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A NEW VARIABLE-COEFFICIENT BERNOULLI
EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING
NONLINEAR DIFFERENTIAL EQUATIONS

Bin Zheng!

In this paper, a mnew wvariable-coefficient Bernoulli equation-based sub-
equation method is proposed to establish exact solutions for nonlinear differential
equations. For illustrating the validity of this method, we apply it to the (2+1)-
dimensional breaking soliton equation and the (2+1)-dimensional dispersive long
wave equations. As a result, some new exact solutions for them are successfully
obtained.
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1. Introduction

Nonlinear differential equations (NLDEs) can be used to describe many nonlin-
ear phenomena such as fluid mechanics, plasma physics, optical fibers, biology, solid
state physics, chemical kinematics, chemical physics, and so on. In the research
of the theory of NLDEs, searching for more explicit exact solutions to NLDEs is
one of the most fundamental and significant study in recent years. With the help of
computerized symbolic computation, much work has been focused on the various ex-
tensions and applications of the known algebraic methods to construct the solutions
to NLDEs. There have been a variety of powerful methods. For example, these
methods include the known homogeneous balance method [1,2], the tanh-method
[3-5], the inverse scattering transform [6], the Backlund transform [7,8], the Hiro-
tas bilinear method [9,10], the generalized Riccati sub-equation method[11,12], the
Jacobi elliptic function expansion [13,14], the F-expansion method [15], the exp-
function expansion method [16,17], the (G’/G)-expansion method [18,19] and so on.
However, we notice that most of the existing methods are companied with constant
coefficients, while very few methods are concerned of variable-coefficients.

In this paper, by introducing a new ansatz, we develop a new variable-coefficient
Bernoulli equation-based sub-equation method for solving NLDEs. First we give the
description of the variable-coefficient Bernoulli equation-based sub-equation method.
Then we apply the method to solve the (2+1)-dimensional breaking soliton equa-
tion and the (2+1)-dimensional dispersive long wave equations. Some conclusions
are presented at the end of the paper.
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2. Description of the variable-coefficient Bernoulli equation-based
sub-equation method

We consider the following Bernoulli equation:

G+ )G = G?, (1)

where A # 0 is a complex number, G = G(&). The solutions of Eq. (1) is denoted by

GlE) = e @)

where d is an arbitrary constant. Especially, when A is a real number and d = %,
we obtain

G(&) = 51— tanh(S)). Q

When d = %, A= iX, where ) is a real number, ¢ is the unit of imaginary number,
we obtain N
AN A
=2 - Ztan(2). 4
Ge) =5 — S tan(5) (4)
Suppose that a nonlinear equation, say in two or three independent variables

x, ¥y, t,is given by
P(u, ut7u$7uy7utt7u$t7u$$7u$y"') = 07 (5)

where u = u(x,y,t) is an unknown function, P is a polynomial in v = u(z,y,t) and
its various partial derivatives, in which the highest order derivatives and nonlinear
terms are involved.

Step 1. Suppose that

u(x,y,t) = u(f): §= f(l’,y,t), (6)

and then Eq. (5) can be turned into the following form P(u, u/,u”, ...) = 0.
Step 2. Suppose that the solution of (7) can be expressed by a polynomial in
G as follows:

u(€) = apm(z,y,)G™ + apm—1(x, y, 75)Gm_1 + ...+ ao(z,y,t), (7)

where G = G(§) satisfies Eq. (1), and ap,(z,y,t), am-1(z,y,1), ..., ao(x,y,t) are all
unknown functions to be determined later with a,,(z,y,t) # 0. The positive integer
m can be determined by considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in (7).

Step 3. Substituting (8) into (7) and using (1), collecting all terms with the
same order of G together, the left-hand side of (7) is converted to another polynomial
in G. Equating each coefficient of this polynomial to zero, yields a set of partial
differential equations for a,,(z,y,t), am-1(z,y,t)..., ao(z,y,t),

&(x,y,t), A

Step 4. Solving the equations system in Step 3, and using the solutions of Eq.

(1), we can construct exact coefficient function solutions of Eq. (7).

Remark 2.1. As the partial differential equations in Step 3 are usually over-determined,
we may choose some special forms of am, am—1, ..., ag as will be done in the fol-
lowing.
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3. Applications of the proposed method

In this section, we will present some applications of the method described
in Section 2.

