymptotically nonexpansive

mapping constraints. Some strong convergence theorems for the proposed algorithms are
established under the suitable assumptions.
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1. Introduction

Let (H, 〈·, ·〉) be a real Hilbert space with induced norm ‖·‖. Let the nonempty subset
C ⊂ H be closed and convex. A mapping T : C → C is known as ζ-strictly pseudocontractive
if there exists a constant ζ ∈ [0, 1) such that ‖Tx − Ty‖2 ≤ ‖x − y‖2 + ζ‖(I − T )x − (I −
T )y‖2,∀x, y ∈ C. A mapping T : C → C is known as asymptotically nonexpansive, if there
exists a sequence {θk} ⊂ [0,∞) such that ‖T kx− T ky‖ ≤ (1 + θk)‖x− y‖,∀x, y ∈ C, k ≥ 1,
with limk→∞ θk = 0. We denote by Fix(T ) the fixed-point set of the mapping T . Let A
be a self-mapping on H. The classical variational inequality problem ([36, 37]) (VIP) is
to find x∗ ∈ C s.t. 〈Ax∗, y − x∗〉 ≥ 0,∀y ∈ C. The solution set of the VIP is denote by
VI(C,A). Let the Ω denote the common solution set of the fixed-point problem (FPP) of
asymptotically nonexpansive mapping T : C → C with {θk} and the variational inequality
problems (VIPs) for two inverse-strongly monotone mappings F1, F2. Suppose that the
bifunction Φ : H ×H → R ∪ {+∞} satisfies Φ(x, x) = 0,∀x ∈ C. Consider the equilibrium
problem (EP(C,Φ)) which is to find x∗ ∈ C such that

Φ(x∗, y) ≥ 0, ∀y ∈ C. (1)

The solution set of EP(C,Φ) is denoted by Sol(C,Φ). It is well known that the EP(C,Φ) as
a unified model plays an important role in the research of several problems, e.g., variational
inequality problems ([5, 8, 27, 28, 30, 32, 40, 44]), optimization problems ([14, 18, 19, 24,
25, 38, 41, 43]), split problems ([12, 13, 31, 35]), saddle point problems, complementarity
problems, fixed point problems ([20–23, 26]), Nash equilibrium problems, etc. The EP(C,Φ)
and its extended versions have been widely studied by many authors; see [10, 17, 29, 33, 34,
39, 42] and references therein. Anh and An [2] considered the monotone bilevel equilibrium
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problem (MBEP) with the fixed-point problem constraint:

Find x∗ ∈ Ω such that Ψ(x∗, y) ≥ 0, ∀y ∈ Ω , (2)

where Ψ : C × C → R ∪ {+∞} such that Ψ(x, x) = 0,∀x ∈ C and Ω = Sol(C,Φ) ∩ Fix(T ).
Choose the parameter sequences {λn} and {βn} such that{

{λn} ⊂ (α, α) ⊂ (0,min{ 1
2c1
, 1

2c2
}), limn→∞ λn = λ, βn ↓ 0, 2βnη − β2

nΥ2 < 1,∑∞
n=0 βn = +∞, 0 < τ < min{η,Υ}, 0 < βn < min{ 1

τ ,
2η−2τ
Υ2−τ2 ,

2η
Υ2 },

(3)

where Υ is a constant associated with Ψ.
Let F1, F2 : H → H be single-valued mappings and B1, B2 : C → 2H be multi-

valued mappings with Bjy 6= ∅,∀y ∈ C, j = 1, 2. Consider the general system of variational
inclusions (GSVI), which is to find (x∗, y∗) ∈ C × C s.t.{

0 ∈ λ1(F1y
∗ +B1x

∗) + x∗ − y∗,
0 ∈ λ2(F2x

∗ +B2y
∗) + y∗ − x∗.

(4)

In particular, if F1 = F2 = A, B1 = B2 = B and x∗ = y∗, then problem (4) reduces to the
variational inclusion (VI) ([6]). It is known that problem (4) has been transformed into a
fixed point problem in the following way.

Proposition 1.1 ([7]). Suppose that the mappings B1, B2 : C → 2H both are maximal
monotone. Then for given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (4) if and only if x∗ ∈
Fix(G), where Fix(G) is the fixed-point set of the mapping G := JB1

λ1
(I−λ1F1)JB2

λ2
(I−λ2F2),

and y∗ = JB2

λ2
(I − λ2F2)x∗.

In this paper, we introduce and analyze two iterative algorithms for solving the mono-
tone bilevel equilibrium problem (MBEP) with a general system of variational inclusions
(GSVI) and a common fixed-point problem of a finite family of strict pseudocontraction
mappings and an asymptotically nonexpansive mapping (CFPP) constraints, i.e., a strongly
monotone equilibrium problem EP(Ω ,Ψ) over the common solution set Ω of another mono-
tone equilibrium problem EP(C,Φ), the GSVI and the CFPP. Some strong convergence
results for the proposed algorithms are established under the suitable assumptions. Our re-
sults improve and extend some corresponding results in the earlier and very recent literature;
see e.g., [2, 5, 30].

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. In the following,
we denote by “ ⇀ ” weak convergence and by “ → ” strong convergence. A bifunction
Ψ : C × C → R is said to be
(i) η-strongly monotone, if Ψ(x, y) + Ψ(y, x) ≤ −η‖x− y‖2,∀x, y ∈ C;

(ii) monotone, if Ψ(x, y) + Ψ(y, x) ≤ 0,∀x, y ∈ C;
(iii) Lipschitz-type continuous with constants c1, c2 > 0, if Ψ(x, y) + Ψ(y, z) ≥ Ψ(x, z) −

c1‖x− y‖2 − c2‖y − z‖2,∀x, y, z ∈ C.
Recall that a mapping F : C → H is said to be

(i) L-Lipschitz continuous or L-Lipschitzian if ∃L > 0 s.t. ‖Fx−Fy‖ ≤ L‖x−y‖,∀x, y ∈ C;
(ii) monotone if 〈Fx− Fy, x− y〉 ≥ 0,∀x, y ∈ C;
(iii) pseudomonotone if 〈Fx, y − x〉 ≥ 0⇒ 〈Fy, y − x〉 ≥ 0,∀x, y ∈ C;
(iv) η-strongly monotone if ∃η > 0 s.t. 〈Fx− Fy, x− y〉 ≥ η‖x− y‖2,∀x, y ∈ C;
(v) α-inverse-strongly monotone if ∃α > 0 s.t. 〈Fx−Fy, x−y〉 ≥ α‖Fx−Fy‖2,∀x, y ∈ C.

Recall that the mapping T : C → C is a ζ-strict pseudocontraction for some ζ ∈ [0, 1) if and

only if the inequality holds 〈Tx−Ty, x−y〉 ≤ ‖x−y‖2− 1−ζ
2 ‖(I−T )x− (I−T )y‖2,∀x, y ∈

C. If T is a ζ-strictly pseudocontractive mapping, then T satisfies Lipschitz condition
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‖Tx − Ty‖ ≤ 1+ζ
1−ζ ‖x − y‖,∀x, y ∈ C. For each point x ∈ H, we know that there exists

a unique nearest point in C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C.
The mapping PC is said to be the metric projection of H onto C. Recall that the following
statements hold:
(i) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H;
(ii) 〈x− PCx, y − PCx〉 ≤ 0, ∀x ∈ H, y ∈ C;
(iii) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C;
(iv) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H;
(v) ‖sx+ (1− s)y‖2 = s‖x‖2 + (1− s)‖y‖2 − s(1− s)‖x− y‖2, ∀x, y ∈ H, s ∈ [0, 1].

