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MANN-TYPE INERTIAL SUBGRADIENT EXTRAGRADIENT
METHODS FOR BILEVEL EQUILIBRIUM PROBLEMS
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In this paper, we introduce and analyze two Mann-type implicit inertial sub-
gradient extragradient algorithms for solving the monotone bilevel equilibrium problem
with a general system of variational inclusions and a common fixed-point problem of a
finite family of strict pseudocontraction mappings and an asymptotically nonexpansive
mapping constraints. Some strong convergence theorems for the proposed algorithms are
established under the suitable assumptions.
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1. Introduction

Let (X, (-, -)) be a real Hilbert space with induced norm ||-||. Let the nonempty subset
C' C H be closed and convex. A mapping T : C — C'is known as (-strictly pseudocontractive
if there exists a constant ¢ € [0,1) such that ||[Tz — Ty||*> < ||z — y||> + ¢||(I = T)x — (I —
T)y||?,Vz,y € C. A mapping T : C — C is known as asymptotically nonexpansive, if there
exists a sequence {0} C [0,00) such that | 7%z — T*y| < (1 + 604)||z — y||,Vz,y € C, k > 1,
with limg_, o 0 = 0. We denote by Fix(T') the fixed-point set of the mapping 7. Let A
be a self-mapping on H. The classical variational inequality problem ([36, 37]) (VIP) is
to find z* € C s.t. (Az*,y —x*) > 0,Yy € C. The solution set of the VIP is denote by
VI(C, A). Let the 2 denote the common solution set of the fixed-point problem (FPP) of
asymptotically nonexpansive mapping T : C' — C with {0} and the variational inequality
problems (VIPs) for two inverse-strongly monotone mappings Fy, F5. Suppose that the
bifunction ® : H x H — R U {+oo} satisfies ®(z,z) = 0,Vz € C. Consider the equilibrium
problem (EP(C, ®)) which is to find z* € C such that

(2",y) >0, Vy € C. (1)

The solution set of EP(C, ®) is denoted by Sol(C, ®). It is well known that the EP(C, ®) as
a unified model plays an important role in the research of several problems, e.g., variational
inequality problems ([5, 8, 27, 28, 30, 32, 40, 44]), optimization problems ([14, 18, 19, 24,
25, 38, 41, 43]), split problems ([12, 13, 31, 35]), saddle point problems, complementarity
problems, fixed point problems ([20-23, 26]), Nash equilibrium problems, etc. The EP(C, ®)
and its extended versions have been widely studied by many authors; see [10, 17, 29, 33, 34,
39, 42] and references therein. Anh and An [2] considered the monotone bilevel equilibrium
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problem (MBEP) with the fixed-point problem constraint:
Find z* € 2 such that U(z*,y) > 0, Yy € {2, (2)
where ¥ : C' x C — RU {+o0} such that ¥(z,z) = 0,Vzx € C and 2 = Sol(C, ®) N Fix(T).
Choose the parameter sequences {\,} and {f,} such that
M} C (@) € (0,min{ g, 55=3), limy oo Ay = A, Bn L0, 28,m — R T2 <1,
S o Bn = +00,0 <7 <min{n, T'}, 0< B, < min{%, %Z__QTZ, %},

(3)

where T is a constant associated with .

Let [y, Fy : 5 — H be single-valued mappings and By, B, : C — 2% be multi-
valued mappings with By # 0,Vy € C,j = 1,2. Consider the general system of variational
inclusions (GSVI), which is to find (z*,y*) € C x C s.t.

0 € M (Fry* + Biz™) + o* — y*, (4)
0e )\Q(ng* + Bgy*) + y* —z*.
In particular, if F; = F» = A, By = B2 = B and z* = y*, then problem (4) reduces to the
variational inclusion (VI) ([6]). It is known that problem (4) has been transformed into a
fixed point problem in the following way.

Proposition 1.1 ([7]). Suppose that the mappings By, By : C — 2%C both are mazimal
monotone. Then for given x*,y* € C, (x*,y*) is a solution of problem (4) if and only if x* €
Fix(G), where Fix(G) is the fized-point set of the mapping G := Jﬁl (I—)\lFl)Jg" (I—XoFy),
and y* = JO2 (I — Ao Fa)a™.

In this paper, we introduce and analyze two iterative algorithms for solving the mono-
tone bilevel equilibrium problem (MBEP) with a general system of variational inclusions
(GSVI) and a common fixed-point problem of a finite family of strict pseudocontraction
mappings and an asymptotically nonexpansive mapping (CFPP) constraints, i.e., a strongly
monotone equilibrium problem EP(§2, ¥) over the common solution set {2 of another mono-
tone equilibrium problem EP(C, ®), the GSVI and the CFPP. Some strong convergence
results for the proposed algorithms are established under the suitable assumptions. Our re-
sults improve and extend some corresponding results in the earlier and very recent literature;
see e.g., [2, 5, 30].