3.1. (2+1)-dimensional breaking soliton equation

We consider the (2+1)-dimensional breaking soliton equation [20-22]:
Ugzry — 2uy - 4uxuxy + Uy = 0. (8)

Eq. (9) is used to describe the (2+1)-dimensional interaction of Riemann wave
propagated along the y-axis with long wave propagated along the x-axis [23]. Some
types of exact solutions for Eq. (9) have been obtained by the Riccati sub-equation
method [20, 21] and the symbolic computation method [22].

To apply the method described above, we assume that u(z,y,t) = U(§), where
& =¢(x,y,t). Then Eq. (9) can be turned into

E3¢,U" + (3628, + 3606y Lan) U + (3&2yun + 3Eabumy + Exanly + &)U

+(Eaaay — 26y + &)U’ — 46260y U™ — 4E3€,U'U" = 0. (9)
We will proceed to solve Eq. (10) in two cases.
Case 1: Assume that U(£) = Y. a;(y,t)G'. By balancing the order of U"”
and U'U” in Eq. (10), we can obtain m = 1. So

U(&) = al(yat)G+a0(yvt)' (10)
Substituting (12) into (10) and collecting all the terms with the same power of G
together, equating each coefficient to zero yields a set of under-determined partial
differential equations for ay(y,t), ai(y,t) and &(z,y,t). Solving these equations
with the aid of Maple software yields

Family 1:
/
Er,0.0) = Cur+ (0, an(p) = 252, aolyt) = L3 400,

where C7 is an arbitrary constant, and f(¢), ¢(t) are two arbitrary functions.
Combining with Eq. (2) we can obtain the following exact solutions for (2+1)-
dimensional breaking soliton equation:

30 A 2f"(t)y

Ul(x,y, t) - 4 [1 + )\de)\(cl-’ﬂ+f(t))] * Cl

In the special case of Eq. (3) we obtain the following solitary wave solu-
tions:

+g(t). (11)

3C1 (A MCrz + f(t 21'(t
us(e,,8) = 250 1anp ML Oy 2OV gy )
4 "2 2 Cy
Using Eq. (4) we obtain the following trigonometric function solutions:
3C1 A N, MCiz+ f(t 2f'(t
us(oy 1) = S0 Ny MATEIO)y) 2OV gy g

4 "2 2 2 Ch
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Family 2:
Cl C2 _ z+Cy z+Cy

f(.%',y,t) 9 (036 ‘I —e )7 al(y7t) = (5, aO(yat) :f<t)7

where C;, 1 = 1,2,3,4,5 are an arbitrary constant, and f(t¢) is an arbitrary function.
Combining with Eq. (2) we can obtain the following exact solutions:

Cs\
C C _x+Cy z+Cy + f(t) (14)
AFH2(Cse O —e 1))
1+ Mde

ug(z,y,t) =

Case 2: Assume that

UE©) =) ai(x)G". (15)
i=0
Similarly, by balancing the order of U”” and U'U” in Eq. (10), we can obtain m = 1.
So

U(§) = a1(2)G + ao(x). (16)
Substituting (18) into (10) and collecting all the terms with the same power of G
together, equating each coefficient to zero yields a set of under-determined partial
differential equations for ag(x), ai(z) and &(z,y,t). Solving these equations
yields
Family 3:
£(z,y,t) = Fi(y) + Fa(x), a1(x) = 2F5(x),
() /2F£($)Fé"(w) — AP (2) Fy () — F3?(z) + N Fy(«)
ap(x) =
’ AF}(x)
where C is an arbitrary constant, and F(y), Fa(x) are two arbitrary functions with

respect to the variable y and x respectively. Then we have

2
u5($,yat) = 1+ )\deA(Fl(yHFQ(z))
+/ 2Fy(z) Fy' (x) — ANFy* () Fy (z) — Fy?(2) + N Fy' ()
AF3 ()

+Cl7

+ C. (17)
Family 4:

5(5[],:{/,75) = Fl(y>7 al(x) - —%(301]] + 362)% + Z\gg(gclx + 302)%7

Wl

3C3(Crx + Co): 501
= C
ao(.%') Ch + 36(01I + 02) + 04
where C;, i = 1,2,3,4 are arbitrary constants, and Fj(y) is an arbitrary function.