Lemma 2.1 ([1]). Let T : C → C be a ζ-strict pseudocontraction. Then I−T is demiclosed.

Lemma 2.2 ([30]). Let T : C → C be a ζ-strictly pseudocontractive mapping. Let γ and δ
be two nonnegative real numbers. Assume (γ + δ)ζ ≤ γ. Then ‖γ(x − y) + δ(Tx − Ty)‖ ≤
(γ + δ)‖x− y‖,∀x, y ∈ C.

Let B : C → 2H be a set-valued operator with Bx 6= ∅,∀x ∈ C. B is said to be
monotone ([11]) if for each x, y ∈ C, one has 〈u− v, x− y〉 ≥ 0,∀u ∈ Bx, v ∈ By. Also, B is
said to be maximal monotone if (I + λB)C = H for all λ > 0. For a monotone operator B,
we define the mapping JBλ : (I + λB)C → C by JBλ = (I + λB)−1 for each λ > 0. Such JBλ
is called the resolvent of B for λ > 0. Let F : H → H be an α-inverse-strongly monotone
mapping and B : C → 2H be a maximal monotone operator. In the sequel, we shall use the
notation Tλ := JBλ (I − λF ) = (I + λB)−1(I − λF ),∀λ > 0.

Proposition 2.1 ([15]). Let B : C → 2H be a maximal monotone operator. Then the
following statements hold: (i) the resolvent identity: JBλ x = JBµ (µλx+ (1− µ

λ )JBλ x), ∀λ, µ >
0, x ∈ H; (ii) if JBλ is a resolvent of B for λ > 0, then JBλ is a firmly nonexpansive mapping
with Fix(JBλ ) = B−10, where B−10 = {x ∈ C : 0 ∈ Bx}.

Proposition 2.2 ([15]). The following statements hold: (i) Fix(Tλ) = (F +B)−10,∀λ > 0;
(ii) ‖y − Tλy‖ ≤ 2‖y − Try‖ for 0 < λ ≤ r and y ∈ C.

Lemma 2.3. Let the mapping F : H → H be α-inverse-strongly monotone. Then, for a
given λ ≥ 0, ‖(I − λF )x− (I − λF )y‖2 ≤ ‖x− y‖2 − λ(2α− λ)‖Fx− Fy‖2,∀x, y ∈ H. In
particular, if 0 ≤ λ ≤ 2α, then I − λF is nonexpansive.

Lemma 2.4. Let the operators B1, B2 : C → 2H be both maximal monotone. Let the
mappings F1, F2 : H→ H be α-inverse-strongly monotone and β-inverse-strongly monotone,
respectively. Let the mapping G : H → C be defined as G := JB1

λ1
(I − λ1F1)JB2

λ2
(I − λ2F2).

If 0 < λ1 ≤ 2α and 0 < λ2 ≤ 2β, then G : H→ C is nonexpansive.

Lemma 2.5. The inequality holds: ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 ∀x, y ∈ H.

Lemma 2.6 ([9]). Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty closed convex subset of X, and T : C → C be an asymptotically
nonexpansive mapping with Fix(T ) 6= ∅. Then I − T is demiclosed at zero, i.e., if {uk} is a
sequence in C such that uk ⇀ u ∈ C and (I − T )uk → 0, then (I − T )u = 0, where I is the
identity mapping of X.

Lemma 2.7 ([16]). Let {Γk} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {Γkj} of {Γk} which satisfies Γkj < Γkj+1 for
each integer j ≥ 1. Define the sequence {τ(k)}k≥k0 of integers as follows: τ(k) = max{j ≤
k : Γj < Γj+1}, where integer k0 ≥ 1 such that {j ≤ k0 : Γj < Γj+1} 6= ∅. Then, the
following hold: (i) τ(k0) ≤ τ(k0 + 1) ≤ · · · and τ(k) → ∞; (ii) Γτ(k) ≤ Γτ(k)+1 and
Γk ≤ Γτ(k)+1,∀k ≥ k0.
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The normal cone NC(x) of C at x ∈ C is defined as NC(x) = {z ∈ H : 〈z, y − x〉 ≤
0,∀y ∈ C}. The subdifferential of a convex function g : C → R ∪ {+∞} at x ∈ C is defined
by ∂g(x) = {z ∈ H : g(y)− g(x) ≥ 〈z, y − x〉, ∀y ∈ C}.

In this paper, we are committed to finding a solution x∗ ∈ Sol(Ω ,Ψ) of the problem

EP(Ω ,Ψ), where Ω =
⋂N
i=0 Fix(Ti)∩Fix(G)∩Sol(C,Φ) with T0 := T . We assume always that

T : H→ C is an asymptotically nonexpansive mapping with a sequence {θk} and Ti : C → C
is a ζi-strict pseudocontraction for i = 1, ..., N such that ζ := max{ζi : 1 ≤ i ≤ N}.
B1, B2 : C → 2H are two maximal monotone operators, and F1, F2 : H → H are α-inverse-
strongly monotone and β-inverse-strongly monotone, respectively. G : H→ C is defined as
Gx = JB1

λ1
(I − λ1F1)JB2

λ2
(I − λ2F2)x ∀x ∈ H where 0 < λ1 < 2α and 0 < λ2 < 2β. Choose

the sequences {βk}, {γk}, {δk} in (0, 1), and positive sequences {αk}, {εk}, {sk} such that
(H1) βk + γk + δk = 1 ∀k ≥ 1 and 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1;
(H2) (γk + δk)ζ ≤ γk ∀k ≥ 1, 0 < lim infk→∞ δk,

∑∞
k=1 εk <∞ and

∑∞
k=1 θk <∞;

(H3) limk→∞ sk = 0, supk≥1
εk
sk
<∞, limk→∞

θk
sk

= 0 and
∑∞
k=1 sk =∞;

(H4) {αk} ⊂ (α, α) ⊂ (0,min{ 1
2c1
, 1

2c2
}) and limk→∞ αk = α̃;

(H5) 2skν − s2
kΥ2 < 1, 0 < λ < min{ν,Υ} and 0 < sk < min{ 1

λ ,
2ν−2λ
Υ2−λ2 ,

2ν
Υ2 }.

Write Tk := TkmodN for integer k ≥ 1 with the mod function taking values in the set
{1, 2, ..., N}, that is, if k = jN + q for some integers j ≥ 0 and 0 ≤ q < N , then Tk = TN if
q = 0 and Tk = Tq if 0 < q < N .

Algorithm 2.1. Let x0, x1 ∈ C be arbitrary. The sequences {βk}, {γk}, {δk} in (0, 1), and
positive sequences {αk}, {εk}, {sk} satisfy conditions (H1)-(H5). Calculate xk+1 as follows:
Step 1. Compute τk = xk+εk(xk−xk−1) and yk = argmin{αkΦ(τk, y)+ 1

2‖y−τ
k‖2 : y ∈ C}.

Step 2. Choose wk ∈ ∂2Φ(τk, yk). Compute Ck = {v ∈ H : 〈τk − αkwk − yk, v − yk〉 ≤ 0}
and zk = argmin{αkΦ(yk, z) + 1

2‖z − τ
k‖2 : z ∈ Ck}.