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. In the following,
we denote by ¢ — 7 weak convergence and by ¢ — ” strong convergence. A bifunction
U :(C x C — Ris said to be

(i) m-strongly monotone, if U(xz,y) + ¥(y,z) < —nllx — y||?,Va,y € C;

(ii) monotone, if ¥(z,y) + ¥(y,x) < 0,Vz,y € C;

(iii) Lipschitz-type continuous with constants cj,co > 0, if ¥(z,y) + ¥(y,2) > ¥(z,2) —

cillz —yl? —e2lly — 2[°, Vo, y, 2 € C.
Recall that a mapping F': C' — X is said to be
(i) L-Lipschitz continuous or L-Lipschitzian if 3L > 0s.t. |Fe—Fy| < L||z—y||,Vz,y € C;
(ii) monotone if (Fx — Fy,x —y) > 0,Vz,y € C;
(iii) pseudomonotone if (Fx,y —z) > 0= (Fy,y —x) > 0,Vz,y € C;,

(iv) n-strongly monotone if I > 0 s.t. (Fz — Fy,z —y) > ||z — y||?,Vz,y € C;

(v) a-inverse-strongly monotone if 3o > 0 s.t. (Fx— Fy,x—1y) > o||Fz — Fyl||?,Vz,y € C.
Recall that the mapping T': C — C'is a (-strict pseudocontraction for some ¢ € [0, 1) if and
only if the inequality holds (T'z — Ty, z —y) < ||z —y|* — 1;—CH(I— T)x— (I -T)y||* Vz,y €
C. If T is a (-strictly pseudocontractive mapping, then T satisfies Lipschitz condition
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Tz — Tyl < %EHJC —y|,Vz,y € C. For each point x € H, we know that there exists
a unique nearest point in C, denoted by Pcx, such that ||z — Pez|| < ||z —y|, Yy € C.
The mapping P¢ is said to be the metric projection of H onto C'. Recall that the following
statements hold:

(i) (x —y, Pow — Poy) > ||Pow — Peyll?, Yo,y € 3(;
) (x — Pox,y — Pex) <0, Vo € H,y € C;
(i) [lo =yl > |z — Pow|]* +|ly — Poz|?, Vo € H,y € C;
; e —yllI* = [z = llyllI* = 2(z — y,y), Yo,y € 3

Lemma 2.1 ([1]). Let T : C — C be a ¢-strict pseudocontraction. Then I —T is demiclosed.

Lemma 2.2 ([30]). Let T : C — C be a (-strictly pseudocontractive mapping. Let v and §
be two nonnegative real numbers. Assume (v + 0)C <. Then ||y(x —y) + 6(Tz — Ty)|| <
(v +0)llz —yll,Va,y € C.

Let B : C — 2% be a set-valued operator with Bz # (,Vx € C. B is said to be
monotone ([11]) if for each z,y € C, one has (u — v,z —y) > 0,Vu € Bz,v € By. Also, B is
said to be maximal monotone if (I + AB)C = K for all A > 0. For a monotone operator B,
we define the mapping JZ : (I + AB)C — C by JZ = (I + AB)~! for each A > 0. Such J?
is called the resolvent of B for A > 0. Let F' : H — H be an a-inverse-strongly monotone

mapping and B : C — 2% be a maximal monotone operator. In the sequel, we shall use the
notation Ty := JZ(I — AF) = (I + AB)"1(I — A\F),V\ > 0.

Proposition 2.1 ([15]). Let B : C — 2°C be a mazimal monotone operator. Then the
Jollowing statements hold: (i) the resolvent identity: JPx = J2 (5o + (1—§)J2x), YA, u >
0, x € H; (ii) if JP is a resolvent of B for X > 0, then JZ is a firmly nonexpansive mapping
with Fix(JP) = B7'0, where B~'0 = {x € C : 0 € Bx}.

Proposition 2.2 ([15]). The following statements hold: (i) Fix(Ty) = (F + B)710,V\ > 0;
(it) |y — Thwyll <2|ly — Try|| for 0 < A <r andy € C.

Lemma 2.3. Let the mapping F : H — H be a-inverse-strongly monotone. Then, for a
given X >0, [|[(I = AF)z — (I — AF)y|]* < ||z — y[|*? = A2 — N)||Fz — Fy||*,Vo,y € H. In
particular, if 0 < X\ < 2a, then I — A\F' is nonexpansive.

Lemma 2.4. Let the operators By,By : C — 2% be both mazimal monotone. Let the
mappings Fy, Fs : H — H be a-inverse-strongly monotone and B-inverse-strongly monotone,
respectively. Let the mapping G : H — C be defined as G := Jfll (I—- )\1F1)J)i2 (I — Ao F3).
If 0 < A\ <2a and 0 < Ay < 28, then G : H — C is nonexpansive.

Lemma 2.5. The inequality holds: ||z + y||* < ||lz[|* + 2(y,z + y) Va,y € K.

Lemma 2.6 ([9]). Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty closed convex subset of X, and T : C'— C be an asymptotically
nonezxpansive mapping with Fix(T) # (. Then I — T is demiclosed at zero, i.e., if {u*} is a
sequence in C such that u* — u € C and (I — T)u* — 0, then (I — T)u = 0, where I is the
identity mapping of X.

Lemma 2.7 ([16]). Let {I} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {I'y,} of {Iv} which satisfies Iy, < Iy, 41 for
each integer j > 1. Define the sequence {7(k)}k>k, of integers as follows: T(k) = max{j <
k: I < Iji1}, where integer ko > 1 such that {j < ko : I; < Ij11} # 0. Then, the
Jollowing hold: (i) T(ko) < 7(ko +1) < --- and 7(k) — 00; (i) I'r(xy < Ir(py41 and
Iy < I k)41, Yk = ko.
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The normal cone N¢(z) of C at x € C is defined as No(z) = {z € H : (z,y —x) <
0,Vy € C}. The subdifferential of a convex function g : C' — RU {400} at z € C' is defined
by dg(z) = {z € H: g(y) — g(x) = (2,y —x), Vy € C}.