Then we have

1
A[—=(3C1z + 3C5)3 + ié(BC&x +3C5)3]
ug(z,y,t) = 2 2
oY IERYEI)
1
+3C3(C1$+CQ)3 5C4 o (18)

1 + 36(01334—02)



Variable-coefficient Bernoulli Sub-equation Method 67

Family 5:
E(z,9,1) = Fi(y), a1(z) = (3C1z +3Ca)3,
1
303(Clx + 02)5 5C4
ao(w) = Ci T 36(Cre + oy T

where C;, i = 1,2,3,4 are arbitrary constants, and Fj(y) is an arbitrary function.
Then we have

W=

)\(301.’E + 302)% 303(C1$ + Cg) 5Cq

t pu—

+ C4. (19)
Family 6:
§(w,y,t) = Cit + Fi(y), ai1(z) = Ca, ap(x) = C3x + Cy,

where C;, i = 1,2,3,4 are arbitrary constants, and Fj(y) is an arbitrary function.
Then we have

ACy
(17 y)t) 1+ Mde ANC1t+F1 () + 0358 + 04, (20)
Family 7
(z,y,t) = Cit + Cz + Cay, a(z) = —7(30495 +3C5)5 £ z£(304213 +3C5)3,
ao(z) = / (36C5C;Cx* + 720304050630 + 36030506)d
36C3(Caz + C5)5
9C; C3a? + 18C1C4Cs + 9C,C2 — 5C3C3)(Cyzr + Cs)
36C3(Cyx + C5)3

where Cj, i =1,2,...,7 are arbitrary constants. Then we have

)\[—%(304.% + 305)% + i\f(?)(l;x + 305)%]
1 +)\d6)\(clt+c2+03y)
+/ (36030406.%' + 72030405061' +3603C5CG)

UQ(iL', Y, t) =

dz,
36C3(Cyx + Cs)3
2
+/ (9C1Cia? + 1801 CyCsz + 9C1 CF _850304)(C4$ +C5)° dr +C7. (21
36C3(Cyx + C5)3

Family 8:

5(1’, Y, t) = Clt + 02 + CBZJ: 0,1(.%') = (3041' + 305)%7
ao(z) = / (36C3C3Ce? + 72C5C,Cs5Csx + 36C5C2C k)

3 dz,
36C5(Cyx + C5)3
(90, C22% + 18C1C4Csz + 90102 — 5C502)(Cyz + Cs) 3
+ 5 dzx + Cy,
36C5(Cyx + C5)3
where C;, i = 1,2,...,7 are arbitrary constants. Then we have
A(3Cuz + 3C5)3

uio(z,y,t) = L+ AN Cr 4T3y
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N / (36C3C;Cex? + 72C3C4C5Csx + 36C3C2C5)

8 dx,
36C5(Cyx + C5)3
2 2 2 2 2
+/ (90104% + 18C1CyCsx + 90105 850304)(0437 + 05)3 dz + Cr. (22)
3603(0456 + 6'5)§
Family 9:
C _C3
E(,y,t) = | e 1T,
(C1y + 02)(03 — 1) Cy
1
a1($) = —5(3051‘ + 306)é + i\gg(305x + 306)%,
1
. 307(051’ + Cﬁ)§ 5C5
ao(w) = Cs T 36(Cor + Cg) TP
where C;, i = 1,2, ...,8 are arbitrary constants. Then we have
1
A[—=(3Csz + 3C¢)3 + i§(3c5a; +3C6)3]
_ 2 2
ull(x7y7t) - C
A O 7%
1+ Me (Cry+C2)(C3—1)°Cy
1
3C7(Csx + Cp)3 5Cs
. 2
+ 05 + 36(0556 + C()) + CS ( 3)
Family 10:
C1(Csy + C
€(e,0.1) = Fu(e) — Catn[ HELEC)) () = 2 (o),
2
/ " _ /2 " _ 2 2 4
ao(x) :/2F1($)F1 (z) — ANFY (55)1;1 (z) — F1"(z) + A FT (2) ey
4F%(x)

where C;, i = 1,2,3,4 are arbitrary constants, and Fj(z) is an arbitrary function.
Then we have

ui2(z, y,t) 2AF ()
12 y Y, =
1+ Mde cs
+/ 2F{ () F{'(x) — ANFP () ] (2) = F*(2) + XF'(a) |, 24
2 .. ( )
4F*(x)

Remark 3.1. In Families 2-10, if we use Egs. (3)-(4), then we also obtain corre-
sponding hyperbolic function solutions and trigonometric function solutions as the
analysis in Family 1, which are omitted here.