Step 3. Compute µk = βkT
kzk +γkp

k + δkTkp
k, vk = JB2

λ2
(µk−λ2F2µ

k) and pk = JB1

λ1
(vk−

λ1F1v
k).

Step 4. Compute xk+1 = argmin{skΨ(µk, t)+ 1
2‖t−µ

k‖2 : t ∈ C}. Set k := k+1 and return
to Step 1.

Proposition 2.3 ([4]). Let C be a convex subset of a real Hilbert space H and g : C →
R ∪ {+∞} be subdifferentiable. Then, x̂ is a solution to the following convex minimiza-
tion problem min{g(x) : x ∈ C} if and only if 0 ∈ ∂g(x̂) + NC(x̂), where ∂g denotes the
subdifferential of g.

Proposition 2.4 ([3]). Let X and Y be two sets, G be a set-valued map from Y to X, and
W be a real valued function defined on X × Y . The marginal function M is defined as

M(y) = {x∗ ∈ G(y) : W (x∗, y) = sup{W (x, y) : x ∈ G(y)}}.

If W and G are continuous, then M is upper semicontinuous.

Next, we assume that two bifunctions Ψ : C × C → R ∪ {+∞} and Φ : H ×H →
R ∪ {+∞} satisfy the following conditions:
AssΦ:

(Φ1) Ω =
⋂N
i=0 Fix(Ti) ∩ Fix(G) ∩ Sol(C,Φ) 6= ∅ with T0 := T .

(Φ2) Φ is monotone and Lipschitz-type continuous with constants c1, c2 > 0, and Φ is weakly
continuous, i.e., {xk ⇀ x̄ and yk ⇀ ȳ} ⇒ {Φ(xk, yk)→ Φ(x̄, ȳ)}.

AssΨ:
(Ψ1) Ψ is ν-strongly monotone and weakly continuous.

(Ψ2) There exist the mappings Ψ̄i, ψ̂i : C × C → H for each i ∈ {1, ...,m}, such that for all
u, v, x, y, z ∈ C the following hold:

(a) Ψ̄i(x, y) + Ψ̄i(y, x) = 0, ‖Ψ̄i(x, y)‖ ≤ L̄i‖x− y‖.
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(b) ψ̂i(x, x) = 0 and ‖ψ̂i(u, v)− ψ̂i(x, y)‖ ≤ L̂i‖(u− v)− (x− y)‖.
(c) Ψ(x, y) + Ψ(y, z) ≥ Ψ(x, z) +

∑m
i=1〈Ψ̄i(x, y), ψ̂i(y, z)〉.

(Ψ3) For any sequence {yk} ⊂ C such that yk → d, we have lim supk→∞
|Ψ(d,yk)|
‖yk−d‖ < +∞.

3. Main Results

In this section, we consider and analyze two Mann-type implicit inertial subgradient
extragradient algorithms for solving the MBEP with the GSVI and CFPP constraints, i.e.,
a strongly monotone equilibrium problem EP(Ω ,Ψ) over the common solution set Ω of
another monotone equilibrium problem EP(C,Φ), the GSVI (4) and the CFPP, where Ω =⋂N
i=0 Fix(Ti) ∩ Fix(G) ∩ Sol(C,Φ) with T0 := T .

Theorem 3.1. Suppose that {xk} is the sequence defined by Algorithm 2.1, such that
‖T kxk − T k+1xk‖ → 0 as k → ∞. Let the bifunctions Ψ,Φ satisfy the assumptions AssΦ-
AssΨ, and assume that the conditions (H1)-(H5) hold. Then xk → x∗ ∈ Ω ⇔ xk−xk+1 →
0, where x∗ ∈ Ω is a unique solution to the problem EP(Ω ,Ψ).

Proof. For each k ≥ 1, let Γk : H → C be a mapping defined by Γkx := βkT
kzk +

γkGx + δkTkGx ∀x ∈ H. Note that the mapping G : H → C is defined as G = JB1

λ1
(I −

λ1F1)JB2

λ2
(I − λ2F2), where λ1 ∈ (0, 2α) and λ2 ∈ (0, 2β). Then, by Lemma 2.4, we know

that G is nonexpansive. Since (γk+δk)ζ ≤ γk, by Lemma 2.2 we obtain that for all x, y ∈ H,
‖Γkx − Γky‖ ≤ (γk + δk)‖Gx − Gy‖ ≤ (1 − βk)‖x − y‖. Hence, by the Banach contraction
mapping principle, we deduce from {βk} ⊂ (0, 1) that for each k ≥ 1, there exists a unique
element µk ∈ C such that

µk = βkT
kzk + γkGµ

k + δkTkGµ
k. (5)

Choose an element p ∈ Ω =
⋂N
i=0 Fix(Ti)∩Fix(G)∩Sol(C,Φ) arbitrarily. Since limk→∞

θk
sk

=

0, we may assume, without loss of generality, that θk ≤ 1
2λsk for all k ≥ 1. We divide the

rest of the proof into several steps as follows:
Step 1. We show that the following inequality holds

‖zk − p‖2 ≤ ‖τk − p‖2 − (1− 2αkc1)‖yk − τk‖2 − (1− 2αkc2)‖zk − yk‖2, ∀k ≥ 1.

Indeed, by Proposition 2.3, we know that for yk = argmin{αkΦ(τk, y)+ 1
2‖y−τ

k‖2 : y ∈ C},
there exists wk ∈ ∂2Φ(τk, yk) such that αkw

k + yk − τk ∈ −NC(yk), which hence yields
〈αkwk + yk − τk, x − yk〉 ≥ 0,∀x ∈ C. From the definition of wk ∈ ∂2Φ(τk, yk), it follows
that

αk[Φ(τk, x)− Φ(τk, yk)] ≥ 〈αkwk, x− yk〉, ∀x ∈ H. (6)

Adding the last two inequalities, we get

αk[Φ(τk, x)− Φ(τk, yk)] + 〈yk − τk, x− yk〉 ≥ 0, ∀x ∈ C. (7)

It follows from zk ∈ Ck and the definition of Ck that 〈τk − αkwk − yk, v − yk〉 ≤ 0, and
hence

αk〈wk, zk − yk〉 ≥ 〈τk − yk, zk − yk〉. (8)

Putting x = zk in (6), we get αk[Φ(τk, zk)− Φ(τk, yk)] ≥ αk〈wk, zk − yk〉. Adding (8) and
the last inequality, we have

αk[Φ(τk, zk)− Φ(τk, yk)] ≥ 〈τk − yk, zk − yk〉. (9)

By Proposition 2.3, we know that for zk = argmin{αkΦ(yk, y) + 1
2‖y − τk‖2 : y ∈ Ck},

there exist hk ∈ ∂2Φ(yk, zk) and rk ∈ NCk
(zk) such that αkh

k + zk − τk + rk = 0. So,
we infer that αk〈hk, y − zk〉 ≥ 〈τk − zk, y − zk〉,∀y ∈ Ck, and Φ(yk, y) − Φ(yk, zk) ≥
〈hk, y−zk〉,∀y ∈ H. Putting y = p ∈ C ⊂ Ck in two last inequalities and later adding them,
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we get αk[Φ(yk, p)−Φ(yk, zk)] ≥ 〈τk−zk, p−zk〉. Therefore, −αkΦ(yk, zk) ≥ 〈τk−zk, p−zk〉.
Combining this and the following Lipschitz-type continuity of Φ, we obtain that

〈τk − zk, zk − p〉 ≥ αk[Φ(τk, zk)− Φ(τk, yk)]− αkc1‖τk − yk‖2 − αkc2‖yk − zk‖2.