In this paper, we are committed to finding a solution z* € Sol({2, ¥) of the problem
EP(£2,¥), where 2 = ﬂfvzo Fix(T;)NFix(G)NSol(C, ®) with Ty := T. We assume always that
T : H — C is an asymptotically nonexpansive mapping with a sequence {0y} and T; : C — C
is a (;-strict pseudocontraction for ¢ = 1,...,N such that ¢ := max{¢(; : 1 < i < N}
By, By : C — 270 are two maximal monotone operators, and Fy, Fs : H — 3 are a-inverse-
strongly monotone and S-inverse-strongly monotone, respectively. G : H — C' is defined as
Gz = Jﬁl (I - /\1F1)J)]\322(I — XoFy)x Vo € H where 0 < A\; < 2c and 0 < Ay < 28. Choose
the sequences {8}, {7k}, {0} in (0,1), and positive sequences {ay}, {er}, {sr} such that

(H1) Bx 4+ vk +0r =1Vk >1and 0 < liminfx_, o Bx < limsup,_, . Bk < 1;

(H2) (v + 0k)C < v VE > 1, 0 < liminfy o0 Op, Dopoyq €x < 00 and Dy O < 00;

(H3) limpeo 85 = 0, supj>; 55 < 00, limy e z—’; =0and Y7, sk = o0;

(H4) {ar} C (e, @) C (O,min{i, ﬁ}) and limy_,oc o = &

(H5) 25, —s27? < 1,0 < A <min{r, T} and 0 < s < min{, %’;__2/\’\2 251

Write Ty := Tgmoan for integer k > 1 with the mod function taking values in the set
{1,2,..., N}, that is, if k = jN + ¢ for some integers j > 0 and 0 < ¢ < N, then T}, = Ty if
g=0and T, =T7,if 0 <qg < N.

Algorithm 2.1. Let 2%, 2! € C be arbitrary. The sequences {Bi}, {7V}, {0k} in (0,1), and
positive sequences {ay}, {ex}, {sx} satisfy conditions (H1)-(H5). Calculate x**1 as follows:
Step 1. Compute 7F = z*+ey (¥ —2*~1) and y* = argmin{ax ®(7*,y)+ 3 ly—7"||> : y € C}.
Step 2. Choose w® € 0x® (7%, y*). Compute C), = {v € H : (7F — apw® — y*, v — y*) < 0}
and zF = argmin{a ®(y*, 2) + ||z — 7%||? : 2 € Ci}.

Step 3. Compute p* = B, T* 2% +~yppk + 8, Thp®, v* = Jf; (uF — Ao Fop®) and p* = Jﬁl (vF —
)\1F1’Uk).

Step 4. Compute x*™1 = argmin{s, U (", t) + 3|t — p¥||*> : t € C}. Set k :=k+1 and return
to Step 1.

Proposition 2.3 ([4]). Let C' be a convex subset of a real Hilbert space H and g : C —
R U {400} be subdifferentiable. Then, I is a solution to the following convex minimiza-
tion problem min{g(z) : = € C} if and only if 0 € Jg(Z) + N (&), where dg denotes the
subdifferential of g.

Proposition 2.4 ([3]). Let X and Y be two sets, G be a set-valued map from'Y to X, and
W be a real valued function defined on X xY. The marginal function M is defined as

M(y) ={z" € §(y) : W(a",y) = sup{W(z,y) : = € S(y)} }.
If W and G are continuous, then M is upper semicontinuous.

Next, we assume that two bifunctions ¥ : C x C — RU {400} and & : H x H —
R U {400} satisfy the following conditions:
Assg:
(@1) 2 =N, Fix(T;) N Fix(G) N Sol(C, ®) # O with Ty :=T.
(®2) @ is monotone and Lipschitz-type continuous with constants ¢, co > 0, and @ is weakly
continuous, i.e., {z¥ — z and y* — g} = {®(zF,y*) — ®(7,9)}.
Assy:
(Uy) ¥ is v-strongly monotone and weakly continuous.
(P3) There exist the mappings \I'i,l/si :C'x C — H for each i € {1,...,m}, such that for all
u,v,x,y, 2z € C the following hold:
(a) Wi(x,y) + Wiy, 2) =0, [Wi(z,y)|| < Lillz —y].
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(b) P, 2) =0 and [[¢h;(u, v) = s(,y)|| < Lil|(u — v) = (x = y)].
(U3) For any sequence {y*} C C such that y* — d, we have limsup,,_, 'ﬁ;ﬁffdfl' < 400.

3. Main Results

In this section, we consider and analyze two Mann-type implicit inertial subgradient
extragradient algorithms for solving the MBEP with the GSVI and CFPP constraints, i.e.,
a strongly monotone equilibrium problem EP (2, ¥) over the common solution set 2 of
another monotone equilibrium problem EP(C, ®), the GSVI (4) and the CFPP, where 2 =

N, Fix(T;) N Fix(G) N Sol(C, ®) with Ty := T

Theorem 3.1. Suppose that {z*} is the sequence defined by Algorithm 2.1, such that
|T*kzk — T*+1gk|| — 0 as k — oco. Let the bifunctions ¥, ® satisfy the assumptions Assg-
Assy, and assume that the conditions (H1)-(H5) hold. Then z* — z* € 2 & zF -2kl —
0, where x* € {2 is a unique solution to the problem EP(Q, V).