Remark 3.2. We note that the established exact solutions for the (2+1)-dimensional
breaking soliton equation above are different from those in [20-22] essentially as
we have used a new variable-coefficient method based on a different Bernoulli sub-

equation here, and are mew exact solutions which have not been reported by other
authors in the literature.
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3.2. (2+1)-dimensional dispersive long wave equation

We consider the known (241)-dimensional dispersive long wave equations [24-
37):
Uyt + Vzz + (Utig)y =0, (25)
Vg + Uy + (UV) g + Uggy = 0, (26)
Some types of exact solutions for Egs. (27)-(28) have been obtained in [24-37] by
use of various methods including the Riccati sub-equation method [24, 25, 30], the
nonlinear transformation method [26], Jacobi function method [28, 29, 37], (G’/G)-
expansion method [27], modified CK’s direct method [31], EXP-function method
[32], Hopf-Cole transformation method [33], modified extended Fan’s sub-equation
method [34, 35], generalized algebraic method [36].
To apply the proposed method, similar to the process above, we assume
that u(z,y,t) = U(£), & = &(x,y,t), and suppose

m

U©) = aily. )", Zpy, , (27)

=0

where G = G(€) satisfies Eq. (1). By balancing the highest order derivatives and
nonlinear terms in Eqs. (27)-(28) we have m =1, n = 2. So

U(é) =ai (y7 t)G + aO(y7 t)v V(f) = b2(y7 t)GQ + b (y7 t)G + bO(yJ t)? (28)

Combining (27), (28), (30), collecting all the terms with the same power of G
together, equating each coefficient to zero yields a set of under-determined partial
differential equations for ag(y,t), a1(y,t), bo(y,t), bi(y,t), ba(y,t) and &(z,y,t).
Solving these equations with the aid of Maple software yields

Family 1:
C 1 1
élant) = 3 = 5 [ R0t - [CIx — SCutEa(y) + Faly),
a1(y,t) = C1, ao(y,t) = Fi(t) + Fa(y),
C , Cht
ba(y,1) = = (CrtF3(y) = 2F5(), bi(y.t) = CINF3(y) — - F3 ().

bo(y,t) = —F(y) -
where C} is an arbitrary constant, and Fy(t), Fy(y), F5(y) are arbitrary functions.
Combining with Eq. (2) we can obtain the following exact solutions for the (2+1)-
dimensional dispersive long wave equation:

ui(z,y,t) = | o
1 =
»h Cix 1 1
14 )\de/\[ 5 5 J C1Fi(t)dt— 102At—?CltFQ(y)+Fg(y)}

|+ F1(t) + Fa(y),

(29)
oe,9.1) = SHOEY) ~ 2F(w)
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| . i
14 )\de,\[céx 1 [ CiFi( )dt—zleC2At—%C1tF2( V+F3(y)]
Cit A
+CIME(y) — 5 F(w)] o] D 1
1+ Mde A=F= =5 [ CrP()dt— 5 CFA— 5 C1tFa(y)+Fs(y)]
—FQ(y) -1 (30)
In the special case of Eq. (3) we obtain the following solitary wave solutions:
CiA
UQ(«T Y, ) ;
C 1 1
ﬁ - = /ClFl 1012)\15 - §C1tF2(Z/) + F3(y)]
{1 —tanh( B )b+ Fi(t) + Fa(y), (31)
F. 2F}
va(2,,1) = CiX*(Crt zé) 5(v))
C
pY e 15” /01F1 t)dt — 701 At — clth( )+ F3(y)]
{1 — tanh( 5 )}
Cit
L (F(y) — 5 F3(v)
+
2
/\[Clx /01F1 )it — 100N~ LCrtFa(y) + Fi(y)]
{1 — tanh( 5 )} = Fy(y) —
(32)
Using Eq. (4) we obtain the following trigonometric function solutions:
U3($, yat) = @
2
C 1
NGE -5 [ b - {0~ SCutEa() + Fa(w)
{1 —itan( 5 )} + Fi(t) + Fa(y), (33)
/
vy, 1) = C1\? (CltF2(8) 2F3(y))
~.C 1 1 1
NGT -5 [ iR - 100 - SCithay) + Faly)
‘ 2 2 4 2 2
{1 —itan( 5 )}
Cht
OV W) - 5 Bw)
2
~C
ﬁ - / CLF(t —01 At — Clth(y) + F3(y)]
{1 — itan( 5 )} = Fi(y) - 1. (34)
Family 2:
C
£(z,y,1) = —ﬁ + - /C1F1 t)dt + Cl/\t+ Clth( )+ F3(y),