This together with (9), implies that

〈τk − zk, zk − p〉 ≥ 〈τk − yk, zk − yk〉 − αkc1‖τk − yk‖2 − αkc2‖yk − zk‖2. (10)

Therefore, applying the equality

〈u, v〉 =
1

2
(‖u+ v‖2 − ‖u‖2 − ‖v‖2), ∀u, v ∈ H, (11)

for 〈τk − zk, zk − p〉 and 〈yk − τk, zk − yk〉 in (10), we obtain the desired result.
Step 2. We show that the following inequality holds

‖xk+1 − x‖2 ≤ ‖µk − x‖2 − ‖xk+1 − µk‖2 + 2sk[Ψ(µk, x)−Ψ(µk, xk+1)], ∀x ∈ C.

Indeed, since xk+1 = argmin{skΨ(µk, t)+ 1
2‖t−µ

k‖2 : t ∈ C}, there existsmk ∈ ∂2Ψ(µk, xk+1)

such that 0 ∈ skmk + xk+1 − µk +NC(xk+1). By the definition of normal cone NC and the
subgradient mk, we get 〈skmk + xk+1 − µk, x − xk+1〉 ≥ 0,∀x ∈ C and sk[Ψ(µk, x) −
Ψ(µk, xk+1)] ≥ 〈skmk, x− xk+1〉,∀x ∈ C. Adding the last two inequalities, we get

2sk[Ψ(µk, x)−Ψ(µk, xk+1)] + 2〈xk+1 − µk, x− xk+1〉 ≥ 0, ∀x ∈ C. (12)

Putting u = xk+1 − µk and v = x− xk+1 in (11), we get

2sk[Ψ(xk+1, x)−Ψ(µk, xk+1)] + ‖µk − x‖2 − ‖xk+1 − µk‖2 − ‖xk+1 − x‖2 ≥ 0, ∀x ∈ C.

This attains the desired result.
Step 3. We show that if x∗ is a solution of the MBEP with the GSVI and CFPP constraints,
then ‖xk+1−µk∗‖ ≤ ηk‖µk−x∗‖ ≤ (1−λsk)‖µk−x∗‖, where µk∗ = argmin{skΨ(x∗, v)+ 1

2‖v−
x∗‖2 : v ∈ C}, ηk =

√
1− 2skν + s2

kΥ2, 0 < λ < min{ν,Υ}, 0 < sk < min{ 1
λ ,

2ν−2λ
Υ2−λ2 }, and

Υ =
∑m
i=1 L̄iL̂i. Indeed, put µk∗ = argmin{skΨ(x∗, v) + 1

2‖v−x
∗‖2 : v ∈ C}. By the similar

arguments to those of (12), we also get

sk[Ψ(x∗, x)−Ψ(x∗, µk∗)] + 〈µk∗ − x∗, x− µk∗〉 ≥ 0 ∀x ∈ C. (13)

Setting x = µk∗ ∈ C in (12) and x = xk+1 ∈ C in (13), respectively, we obtain that
sk[Ψ(µk, µk∗)−Ψ(µk, xk+1)] + 〈xk+1−µk, µk∗ − xk+1〉 ≥ 0 and sk[Ψ(x∗, xk+1)−Ψ(x∗, µk∗)] +
〈µk∗ − x∗, xk+1 − µk∗〉 ≥ 0. Adding the last two inequalities, we have

0 ≤ 2sk[Ψ(µk, µk∗)−Ψ(µk, xk+1) + Ψ(x∗, xk+1)−Ψ(x∗, µk∗)] + ‖µk − x∗‖2

− ‖xk+1 − µk − µk∗ + x∗‖2 − ‖xk+1 − µk∗‖2,
(14)

where the last equality follows directly from (11). Note that, under assumption AssΨ(Ψ2),

it follows that Ψ(µk, µk∗) − Ψ(x∗, µk∗) ≤ Ψ(µk, x∗) −
m∑
i=1

〈Ψ̄i(µ
k, x∗), ψ̂i(x

∗, µk∗)〉. Hence,

Ψ(x∗, xk+1)−Ψ(µk, xk+1) ≤ Ψ(x∗, µk)−
m∑
i=1

〈Ψ̄i(x
∗, µk), ψ̂i(µ

k, xk+1)〉. Therefore, we have

Ψ(µk, µk∗)−Ψ(µk, xk+1) + Ψ(x∗, xk+1)−Ψ(x∗, µk∗)

≤ Ψ(µk, x∗) + Ψ(x∗, µk)−
m∑
i=1

〈Ψ̄i(µ
k, x∗), ψ̂i(x

∗, µk∗)〉 −
m∑
i=1

〈Ψ̄i(x
∗, µk), ψ̂i(µ

k, xk+1)〉.
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Then, using AssΨ(Ψ2), and the strong monotonicity of Ψ in AssΨ(Ψ1) that Ψ(x, y) +
Ψ(y, x) ≤ −ν‖x− y‖2,∀x, y ∈ C, we get

Ψ(µk, µk∗)−Ψ(µk, xk+1) + Ψ(x∗, xk+1)−Ψ(x∗, µk∗)

≤ −ν‖µk − x∗‖2 + Υ‖µk − x∗‖‖µk − xk+1 − x∗ + µk∗‖.
(15)

Combining (14) and (15), we get

0 ≤ (1− 2skν)‖µk − x∗‖2 − (‖xk+1 − µk − µk∗ + x∗‖ − skΥ‖µk − x∗‖)2

+ s2
kΥ2‖µk − x∗‖2 − ‖xk+1 − µk∗‖2 ≤ (1− 2skν + s2

kΥ2)‖µk − x∗‖2 − ‖xk+1 − µk∗‖2.

From 0 < λ < min{ν,Υ} and 0 < sk < min{ 1
λ ,

2ν−2λ
Υ2−λ2 }, it follows that 0 ≤ ηk =√

1− 2skν + s2
kΥ2 < 1− λsk. This ensures the desired result.

Step 4. We show that the sequence {xk} is bounded. Indeed, putting X := C, Y :=
[0, 1],G(s) := C, ∀s ∈ Y , s := sk,W (x, s) := −sΨ(x∗, x) − 1

2‖x − x
∗‖2,∀(x, s) ∈ X × Y we

have M(sk) = argmin{skΨ(x∗, x) + 1
2‖x − x

∗‖2 : x ∈ C} = {µk∗}. Note that M is con-

tinuous and limk→∞ µk∗ = x∗. Since Ψ is continuous on C, we get limk→∞Ψ(x∗, µk∗) =

Ψ(x∗, x∗) = 0. In terms of AssΨ(Ψ3), there exists a constant M̂(x∗) > 0 such that

|Ψ(x∗, µk∗)| ≤ M̂(x∗)‖µk∗ − x∗‖,∀k ≥ 1. Putting x = x∗ in (3.9) and using Ψ(x∗, x∗) = 0, we
get −skΨ(x∗, µk∗)+〈µk∗−x∗, x∗−µk∗〉 ≥ 0, which hence yields ‖µk∗−x∗‖2 ≤ sk[−Ψ(x∗, µk∗)] ≤
skM̂(x∗)‖µk∗ − x∗‖,∀k ≥ 1. This immediately implies that ‖µk∗ − x∗‖ ≤ skM̂(x∗) ∀k ≥ 1.
Also, according to Lemma 2.3 we know that I − λ1F1 and I − λ2F2 are nonexpansive
mappings, where λ1 ∈ (0, 2α) and λ2 ∈ (0, 2β). Moreover, by Lemma 2.4, we know that