Proof. For each k > 1, let I, : 5 — C be a mapping defined by Ia = B, TFzF +
G + 6 TGx Vx € H. Note that the mapping G : H — C is defined as G = Jﬁl (I -
M Fy) T3 (I = Ao Fy), where Ap € (0,2a) and Ay € (0,23). Then, by Lemma 2.4, we know
that G is nonexpansive. Since (v +0)¢ < vk, by Lemma 2.2 we obtain that for all z,y € X,
ITvx — Iyl < (v + 0k)||Gx — Gyl < (1 — Br)||x — y||. Hence, by the Banach contraction
mapping principle, we deduce from {3} C (0,1) that for each k > 1, there exists a unique
element p* € C such that

ik = BT 2" + i, GuP + 8, TG >, (5)
Choose an element p € 2 = ﬂij\io Fix(T;)NFix(G)NSol(C, @) arbitrarily. Since limy_, o0 z—: =
0, we may assume, without loss of generality, that 6 < %)\sk for all £ > 1. We divide the
rest of the proof into several steps as follows:
Step 1. We show that the following inequality holds
€2 — (1~ 2ae) | — g, VE > 1
Indeed, by Proposition 2.3, we know that for y* = argmin{a,®(7*,y)+ 1|y —7%|?> 1 y € C},
there exists w* € 9@ (7%, y*) such that agpw® + y¥ — 7% € —Ng(y*), which hence yields
(aw® +y* — 7% 2 — y*) > 0,Vo € C. From the definition of w* € 9,®(7%,y*), it follows
that

12 = pl* < 7% = pl* = (1 = 2ake)lly* — 7

ozk[@(Tk,x) — (" y )} (apw®, z — y*), Vo e H. (6)
Adding the last two inequalities, we get
Otk[‘I)(Tk,.’E) — <I>(Tk,yk)] + (yk — 7k = yk> >0, VreC. (7)

It follows from z¥ € C} and the definition of Cy that (7% — apw* — y* v —y*) < 0, and
hence
ar(wh, 2 —y*) > (TF =yt 2t gt (8)
Putting = = 2* in (6), we get ax[®(7F, 2%) — ®(7%, y*)] > ap(w”, z¥ — y*). Adding (8) and
the last inequality, we have
a[®(r*, 28) — @ (r*, y*)] = (rF —y 2F —yh). (9)
By Proposition 2.3, we know that for z* = argmin{a,®(y*,y) + 3|y — 7*||> : y € Ci},
there exist h* € 02®(y*,2*) and ¥ € Ng, (2%) such that azh® + 2% — 7% + 7% = 0. So,
we infer that ax(h*,y — 2%) > (7% — 2Ky — 2F) vy € Cy, and ®(y*,y) — ®(y*,2F) >
(hF y—2F) Yy € H. Putting y = p € C C Oy in two last inequalities and later adding them,



24 Lu-Chuan Ceng, Li-Jun Zhu, Zhangsong Yao

we get ai[®(yF, p)—@(yF, 2F)] > (7F—2F p—2F). Therefore, —ay, ®(y*, 2F) > (7F—2F p—2F).

Combining this and the following Lipschitz-type continuity of ®, we obtain that

(24 24— p) > (e, ) B )] gl o2 — eyt — 2

This together with (9), implies that

(TF = 2P 28 —p)y > (78 — % 2P — P —aper |78 — |12 — arca|lyt — 252 (10)

Therefore, applying the equality

1
(u,v) = 5 (lu+ol* = [Jul* = [o]|*), Yu,v € K, (11)
for (7% — 2K 2% — p) and (y* — 7%, 2% — y*) in (10), we obtain the desired result.
Step 2. We show that the following inequality holds

2™ — | <l = = [l = 62+ 250 [ W (10, @) — W (P, 2], Ve e C

Indeed, since %! = argmin{s, W (u*, t)+3[[t—p*||? : t € C}, there exists m* € 9, W (uF, zFF1)
such that 0 € spm* 4+ ¥+ — ¥ + No(2F+1). By the definition of normal cone No and the

subgradient m*, we get (spmF + 2P+l — p* 2 — 2P+ > 0,Ve € O and s[¥(uF,z) —

U(pk, "] > (spmP, 2 — 2F+1) Vo € C. Adding the last two inequalities, we get

255, (W (¥, ) — W(pk, ")) + 202 — ko — 2y >0, vz e C. (12)

Putting u = 2**! — ¥ and v = 2 — 2! in (11), we get

28 [ (a" Y @) = (S M) |t = a® = 2T = PP (|2t 2] > 0, Ve € C.

This attains the desired result.