al( y,t) = C1, ao(y,t) = F1(t) + Fa(y),
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Cl Clt
ba(y,t) = 7(0175172,(1/) +2F3(y)), biy,t) = —CriA(F5(y) + >
bo(y,t) = Fy(y) — 1,
where C} is an arbitrary constant, and Fy(t), Fx(y), F3(y) are arbitrary functions.
Then combining with Eq. (2) we obtain the following exact solutions:

Fy(y)),

Ch A
14 /\deA[_TJr? fGlFl(zt)dtJrZIC1 At—f—?Clth(y)—l—Fg;(y)]
(35)
tF, 2F%
oo .) = CHCHEED) + 260)
{ a 2
14 Adek[7%+% JCiFy (t)dt+21[CfAt+%CltF2(y)+F3(y)}
Cht
~CAF(y) + 5 F3(v)
A
14 )\de/\[—ﬁlrjtg fClFl(t)dt+4012)\t+201tF2(y)+F3(y)]
Family 3:

£($7y7t) = Cll’ - Cl /Fl(t)dt + 012)‘t + FQ(ZJ), (ll(y,t) = :l:2017 aO(ya t) = Fl(t)a

ba(y,t) = —2C1F3(y), bi(y,t) = 2C1AF5(y), bo(y,t) = —1,
where C is an arbitrary constant, and Fj(t), Fh(y) are arbitrary functions. Then
we have

+2C1 A
u5(x,y,t) - 1+ )\de,\[clx—cl [ FL(t)dtFCENt+Fa(y))] + Fl(t)’ <37)
A
- / 2
'U5(x7 Y, t) - 2CIF2(y){ 1 + )\deA[CI-T—Cl fFl(t)dt:FC%At-f—Fg(y)] }
A

20 AFS ()4 — 1. (38)

1 + /\de)\[cla:—()l fFl(t)dt:FCf)\t-i-Fg(y)}}
Family 4:
g(IE,y,t) = Clﬂ? + Fl(y)’ al(ya t) = i2017 aO(yat) = :}:Cl)\,

bQ(y7t) = _201F{(y)7 bl(yat) = 201)‘F1/(y)7 bO(yvt) = _17
where (' is an arbitrary constant, and Fi(y) is an arbitrary function. Then we have

+2C1 A\
uﬁ(xay7t) - 1+ )\dek[C1w+F1(y)} + Cl>\7 (39)
A
— / 2
ve(z,y,t) = 201F1(y){1 i )\de’\[Cl‘HFl(y)]}

A 1
1+ )\deA[Clac—&-Fl(y)]} o

+2C1AF (y){ (40)
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Family 5:
C\ - C
E(z,y,1) = Crz + Ot + Fi(y), ai(y,t) = £2C1, ao(y,t) = %12
ba(y,t) = —2C1 Fi(y), bi(y,t) = 2C1AFL(y), bo(y,t) = —1,

where C, Cy are arbitrary constants, and Fj(y) is an arbitrary function. Then we
have

2
ur(z,y,t) = . )\de,\i[gfiégwﬂ(y)] :Fqél_ CQ? (41)
vr(z,y,t) = =201 Fy (y){ ) deA[C;CQHFI(y)] ¥

PR ) )\deA[CI)"’\” )~ L (42)

Family 6:

§(z,y,t) = Cro + Coy + Fi(t), ai(y,t) = £2C1, ao(y,t) = ]FC%QI_CQ,

ba(y,t) = —2C1C2, bi(y,t) = 2C1C2, bo(y,t) = —1,

where C1, Cq are arbitrary constants, and F}(¢) is an arbitrary function. Then we
have

- +£207 ) FOIN - O
ug(w,y,t) = 1+ AdeMNC1z+Cay+Fi(1)] Ch , )
A 2
’Ug(-’E, Y, t) = _20102{ 1+ )\deA[C1m+CQy+F1(t)] }
A
+2C1C2 M 1+ \deMCr1z+Cay+F1(t)] b1 4

Remark 3.3. By the combination of Families 2-6 with Eqs. (3)-(4), we also obtain
some hyperbolic function solutions and trigonometric function solutions, which are
omitted here.

Remark 3.4. The established solutions Eqs. (31)-(46) for the (2+1)-dimensional
dispersive long wave equations can not be obtained by the methods in [24-37], and
are new exact solutions to our best knowledge.

4. Conclusions

We have proposed a variable-coefficient Bernoulli equation-based sub-equation
method method for solving nonlinear differential equations. Based on this method,
abundant exact solutions have been obtained with the aid of Maple software for the
(241)-dimensional breaking soliton equation and the (2+1)-dimensional dispersive
long wave equations. As one can see, this method is concise, powerful, and can be
applied to solve other nonlinear differential equations.



Variable-coefficient Bernoulli Sub-equation Method 73

5. Acknowledgements

I would like to thank the anonymous referees for their useful and valuable

suggestions.

1]
2]
3]

[4]

[7]
(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

18]

[19]

REFERENCES

M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199(1995),
169-172.

E.M.E. Zayed, H.A. Zedan and K.A. Gepreel, On the solitary wave solutions for nonlinear
Hirota-Satsuma coupled KdV equations, Chaos, Solitons and Fractals, 22(2004), 285-303.
M.A. Abdou, The extended tanh-method and its applications for solving nonlinear physical
models, Appl. Math. Comput., 190(2007), 988-996

E.G. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys.
Lett. A, 277(2000), 212-218.

W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60(1992),
650-654.

M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scat-
tering Transform, Cambridge University Press, Cambridge, 1991.

M.R. Miura, Backlund Transformation, Springer-Verlag, Berlin, 1978.

C. Rogers and W.F. Shadwick, Backlund Transformations, Academic Press, New York, 1982.
R. Hirota, Exact envelope soliton solutions of a nonlinear wave equation, J. Math. Phys.,
14(1973), 805-810.

R. Hirota and J. Satsuma, Soliton solution of a coupled KdV equation, Phys. Lett. A ,85(1981),
407-408.

L. Song and H.Q. Zhang, New exact solutions for the Konopelchenko-Dubrovsky equation
using an extended Riccati equation rational expansion method and symbolic computation,
Appl. Math. Comput., 187(2007), 1373-1388.

W.T. Li and H.Q. Zhang, Generalized multiple Riccati equations rational expansion method
with symbolic computation to construct exact complexiton solutions of nonlinear partial dif-
ferential equations, Appl. Math. Comput., 197(2008), 288-296.

S.K. Liu, Z.T. Fu, S.D. Liu and Q. Zhao, Jacobi elliptic function expansion method and
periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289(2001), 69-74.

Z. Yan, Abundant families of Jacobi elliptic functions of the (2 + 1)-dimensional integrable
Davey-Stawartson-type equation via a new method, Chaos, Solitons and Fractals, 18(2003),
299-309.

M.L. Wang and X.Z. Li, Applications of F-expansion to periodic wave solutions for a new
Hamiltonian amplitude equation, Chaos, Solitons and Fractals, 24(2005), 1257-1268.

J. Biazar and Z. Ayati, Exp and modified Exp function methods for nonlinear Drinfeld-Sokolov
system, J. King Saud Univer.-Sci., 24(2012), 315-318.

J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons
and Fractals, 30(2006), 700-708.

M.L. Wang, X.Z. Li and J.L. Zhang, The (G’/G)-expansion method and travelling wave so-
lutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372(2008),
417-423.