G is nonexpansive. We write y∗ = JB2

λ2
(I − λ2F2)x∗. Then, by Proposition 1.1, we get

x∗ = JB1

λ1
(I − λ1F1)y∗ = Gx∗. So it follows that

‖pk − x∗‖ = ‖Gµk − x∗‖ ≤ ‖µk − x∗‖. (16)

Also, in terms of supk≥1
εk
sk
< ∞ and xk − xk+1 → 0, we know that εk

sk
‖xk − xk−1‖ → 0 as

k →∞, which hence implies that there exists a constant M̃0 > 0 such that εk
sk
‖xk−xk−1‖ ≤

M̃0, ∀k ≥ 1. Therefore,

‖τk − x∗‖ = ‖xk − x∗ + εk(xk − xk−1)‖ ≤ ‖xk − x∗‖+ εk‖xk − xk−1‖

= ‖xk − x∗‖+ sk ·
εk
sk
‖xk − xk−1‖ ≤ ‖xk − x∗‖+ M̃0sk.

(17)

Utilizing the result in Step 1, from (17) we get

‖zk − x∗‖ ≤ ‖τk − x∗‖ ≤ ‖xk − x∗‖+ M̃0sk, ∀k ≥ 1. (18)

Since each Tk is ζ-strictly pseudocontractive, G is a nonexpansive mapping and T is asymp-
totically nonexpansive, we deduce from (γk + δk)ζ ≤ γk and Lemma 2.2 that

‖µk − x∗‖2 ≤ βk(1 + θk)2‖zk − x∗‖2 + (1− βk)‖Gµk − x∗‖2

− βk(1− βk)‖ γk
1− βk

(T kzk −Gµk) +
δk

1− βk
(T kzk − TkGµk)‖2,

which together with (18) yields

‖µk − x∗‖2 ≤ (1 + θk)2‖zk − x∗‖2 − (1− βk)‖ γk
1− βk

(T kzk −Gµk)

+
δk

1− βk
(T kzk − TkGµk)‖2 ≤ (1 + θk)2(‖xk − x∗‖+ M̃0sk)2.

(19)
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Consequently,

‖xk+1 − x∗‖ ≤ (1− 1

2
λsk)‖xk − x∗‖+ sk[M̃0 + M̂(x∗)]

≤ max{‖xk − x∗‖, 2[M̃0 + M̂(x∗)]

λ
}.

(20)

By induction, we get ‖xk − x∗‖ ≤ max{‖x1 − x∗‖, 2[M̃0+M̂(x∗)]
λ },∀k ≥ 1. Thus, {xk} is

bounded, and so are the sequences {pk}, {τk}, {µk}, {vk}, {yk}, {zk}.
Step 5. We show that if xki ⇀ x̂, τki − xki → 0 and τki − yki → 0 for {ki} ⊂ {k}, then
x̂ ∈ Sol(C,Φ). Indeed, noticing τki − xki → 0 and τki − yki → 0, we get

‖xki − yki‖ ≤ ‖xki − τki‖+ ‖τki − yki‖ → 0 (i→∞). (21)

So it follows from xki ⇀ x̂ that τki ⇀ x̂ and yki ⇀ x̂. Since {yk} ⊂ C, yki ⇀ x̂ and C
is weakly closed, we know that x̂ ∈ C. By (3.3), we have αkiΦ(τki , x) ≥ αkiΦ(τki , yki) +
〈yki − τki , yki − x〉,∀x ∈ C. Taking the limit as i → ∞ and using the assumptions that
limk→∞ αk = α̃ > 0, Φ(x̂, x̂) = 0, {yki} is bounded and Φ is weakly continuous, we obtain
that α̃Φ(x̂, x) ≥ 0 ∀x ∈ C. This implies that x̂ ∈ sol(C,Φ).
Step 6. We claim that xk → x∗, a unique solution of the MBEP with the GSVI and CFPP
constraints. Indeed, set Γk = ‖xk − x∗‖2. By the results in Steps 1 and 2 we deduce from
(18) and (19) that

‖xk+1 − x∗‖2 ≤ (‖xk − x∗‖+ M̃0sk)2 + θkM̃ − (1 + θk)2[(1− 2αkc1)‖yk − τk‖2

+ (1− 2αkc2)‖zk − yk‖2]− (1− βk)‖ γk
1− βk

(T kzk −Gµk)

+
δk

1− βk
(T kzk − TkGµk)‖2 − ‖xk+1 − µk‖2 + skK,

(22)

where supk≥1{(2+θk)(‖xk−x∗‖+M̃0sk)2} ≤ M̃ and supk≥1{2|Ψ(µk, x∗)−Ψ(µk, xk+1)|} ≤
K for some M̃,K > 0.

Finally, we show the convergence of {Γk} to zero by the following two cases: Case
1. Suppose that there exists an integer k0 ≥ 1 such that {Γk} is non-increasing. Then the
limit limk→∞ Γk = ~ < +∞ and Γk − Γk+1 → 0 (k →∞). From (22), we get

(1 + θk)2[(1− 2αkc1)‖yk − τk‖2 + (1− 2αkc2)‖zk − yk‖2]

+ (1− βk)‖ γk
1− βk

(T kzk −Gµk) +
δk

1− βk
(T kzk − TkGµk)‖2 + ‖xk+1 − µk‖2

≤ Γk − Γk+1 + M̃0sk(2
√

Γk + M̃0sk) + θkM̃ + skK.

(23)

Since sk → 0, θk → 0, Γk − Γk+1 → 0 and 0 < lim infk→∞(1 − βk), we obtain from
{αk} ⊂ (α, α) ⊂ (0,min{ 1

2c1
, 1

2c2
}) that

lim
k→∞

‖ γk
1− βk

(T kzk −Gµk) +
δk

1− βk
(T kzk − TkGµk)‖ = 0, (24)

and

lim
k→∞

‖yk − τk‖ = lim
k→∞

‖zk − yk‖ = lim
k→∞

‖xk+1 − µk‖ = 0. (25)

We now show that ‖µk − pk‖ → 0 as k →∞. Indeed, we set y∗ = JB2

λ2
(x∗ − λ2F2x

∗). Note

that vk = JB2

λ2
(µk − λ2F2µ

k) and pk = JB1

λ1
(vk − λ1F1v

k). Then pk = Gµk. By Lemma 2.3
we have

‖vk − y∗‖2 ≤ ‖µk − x∗‖2 − λ2(2β − λ2)‖F2µ
k − F2x

∗‖2, (26)
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and

‖pk − x∗‖2 ≤ ‖vk − y∗‖2 − λ1(2α− λ1)‖F1v
k − F1y

∗‖2. (27)

Also, Lemma 2.2 together with (18) guarantees that ‖µk − x∗‖2 ≤ βk

2 [(1 + θk)2(‖xk − x∗‖+

M̃0sk)2 + ‖µk − x∗‖2 − ‖T kzk − µk‖2] + (1− βk)‖µk − x∗‖2 which hence leads to

‖µk − x∗‖2 ≤ (1 + θk)2(‖xk − x∗‖+ M̃0sk)2 − ‖T kzk − µk‖2. (28)

Substituting (26) for (27), by (28) we get

‖pk − x∗‖2 ≤ ‖µk − x∗‖2 − λ2(2β − λ2)‖F2µ
k − F2x

∗‖2 − λ1(2α− λ1)‖F1v
k − F1y

∗‖2

≤ (1 + θk)2(‖xk − x∗‖+ M̃0sk)2 − ‖T kzk − µk‖2 − λ2(2β − λ2)‖F2µ
k − F2x

∗‖2

− λ1(2α− λ1)‖F1v
k − F1y

∗‖2.