Step 3. We show that if * is a solution of the MBEP with the GSVI and CFPP constraints,
then %1 — | < el —a*|| < (1—Asy) ¥ —a* |, where ik = argmin{sy ¥(a*, v) + 1 u—
|2 v e CY m = /1 - 28, + 5272, 0< XA <min{r, T}, 0< s, <min{+, 2523}, and
T =" LiL;. Tndeed, put ¥ = argmin{s; ¥ (z*,v) + 3llv—2*||* : v € C}. By the similar
arguments to those of (12), we also get

sp[U(a*, ) — W(a*, ul)] + (pf — a2 —pl) >0 VzeC. (13)

Setting * = p* € C in (12) and z = 2! € C in (13), respectively, we obtain that
S [W (1 1) D, )] 4 (b ) > 0 and s [W(at, 20) - B(at, k)] +
(uF —z*, 2"t — pF) > 0. Adding the last two inequalities, we have

0 < 25, [W(F, ) — W, M) 4 W, M) - Wt i) + b - 2

) (14)
e B 4 &

where the last equality follows directly from (11). Note that, under assumption Assy(¥2),

it follows that W(u",uk) — U(a*, ub) < W(uk, @) =Y (Wi(uF,2*), (2", uk)).  Hence,

i=1
W, 2 ) = Wk, M) < W@t ph) - Z(‘I’i(x*vﬂk%@(uk,x’”l)). Therefore, we have
i=1
Wk, pk) — W(pk, ah ) W (e, 2b ) — W (2, k)
< W<Mk7m*)+\1l<x*,,uk)—Z<‘I’i(uk,x*) z*, k) Z wz(li k).
i=1 =1
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Then, using Assg(¥s3), and the strong monotonicity of ¥ in Assg(¥;) that ¥(z,y) +
\I’(y,l‘) < _VHI - y||2?vx7y € C) we get

W(Mkvui) - \I/(Mka xk+1) + qj(x*axk—i_l) - \I/(x*7/’['§)

k1 (15)

S e [T A A
Combining (14) and (15), we get
0< (1= 2s) || —2*|* = (2" = p = pf + 2%|| = s T||u" — ™)

+ s Tlp" — 2t |? = [l = B < (1= 250 + sE T2 |p” — 277 = [l = )2

From 0 < A < min{r, 7} and 0 < s; < min{$, 25723}, it follows that 0 < 7, =
\/1 — 2spv + si T2 < 1 — Asj. This ensures the desired result.

Step 4. We show that the sequence {z*} is bounded. Indeed, putting X := C,Y :=
[0,1],G(s) := C,Vs € Y, 5:= s, W(z,s) :== —s¥(z*,2) — L[z — 2%, V(z,s) € X x Y we
have M(s;) = argmin{s;¥(z*,z) + 3llz — z*[|?> : # € C} = {puF}. Note that M is con-
tinuous and limy_,o, u¥ = 2*. Since W is continuous on C, we get limg_,oo ¥(x*, pu¥) =
U(z*,z*) = 0. In terms of Assy(¥s3), there exists a constant M(z*) > 0 such that
| (z*, u¥)| < M(z*)||pk — 2*||,Vk > 1. Putting = = 2* in (3.9) and using ¥(z*, 2*) = 0, we
get —sp W (z*, uF) + (uk —2*, 2" — ) > 0, which hence yields ||uf —z*||? < s [~V (2", uF)] <
spM (2*)||pF — 2*||,Vk > 1. This immediately implies that ||u* — 2*|| < s, M(z*) Vk > 1.
Also, according to Lemma 2.3 we know that I — A\{F; and I — Ao F5 are nonexpansive
mappings, where A\; € (0,2a) and Ay € (0,28). Moreover, by Lemma 2.4, we know that
G is nonexpansive. We write y* = ij (I — AgFy)x*. Then, by Proposition 1.1, we get
ot = JUH(I = M F)y* = Ga*. So it follows that

Ip* = 2%l = |Gp* — a*|| < [|lp* — ™. (16)

Also, in terms of supy; $¢ < oo and z* — 2**1 — 0, we know that = ||z% — 2" | = 0 as
k — 0o, which hence implies that there exists a constant My > 0 such that i—:ka —zkt <
MO, Vk > 1. Therefore,

7% — 2% = [la* — 2* + e (@ — 2* || < [|l2* — 2¥|| + epll2® — 5|
= et 2l - et — ) < o — 0t + Fos, )
Utilizing the result in Step 1, from (17) we get
2% — 2| < |7%F — 2*|| < ||#* — 2*|| + Mosy, Vk > 1. (18)

Since each T, is (-strictly pseudocontractive, G is a nonexpansive mapping and T is asymp-
totically nonexpansive, we deduce from (yx + dx)¢ < v, and Lemma 2.2 that

lp* = a*[* < Br(1 +0r)?[12° — 2| + (1 = B |Gp* — 27|

= Bl = B (TR = Gut) o+ 2 (4~ TG

which together with (18) yields

I =2 < (U4 )2 [12° — 271 = (1= Bl B(Tkk Gp")

2 k _k 2 < k ar 2 (19)
t15, (TF2F = TGuF) 1> < (14 0,)([la" — 27| + Mosi)*.
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Consequently,

||l‘k+1 o I*H < (1 - %)\Sk)ka _ l‘*H + Sk[MO + M(x*)]
2(Mo + M(a*)] 0

< max{||z" — 2], 3 }-

By induction, we get ||zF — 2*| < max{||z} — 2*| M} Vk > 1. Thus, {z*} is
bounded, and so are the sequences {p*}, {7*}, {u*}, {vF}, {v*}, {z*}.