M.L. Wang, J.L. Zhang and X.Z. Li, Application of the (G’/G)-expansion to travelling wave
solutions of the Broer-Kaup and the approximate long water wave equations, Appl. Math.
Comput., 206(2008), 321-326.



74

Bin Zheng

[20]

21]

[22]

23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]
31]

[32]

[33]
[34]

[35]

[36]

37]

Z. Xie and H.Q. Zhang, Symbolic computation and construction of soliton-like solutions for a
(2+1)-dimensional breaking soliton equation, Appl. Math. Comput., 162(2005), 283-291.
S.H. Ma, J.P. Fang and C.L. Zheng, New exact solutions of the (2+1)-dimensional breaking
soliton system via an extended mapping method, Chaos, Solitons and Fractals, 40(2009), 210-
214.

Z.Y Yan and H.Q. Zhang, Constructing Families of Soliton-Like Solutions to a (241)-
Dimensional Breaking Soliton Equation Using Symbolic Computation, Comput. Math. Appl.,
44(2002), 1439-1444.

R. Radha, M. Lakshmanan, Singularity analysis and localized coherent structures in (2+1)
dimensional generalized Korteweg-de Vries equations, J. Math. Phys., 35(1994), 4746-4756.
C.C. Kong, D. Wang, L.N. Song and H.Q. Zhang, New exact solutions to MKDV-Burgers
equation and (2+1)-dimensional dispersive long wave equation via extended Riccati equation
method, Chaos, Solitons and Fractals, 39(2009), 697-706.

Z.Y. Yan, Generalized Transformations and Abundant New Families of Exact Solutions for
(2+1)-Dimensional Dispersive Long Wave Equations, Comput. Math. Appl., 46(2003), 1363-
1372.

J.F. Zhang and P. Han, New multisoliton solutions of the (2+1)-dimensional dispersive long
wave equations, Commun. Nonlinear Sci. Numer. Simul., 6(2001), 178-182.

M. Eslami, A. Neyrame and M. Ebrahimi, Explicit solutions of nonlinear (2+1)-dimensional
dispersive long wave equation, J. King Saud Univer.-Sci., 24(2012), 69-71.

Y. Chen and Q. Wang, A new general algebraic method with symbolic computation to con-
struct new doubly-periodic solutions of the (2+1)-dimensional dispersive long wave equation,
Appl. Math. Comput., 167(2005), 919-929.

Q. Wang, Y. Chen and H.Q. Zhang, An extended Jacobi elliptic function rational expansion
method and its application to (2+1)-dimensional dispersive long wave equation, Phys. Lett. A,
340(2005), 411-426.

Y. Chen and B. Li, Symbolic computation and construction of soliton-like solutions to the
(2+1)-dimensional dispersive long-wave equations, Inter. J. Engin. Sci., 42(2004), 715-724.

N. Liu, X.Q. Liu and H.L. Lu, New exact solutions and conservation laws of the (2+41)-
dimensional dispersive long wave equations, Phys. Lett. A, 373(2009), 214-220.

S. Zhang, J.L. Tong and W. Wang, Exp-function method for a nonlinear ordinary differential
equation and new exact solutions of the dispersive long wave equations, Comput. Math. Appl.,
58(2009), 2294-2299.

Y.Q. Zhou, Q. Liu, J. Zhang and W.N. Zhang, Exact solution for (2+1)-dimension nonlinear
dispersive long wave equation, Appl. Math. Comput., 177(2006), 495-499.

E. Yomba, The modified extended Fan’s sub-equation method and its application to (2+41)-
dimensional dispersive long wave equation, Chaos, Solitons and Fractals, 26(2005), 785-794.
Y. Chen and Q. Wang, A series of new soliton-like solutions and double-like periodic solutions
of a (2+1)-dimensional dispersive long wave equation, Chaos, Solitons and Fractals, 23(2005),
801-807.

X. Zeng and J. Zeng, Symbolic computation and new families of exact solutions to the (2+1)-
dimensional dispersive long-wave equations, Chaos, Solitons and Fractals, 29(2006), 1115-1120.
S. Zhang, The periodic wave solutions for the (2+1)-dimensional dispersive long water equa-
tions, Chaos, Solitons and Fractals, 32(2007), 847-854.