Moreover, substituting the last inequality for (22), from (18) we get

‖xk+1 − x∗‖2 ≤ θkM̃ − (1− βk)[‖T kzk − µk‖2 + λ2(2β − λ2)‖F2µ
k − F2x

∗‖2

+ (‖xk − x∗‖+ M̃0sk)2 + λ1(2α− λ1)‖F1v
k − F1y

∗‖2] + skK,

which immediately leads to

(1− βk)[‖T kzk − µk‖2 + λ2(2β − λ2)‖F2µ
k − F2x

∗‖2 + λ1(2α− λ1)‖F1v
k − F1y

∗‖2]

≤ Γk − Γk+1 + M̃0sk(2
√

Γk + M̃0sk) + θkM̃ + skK.

Since λ1 ∈ (0, 2α), λ2 ∈ (0, 2β), sk → 0, θk → 0, Γk−Γk+1 → 0 and lim infk→∞(1−βk) > 0,
we get

lim
k→∞

‖T kzk − µk‖ = lim
k→∞

‖F2µ
k − F2x

∗‖ = lim
k→∞

‖F1v
k − F1y

∗‖ = 0. (29)

On the other hand, observe that

‖pk − x∗‖2 ≤ 〈vk − y∗, pk − x∗〉+ λ1〈F1y
∗ − F1v

k, pk − x∗〉
≤ 1

2 [‖vk − y∗‖2 + ‖pk − x∗‖2 − ‖vk − pk + x∗ − y∗‖2] + λ1‖F1y
∗ − F1v

k‖‖pk − x∗‖.
This ensures that

‖pk − x∗‖2 ≤ ‖vk − y∗‖2 − ‖vk − pk + x∗ − y∗‖2 + 2λ1‖F1y
∗ − F1v

k‖‖pk − x∗‖. (30)

Similarly, we get

‖vk − y∗‖2 ≤ ‖µk − x∗‖2 − ‖µk − vk + y∗ − x∗‖2 + 2λ2‖F2x
∗ − F2µ

k‖‖vk − y∗‖. (31)

Combining (30) and (31), by (28) we have

‖pk − x∗‖2 ≤ (1 + θk)2(‖xk − x∗‖+ M̃0sk)2 − ‖µk − vk + y∗ − x∗‖2 − ‖vk − pk

+ x∗ − y∗‖2 + 2λ1‖F1y
∗ − F1v

k‖‖pk − x∗‖+ 2λ2‖F2x
∗ − F2µ

k‖‖vk − y∗‖.
(32)

Substituting (32) for (22), from (18) we get

‖xk+1 − x∗‖2 ≤ (‖xk − x∗‖+ M̃0sk)2 + θkM̃ − (1− βk)[‖µk − vk + y∗ − x∗‖2 + skK

+ ‖vk − pk + x∗ − y∗‖2] + 2λ1‖F1y
∗ − F1v

k‖‖pk − x∗‖+ 2λ2‖F2x
∗ − F2µ

k‖‖vk − y∗‖.
This immediately leads to

(1− βk)[‖µk − vk + y∗ − x∗‖2 + ‖vk − pk + x∗ − y∗‖2] ≤ Γk − Γk+1 + θkM̃ + skK

+ M̃0sk(2
√

Γk + M̃0sk) + 2λ1‖F1y
∗ − F1v

k‖‖pk − x∗‖+ 2λ2‖F2x
∗ − F2µ

k‖‖vk − y∗‖.

Since sk → 0, θk → 0, Γk − Γk+1 → 0 and lim infk→∞(1 − βk) > 0, we deduce from (29)
that limk→∞ ‖µk − vk + y∗ − x∗‖ = 0 and limk→∞ ‖vk − pk + x∗ − y∗‖ = 0. Thus,

‖µk −Gµk‖ = ‖µk − pk‖ ≤ ‖µk − vk + y∗ − x∗‖+ ‖vk − pk + x∗ − y∗‖ → 0(k →∞). (33)
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Noticing τk = xk + εk(xk−xk−1), we deduce that ‖τk−xk‖ = εk‖xk−xk−1‖ → 0(k →∞).
Also, note that 0 = βk(T kzk − µk) + γk(pk − µk) + δk(Tkp

k − µk). Since lim infk→∞ δk > 0,
from (29) and (33) we obtain that ‖Tkpk−µk‖ ≤ 1

δk
(‖T kzk−µk‖+‖pk−µk‖)→ 0(k →∞)

and hence ‖Tkµk − µk‖ ≤ 1+ζ
1−ζ ‖µ

k − pk‖+ ‖Tkpk − µk‖ → 0(k →∞). Therefore,

lim
k→∞

‖τk − xk‖ = 0 and lim
k→∞

‖Tkµk − µk‖ = 0. (34)

Using (25) and the assumption xk − xk+1 → 0, we get

‖xk − µk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − µk‖ → 0, k →∞, (35)

and

‖zk − τk‖ ≤ ‖zk − yk‖+ ‖yk − τk‖ → 0, k →∞. (36)

Combining (33) and (35), we have

‖xk −Gxk‖ ≤ 2‖xk − µk‖+ ‖µk −Gµk‖ → 0, k →∞. (37)

We claim that ‖Tkxk−xk‖ → 0 and ‖Txk−xk‖ → 0 as k →∞. In fact, from (34) and (35)
we deduce that

‖Tkxk − xk‖ ≤
2

1− ζ
‖xk − µk‖+ ‖Tkµk − µk‖ → 0 (k →∞). (38)

Combining (34) and (36), we have

‖xk − zk‖ ≤ ‖xk − τk‖+ ‖τk − zk‖ → 0, k →∞. (39)

Using (29), (35) and (39), we infer from the asymptotical nonexpansivity of T that

‖xk − T kxk‖ ≤ ‖xk − µk‖+ ‖µk − T kzk‖+ (1 + θk)‖zk − xk‖ → 0 (k →∞). (40)

This together with the assumption ‖T kxk − T k+1xk‖ → 0, implies that

‖xk − Txk‖ ≤ (2 + θ1)‖xk − T kxk‖+ ‖T kxk − T k+1xk‖ → 0 (k →∞). (41)

Next we show that limk→∞ ‖xk − x∗‖ = 0. Indeed, since the sequences {µk} and {xk} are
bounded, we know that there exists a subsequence {µki} of {µk} converging weakly to x̂ ∈ C
and satisfying the equality

lim inf
k→∞

[Ψ(x∗, µk) + Ψ(µk, xk+1)] = lim
i→∞

[Ψ(x∗, µki) + Ψ(µki , xki+1)]. (42)

From (25) and (35) it follows that xki ⇀ x̂ and xki+1 ⇀ x̂. Then, by the result in Step 5,
we deduce that x̂ ∈ Sol(C,Φ).