Step 5. We show that if 2% — & 7% — 2% — 0 and 7% — y* — 0 for {k;} C {k}, then
# € Sol(C, ®). Indeed, noticing 7% — 2% — 0 and 7% — y*¥i — 0, we get

¥ =y < fla* = 75+ 7 =y 50 (i = o) )

So it follows from x* — & that 7% — # and y* — #. Since {y*} C C, y* — % and C

is weakly closed, we know that # € C. By (3.3), we have ay, ®(7% x) > ay, ®(7%, y*) +
(yki — Thi yki — x),Va € C. Taking the limit as ¢ — oo and using the assumptions that
limy o0 = @ > 0, ®(2,2) = 0, {y*} is bounded and ® is weakly continuous, we obtain
that a@®(&,z) > 0 Vz € C. This implies that & € sol(C, ®).

Step 6. We claim that ¥ — z*, a unique solution of the MBEP with the GSVI and CFPP
constraints. Indeed, set I, = ||z* — 2*||2. By the results in Steps 1 and 2 we deduce from

(18) and (19) that
¥ — 2| < ([la* — 2|l + Mosy)® + 6,M — (1 + 9k)2[(1 —2age1)|ly* — 7|

HO- 2 = 1 - (- AT -G gy
Ok
A = (TF2F = TGpb)|? — [ —u’“ll2 + sk,
where supk21{(2+9k)(\|xk—x*|| —i—ZTjosk)Q} < M and supk21{2|\ll(uk,x*) —W(pk, Y|} <
K for some M, K > 0.
Finally, we show the convergence of {I;} to zero by the following two cases: Case

1. Suppose that there exists an integer ko > 1 such that {I%} is non-increasing. Then the
limit limy 00 [y =A< 400 and Iy, — Iky1 — 0 (K — o0). From (22), we get

(1+6x)%[(1 = 2aken) 9" = 77 + (1 = 2a02) 12" — *||°]
Vk k

+ (1 — _— —_—

U=l L— B

< Iy —Thgr + Mosk(Q\/ I+ Mosk) + 0 M + si K.

Since s — 0, 6, — 0, Fk —Tky1 — 0 and 0 < liminfg_ oo (1 — Bg), we obtain from
{ap} C (a,@) C (0, min{ 5+ S E ) that

(T*2F — Guk) + (TF2F = TGP |1P + |2 = ¥ 12 (23)

i 7 (T4 = Gty 2 (T - Tty =0, (24)
and
Jim g =)= lim (|28 =yt = lim (|2 = b =0, (25)

We now show that ||u* — p¥|| — 0 as k — oco. Indeed, we set y* = J)]\S; (z* — Ao Fyx*). Note
that v* = Ji"’(uk — Ao Fyp¥) and p* = Jfll (v* — A\ F1vF). Then p* = Gu*. By Lemma 2.3
we have

[0F =y I < Hli® = 2|7 = A2(28 — Na)l| Fop® — Foa™||?, (26)
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and
Ip* = [* < [l* =y ]2 = X (2a — M) [ Fro® — Fry*|*. (27)
Also, Lemma 2.2 together with (18) guarantees that |k — %2 < Be[(1+05)2([|l2* — 2*|| +
Mosy)? + ||k — 2|2 — | T*2% — p¥]|?] + (1 — By)||u* — 2*||? which hence leads to
1 = 27 < (14 0x)2(Il2* — 2| + Mosi)? — |T* 25 — ¥ 2. (28)
Substituting (26) for (27), by (28) we get
" =™ [* < [l1* = 2*|1> = X2(28 = Xo) [ Fop® — Fox™||* — A1 (2 = M) || Fro® — Fuy™||?
< (1 +00)2(|2* — 2| + Mosk)? = |TF2" — 1% — X2(28 — M) || Fapt® — Fox*||?
— (20 — \p)||[Fro — Fry*|2
Moreover, substituting the last inequality for (22), from (18) we get
|1 — 2 < 8B — (1 — B) (1T — 2 + Xa(28 — Mo) | Fap — Foa|
+ (J]2* = 2| + Mosk)? + M (20 — A Fro® — Fry*|?] + si K,
which immediately leads to
(1= Be)IT*2" — 1|2 + A2(28 = Xo) | Fop® — Fo*||* + M1 (2 — M| Fyv® — Fry*||?]
< Iy — Tky1 + Mosk(2y/ Ty + Mosg) + 0 M + s K.

Since A\ € (0,2a), Ay € (0,20), s — 0, 0 = 0, [y — k41 — 0and liminfy o (1—5k) > 0,
we get

lim [|[T%2% — pF|| = lim ||Fop® — Fox®|| = lim ||Fio® — Fiy*|| = 0. (29)
k— o0 k—o00 k—o0
On the other hand, observe that

”pk _ l‘*HQ S <Uk _ y*’pk _ 3’3*> T )\1<F1y* _ Flvk,pk _ .’IJ*>
< R =y |+ |IpF — 2| = |JoR = pF 4 2t — g2+ M| Byt — Frok||||pk — 2.