It is clear from (41) that xki − Txki → 0. Note that Lemma 2.6 guarantees the
demiclosedness of I − T at zero. So, we know that x̂ ∈ Fix(T ). Also, note that Lemma 2.6
guarantees the demiclosedness of I − G at zero. Hence, from xki ⇀ x̂ and xk − Gxk → 0

(due to (37)) it follows that x̂ ∈ Fix(G). We claim that x̂ ∈
⋂N
j=1 Fix(Tj). As a matter

of fact, since xk − µk → 0 and µki ⇀ x̂, we get xki ⇀ x̂. Without loss of generality, we
may assume l = kimodN for all i. Since xk − xk+1 → 0, we have xki+j ⇀ x̂ for all j ≥ 1.
Moreover, from (38) we deduce that

‖xki+j − Tl+jxki+j‖ = ‖xki+j − Tki+jxki+j‖ → 0. (43)

Note that Lemma 2.1 guarantees the demiclosedness of I − Ti at zero for i = 1, ..., N . So

it follows that x̂ ∈ Fix(Tl+j) for all j. This ensures that x̂ ∈
⋂N
j=1 Fix(Tj). Consequently,

x̂ ∈
⋂N
j=0 Fix(Tj) ∩ Fix(G) ∩ Sol(C,Φ) = Ω . In terms of (42), we have

lim inf
k→∞

[Ψ(x∗, µk) + Ψ(µk, xk+1)] = Ψ(x∗, x̂) ≥ 0. (44)
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Since Ψ is ν-strongly monotone, we have

lim sup
k→∞

[Ψ(x∗, µk) + Ψ(µk, x∗)] ≤ lim sup
k→∞

(−ν‖µk − x∗‖2) = −ν~. (45)

Combining (44) and (45), we obtain

lim sup
k→∞

[Ψ(µk, x∗)−Ψ(µk, xk+1)] ≤ lim sup
k→∞

[Ψ(µk, x∗) + Ψ(x∗, µk)]

− lim inf
k→∞

[Ψ(x∗, µk) + Ψ(µk, xk+1)] ≤ −ν~.
(46)

We now claim that ~ = 0. On the contrary we assume ~ > 0. Without loss of generality we
may assume that ∃k0 ≥ 1 s.t.

Ψ(µk, x∗)−Ψ(µk, xk+1) ≤ −ν~
2
, ∀k ≥ k0, (47)

which together with (22), implies that for all k ≥ k0,

‖xk+1 − x∗‖2 ≤ (1 + θk)2‖τk − x∗‖2 + 2sk[Ψ(µk, x∗)−Ψ(µk, xk+1)]

≤ ‖xk − x∗‖2 + εk‖xk − xk−1‖M̃1 + θkM̃ − skν~,
(48)

for some M̃1 > 0. So it follows that for all k ≥ k0,

Γk − Γk0 ≤
k−1∑
j=k0

(εj‖xj − xj−1‖M̃1 + θjM̃)− ν~
k−1∑
j=k0

sj . (49)

Taking the limit in (49) as k → ∞, we get −∞ < ~ − Γk0 ≤ limk→∞[
∑k−1
j=k0

(εj‖xj −
xj−1‖M̃1+θjM̃)−ν~

∑k−1
j=k0

sj ] = −∞. This reaches a contradiction. Therefore, limk→∞ Γk =

0 and hence {xk} converges strongly to the unique solution x∗ of the problem EP(Ω ,Ψ).
Case 2. Suppose that ∃{Γkj} ⊂ {Γk} s.t. Γkj < Γkj+1 ∀j ∈ N, where N is the set of all
positive integers. Define the mapping τ : N → N by τ(k) := max{j ≤ k : Γj < Γj+1}. By
Lemma 2.7, we get

Γτ(k) ≤ Γτ(k)+1 and Γk ≤ Γτ(k)+1. (50)

Utilizing the same inferences as in (25) and (35), we can obtain that

lim
k→∞

‖xτ(k)+1 − µτ(k)‖ = lim
k→∞

‖τ τ(k) − yτ(k)‖ = lim
k→∞

‖yτ(k) − zτ(k)‖ = 0, (51)

and

lim
k→∞

‖xτ(k) − µτ(k)‖ = 0. (52)

Since {µk} is bounded, there exists a subsequence of {µτ(k)} converging weakly to x̂. With-
out loss of generality, we may assume that µτ(k) ⇀ x̂. Then, utilizing the same inferences as

in Case 1, we can obtain that x̂ ∈ Ω =
⋂N
i=0 Fix(Ti) ∩ Fix(G) ∩ Sol(C,Φ). From µτ(k) ⇀ x̂

and (51), we get xτ(k)+1 ⇀ x̂. Using the condition {αk} ⊂ (α, α) ⊂ (0,min{ 1
2c1
, 1

2c2
}), we

have 1− 2ατ(k)c1 > 0 and 1− 2ατ(k)c2 > 0. So it follows from (22) that

Ψ(µτ(k), xτ(k)+1)−Ψ(µτ(k), x∗) ≤
ετ(k)

sτ(k)
‖xτ(k) − xτ(k)−1‖ · M̃1

2
+
θτ(k)

sτ(k)
· M̃

2
. (53)

Since Ψ is ν-strongly monotone on C, we get

ν‖µτ(k) − x∗‖2 ≤ −Ψ(µτ(k), x∗)−Ψ(x∗, µτ(k)). (54)

Combining (53) and (54), we deduce from supk≥1
εk
sk
< ∞, xk − xk+1 → 0, AssΨ(Ψ1) and

x̂ ∈ Ω that

νlim sup
k→∞

‖µτ(k) − x∗‖2 ≤ lim sup
k→∞

[−Ψ(µτ(k), xτ(k)+1)−Ψ(x∗, µτ(k))] ≤ 0. (55)
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Hence, lim supk→∞ ‖xτ(k) − x∗‖2 ≤ 0. Thus, we get limk→∞ ‖xτ(k) − x∗‖2 = 0. From (52),
we get

‖xτ(k)+1 − x∗‖2 − ‖xτ(k) − x∗‖2 ≤ 2‖xτ(k)+1 − xτ(k)‖‖xτ(k) − x∗‖

+ ‖xτ(k)+1 − xτ(k)‖2 → 0 (k →∞).
(56)

Owing to Γk ≤ Γτ(k)+1, we get

‖xk − x∗‖2 ≤ ‖xτ(k) − x∗‖2 + 2‖xτ(k)+1 − xτ(k)‖‖xτ(k) − x∗‖+ ‖xτ(k)+1 − xτ(k)‖2. (57)

So it follows from (52) that xk → x∗ as k →∞. This completes the proof. �

Algorithm 3.1. Let x0, x1 ∈ C be arbitrary. The sequences {βk}, {γk}, {δk} in (0, 1), and
positive sequences {αk}, {εk}, {sk} satisfy conditions (H1)-(H5). Calculate xk+1 as follows:
Step 1. Compute τk = xk+εk(xk−xk−1) and yk = argmin{αkΦ(τk, y)+ 1

2‖y−τ
k‖2 : y ∈ C}.