This ensures that

I = 2*|* < 0" =y II? = 0" = p* + 2" —y* |1 + 2Ma | Fay® — Fuo®l[lp" — 2™l (30)
Similarly, we get

[ =y I? < lli® = 2P = [lp® = v +y* = 2*|* + 22| Foa”™ — Fop®|llv* — || (31)
Combining (30) and (31), by (28) we have

IP* — 2*[” < (14 60)*([J* — 2*[| + Mosy)® — [|p* — o +y* —2*||> = [[v* - p*

+at =yt P+ 20| Fyt — Fo®|lp* - 2|+ 220 o — Fop®|[[|v* — .
Substituting (32) for (22), from (18) we get
4 — 2 |* < (fla* — || + Mosi)* + 06M — (1= B)[[ln* = o* +y* = 2*|* + 51K
+of = PP 2 P 20| Fryt - Bt et - 2|+ 22 Faat — Boplflof — ¢

(32)

This immediately leads to
(1= Bo)lll* =% +y* — 2|2 + |v* = p* + 2 — y*||2] € Tk — Toyr + 0 M + 5, K
+ Mosk(2v/ Tk + Mosi) + 2\ | Fry* — Fyo®|[|[p* — o || + 2o || Faa™ — Fop® 0" — y*||.

Since sy — 0, 0 — 0, Iy — k11 — 0 and liminfx_, (1 — B) > 0, we deduce from (29)
that limy e [|[* — 0% + y* — 2*|| = 0 and limg_,o0 [[v* — p* + 2% — y*|| = 0. Thus,

l1* = GuP|l = [lu® = p*Il < [l = o + 7 = 2| + o* = p* + 2" — y*|| = 0(k — o0). (33)
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Noticing 7% = 2% + ¢ (2F — 2%~1), we deduce that || 7% — 2| = &4 ||z* — 2* || = 0(k — o0).
Also, note that 0 = B, (T*2* — u¥) + v (p* — pu¥) + 63 (Tp* — p*). Since liminfy,_, o 6, > 0,
from (29) and (33) we obtain that || Typ" — p*|| < §-(|T%2% — p*|| + [|p* — p*[]) — 0(k — o0)
and hence ||Tj,u* — ¥ < %Hﬂk — p*|| + | Txp® — || = 0(k — o). Therefore,

kli_}rr;o [7% —2*| =0 and kli_)rgo | T — ¥ = 0. (34)
Using (25) and the assumption ¥ — zF+1 — 0, we get
2% — pfI| < fla® = 2" 4 [l = u ) = 0, k= oo, (35)
and
125 =7 < 112 = y*l + v =% = 0, k = oo (36)
Combining (33) and (35), we have
o — G| < 2a* — g + 1 — Gkl - 0,k — o, (37)

We claim that ||Ty2* —2*|| — 0 and || T2* —2%|| — 0 as k — co. In fact, from (34) and (35)
we deduce that

2
Tra® — ¥ < ——
[T - o] < 12
Combining (34) and (36), we have

lz* = p |+ 1 Tep® = ¥l =0 (k = o0). (38)

|zF — 28| < ||z® — 7% + ||7F = 2| = 0,k — oco. (39)
Using (29), (35) and (39), we infer from the asymptotical nonexpansivity of T' that
2% = T*a¥|| < fla® — @+ u® = T8+ (4 O)]l2" — 2] =0 (k= o0).  (40)
This together with the assumption ||T%z* — T*+1z*|| — 0, implies that
2% — Ta®|| < (24 01)||a* — TFaF || + | T*2F — T*Hak|| -0 (k= 0). (41)

Next we show that limy_, ||2¥ — 2*|| = 0. Indeed, since the sequences {u*} and {z*} are
bounded, we know that there exists a subsequence {z**} of {;/*} converging weakly to # € C
and satisfying the equality

lim [+ W (2] = i (B, )+ W, 2] (42)
From (25) and (35) it follows that x* — & and z**! — 2. Then, by the result in Step 5,
we deduce that & € Sol(C, ®).

It is clear from (41) that x* — Tx% — 0. Note that Lemma 2.6 guarantees the
demiclosedness of I — T at zero. So, we know that & € Fix(T'). Also, note that Lemma 2.6
guarantees the demiclosedness of I — G at zero. Hence, from z* — & and 2% — Ga* — 0
(due to (37)) it follows that & € Fix(G). We claim that & € ﬂ;vzl Fix(T;). As a matter
of fact, since z* — p¥ — 0 and p* — 2, we get 2% — &. Without loss of generality, we
may assume | = k;modN for all i. Since 2 — zF+1 — 0, we have %17 — % for all j > 1.
Moreover, from (38) we deduce that

”xki+j _ i]’l+jxki+j|| = ||1'ki+j — Tki+jxki+jl| — 0. (43)

Note that Lemma 2.1 guarantees the demiclosedness of I — T; at zero for i = 1,..., N. So
it follows that & € Fix(T}4;) for all j. This ensures that & € ﬂ;vzl Fix(T;). Consequently,

ze ﬂ;vzo Fix(T;) N Fix(G) N Sol(C, ®) = £2. In terms of (42), we have
lim inf @ (2, pF) 4+ Wk, 2F Y] = w(2*, 2) > 0. (44)
— 00
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Since W is v-strongly monotone, we have
lim sup[¥(z*, u*) + U (u*, 2*)] < limsup(—v||p* — 2*||?) = —vh. (45)
k—o0 k— o0
Combining (44) and (45), we obtain
lim sup[W (p*, 2*) — W(p", 2" )] < limsup[W(p*, 2*) + U (2, p*)]
— liminf[W(z*, u*) + U (p*, 2] < —vh.

k—o0

We now claim that 7 = 0. On the contrary we assume A > 0. Without loss of generality we
may assume that Jkg > 1 s.t.

I R T (47)

which together with (22), implies that for all k& > ko,
2" = 2| < (1 0k)2 (7% — 2" [1* + 285 [0 (i, 27) — W (", 2]

(48)
< la* — 2*||? + exlja® — Y| My + 0. M — spvh,
for some Ml > 0. So it follows that for all k > kg,

k—1 _ o - k—1
Iy — I, < Z(€j||1?]—$J71“M1+9jM)—VhZSj. (49)

J=ko J=ko
Taking the limit in (49) as k — oo, we get —oco < h — [}, < limkﬁoo[z;:,lo (gj]|a7 —
xj_lﬂjT/fl—l—G‘jM) uhzj ko 55] = —00. This reaches a contradiction. Therefore, limy o0 I =

0 and hence {z*} converges strongly to the unique solution x* of the problem EP ({2, ¥).
Case 2. Suppose that 3{I%;} C {I%} s.t. I't; < I'y;41 Vj € N, where N is the set of all
positive integers. Define the mapping 7 : N — N by 7(k) := max{j < k: I'; < I;;1}. By
Lemma 2.7, we get

Trgy < Trygr and T < Trgyga (50)
Utilizing the same inferences as in (25) and (35), we can obtain that
Jim 27— T O = i (|70 — @ = lim |y - 27O =0, (51)
and
Jim |27 — = 0. (52)

Since {1} is bounded, there exists a subsequence of {17*)} converging weakly to Z. With-
out loss of generality, we may assume that x”(*) — . Then, utilizing the same inferences as
in Case 1, we can obtain that & € 2 = ﬂfio Fix(T;) N Fix(G) N Sol(C, ). From ,uT(k) - &
and (51), we get 7*)*1 —~ 3. Using the condition {a}} C (o, @) C (0, min{ - 2 262 }), we
have 1 — 2a;(xyc1 > 0 and 1 — 2a,()c2 > 0. So it follows from (22) that

) < S0 ey _ ey M By M

iy 53
St (k) 2 s 2 )

\IJ(,[LT(k),fET(k)+1) o \Ij(#r(k)7x*
Since ¥ is v-strongly monotone on C, we get
v ® — 27 < —0(ur®, 5*) — w(at, ). (54)
Combining (53) and (54), we deduce from supy; £ < 0o, #¥ — 2" — 0, Assy(¥;) and
Z € 2 that

vlimsup||p™® — 2*|? < limsup[— ¥ (™ ®), 27®F) — w2 7 R)] < o. (55)

k—o0 k—o0
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Hence, limsup,,_, . [|[27®) — 2*||> < 0. Thus, we get limg_, o ||z7*) — 2*||> = 0. From (52),
we get
”x-r(k)—i-l _ :L'*||2 _ ||£CT(k) _ x*”2 < 2||x‘r(k)+1 _ [L'T(k)”H:ET(k) o x*H

+ ||l ®F T2 50 (k- o). (56)

Owing to I'y < I'(x)41, We get
lz* — 2% < a™® — &P 4 2]|2”®H — 2T ®|[la7®) — 2| 4 [l27OH LT (57)
So it follows from (52) that #* — z* as k — co. This completes the proof. O

Algorithm 3.1. Let 2°, 2! € C be arbitrary. The sequences {Bx}, {vk}, {0} in (0,1), and
positive sequences {au.}, {ex}, {sk} satisfy conditions (H1)-(H5). Calculate 2+ as follows:
Step 1. Compute 7% = a¥+ep (% —2F 1) and y* = argmin{a, ® (7%, y)+ 5 ly—7"||> : y € C}.
Step 2. Choose w* € 9@ (7%, y*). Compute Cy, = {v € H : (% — qyw® — y*, v — y*) <0}
and 2% = argmin{a,®(y*,2) + ||z — 7F||> : 2 € Cx}. Step 3. Compute p* = BT pk +
Vet + 0, Tip®, vF = JﬁQ(zk — Mo Fy2F) and p* = Jﬁl (vF — A\ Fiok). Step 4. Compute
o = argmin{s, W (uk, t) + ||t — p*||? 1 t € C}. Set k:=k+1 and return to Step 1.

Using the similar arguments to those in the proof of Theorem 3.1, we can obtain the
following convergence theorem.

Theorem 3.2. Suppose that {z*} is the sequence defined by Algorithm 3.1, such that
|Tkzk — T*+1zk|| — 0 as k — oco. Let the bifunctions ¥, ® satisfy the assumptions Assg-
Assy, and assume that the conditions (H1)-(H5) hold. Then z* — z* € 2 & zF—zk+tl -
0, where x* € {2 is a unique solution to the problem EP(Q,¥).

4. Concluding Remarks

In this article, we have suggested two new iterative algorithms based on the Mann
implicit inertial subgradient extragradient method for solving the monotone bilevel equi-
librium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone
equilibrium problem over the common solution set of another monotone equilibrium prob-
lem, the GSVI and the CFPP. The strong convergence results for the proposed algorithms
to solve such a MBEP with the GSVI and CFPP constraints are established under some
mild assumptions. Furthermore, in the proposed method, the second minimization problem
over a closed convex set is replaced by the subgradient projection onto some constructible
half-space, and a new approach for solving the GSVI and CFPP via Mann implicit iterations
is provided.
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