Step 2. Choose wk ∈ ∂2Φ(τk, yk). Compute Ck = {v ∈ H : 〈τk − αkwk − yk, v − yk〉 ≤ 0}
and zk = argmin{αkΦ(yk, z) + 1

2‖z − τ
k‖2 : z ∈ Ck}. Step 3. Compute µk = βkT

kpk +

γkµ
k + δkTkµ

k, vk = JB2

λ2
(zk − λ2F2z

k) and pk = JB1

λ1
(vk − λ1F1v

k). Step 4. Compute

xk+1 = argmin{skΨ(µk, t) + 1
2‖t− µ

k‖2 : t ∈ C}. Set k := k + 1 and return to Step 1.

Using the similar arguments to those in the proof of Theorem 3.1, we can obtain the
following convergence theorem.

Theorem 3.2. Suppose that {xk} is the sequence defined by Algorithm 3.1, such that
‖T kxk − T k+1xk‖ → 0 as k → ∞. Let the bifunctions Ψ,Φ satisfy the assumptions AssΦ-
AssΨ, and assume that the conditions (H1)-(H5) hold. Then xk → x∗ ∈ Ω ⇔ xk−xk+1 →
0, where x∗ ∈ Ω is a unique solution to the problem EP(Ω ,Ψ).

4. Concluding Remarks

In this article, we have suggested two new iterative algorithms based on the Mann
implicit inertial subgradient extragradient method for solving the monotone bilevel equi-
librium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone
equilibrium problem over the common solution set of another monotone equilibrium prob-
lem, the GSVI and the CFPP. The strong convergence results for the proposed algorithms
to solve such a MBEP with the GSVI and CFPP constraints are established under some
mild assumptions. Furthermore, in the proposed method, the second minimization problem
over a closed convex set is replaced by the subgradient projection onto some constructible
half-space, and a new approach for solving the GSVI and CFPP via Mann implicit iterations
is provided.
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[16] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and
nonstrictly convex minimization, Set-Valued Anal., 16(2008), 899-912.

[17] G. Mastroeni, On Auxiliary Principle for Equilibrium Problems. In: P. Daniele, F.
Giannessi, A. Maugeri (eds.) Nonconvex Optimization and its Applications, Kluwer
Academic Publishers, Dordrecht, 2003.

[18] D. R. Sahu, A. Pitea and M. Verma, A new iteration technique for nonlinear ope-rators
as concerns convex programming and feasibility problems, Numer. Algor., 83(2)(2020),
421-449.

[19] S. S. Santra, O. Bazighifan and M. Postolache, New conditions for the oscillation
of second-order differential equations with sublinear neutral terms, Mathematics,
9(11)(2021), Article Number 1159.

[20] W. Sintunavarat and A. Pitea, On a new iteration scheme for numerical reckoning fixed
points of Berinde mappings with convergence analysis, J. Nonlinear Sci. Appl., 9 (2016),
2553-2562.

[21] B. S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical
reckoning fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math.
Comput., 275(2016), 147-155.

[22] B. S. Thakur, D. Thakur and M. Postolache, A new iteration scheme for approximating
fixed points of nonexpansive mappings, Filomat, 30(2016), 2711-2720.

[23] D. Thakur, B. S. Thakur and M. Postolache, New iteration scheme for numerical reck-
oning fixed points of nonexpansive mappings, J. Inequal. Appl., (2014), Art. No. 328.



32 Lu-Chuan Ceng, Li-Jun Zhu, Zhangsong Yao

[24] G. I. Usurelu, Split feasibility handled by a single-projection three-step iteration with
comparative analysis, J. Nonlinear Convex Anal. 22(3)(2021), 544-558.

[25] G. I. Usurelu, A. Bejenaru and M. Postolache, Newton-like methods and poly-
nomiographic visualization of modified Thakur processes, Int. J. Comput. Math.,
98(5)(2021), 1049-1068.

[26] G. I. Usurelu and M. Postolache, Algorithm for generalized hybrid operators with nu-
merical analysis and applications, J. Nonlinear Var. Anal., 6(2022), 255-277.

[27] H. K. Xu and T. H. Kim, Convergence of hybrid steepest-descent methods for varia-
tional inequalities, J. Optim. Theory Appl., 119(2003), 185-201.

[28] Y. Yao, Olaniyi S. Iyiola and Y. Shehu, Subgradient extragradient method with double
inertial steps for variational inequalities, J. Sci. Comput., 90(2022), Article number 71.

[29] Y. Yao, H. Li and M. Postolache, Iterative algorithms for split equilibrium problems of
monotone operators and fixed point problems of pseudo-contractions, Optim., in press,
DOI: 10.1080/02331934.2020.1857757.

[30] Y. Yao, Y. C. Liou and S. M. Kang, Approach to common elements of variational in-
equality problems and fixed point problems via a relaxed extragradient method, Com-
put. Math. Appl., 59(2010), 3472-3480.

[31] Y. Yao, Y. C. Liou and M. Postolache, Self-adaptive algorithms for the split problem
of the demicontractive operators, Optim., 67(2018), 1309-1319.

[32] Y. Yao, M. Postolache and J. C. Yao, Iterative algorithms for the generalized varia-
tional inequalities, U.P.B. Sci. Bull., Series A, 81(2019), 3-16.

[33] Y. Yao, M. Postolache and J. C. Yao, An iterative algorithm for solving the generalized
variational inequalities and fixed points problems, Mathematics, 7(2019), Art. No. 61.

[34] Y. Yao, M. Postolache and J. C. Yao, Strong convergence of an extragradient algo-
rithm for variational inequality and fixed point problems, U.P.B. Sci. Bull., Series A,
82(1)(2020), 3-12.

[35] Y. Yao, M. Postolache and Z. Zhu, Gradient methods with selection technique for the
multiple-sets split feasibility problem, Optim., 69(2020), 269-281.

[36] Y. Yao, N. Shahzad, M. Postolache and J. C. Yao, Convergence of self-adaptive Tseng-
type algorithms for split variational inequalities and fixed point problems, Carpathian
J. Math., in press.

[37] Y. Yao, N. Shahzad and J. C. Yao, Convergence of Tseng-type self-adaptive algorithms
for variational inequalities and fixed point problems, Carpathian J. Math., 37(2021),
541-550.

[38] Y. Yao, Y. Shehu, X. H. Li and Q. L. Dong, A method with inertial extrapolation step
for split monotone inclusion problems, Optim., 70(2021), 741-761.

[39] Y. Yao, J. C. Yao and M. Postolache, An iterate for solving quasi-variational inclusions
and nonmonotone equilibrium problems, J. Nonlinear Convex Anal., in press.

[40] C. Zhang, Z. Zhu, Y. Yao and Q. Liu, Homotopy method for solving mathemati-
cal programs with bounded box-constrained variational inequalities, Optim., 68(2019),
2293-2312.

[41] X. Zhao, M. A. Kobis, Y. Yao and J. C. Yao, A projected subgradient method for
nondifferentiable quasiconvex multiobjective optimization problem, J. Optim. Theory
Appl., 190(2021), 82-107.

[42] X. Zhao, J. C. Yao and Y. Yao, A proximal algorithm for solving split monotone
variational inclusions, U.P.B. Sci. Bull., Series A, 82(3)(2020), 43-52.

[43] X. P. Zhao, J. C. Yao and Y. Yao, A nonmonotone gradient method for constrained
multiobjective optimization problems, J. Nonlinear Var. Anal., in press.

[44] X. Zhao and Y. Yao, Modified extragradient algorithms for solving monotone varia-
tional inequalities and fixed point problems, Optim., 69(2020), 1987-2002.


