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EFFECT OF A TEMPERATURE-DEPENDENT THERMAL 

CONDUCTIVITY ON A FIXED UNBOUNDED SOLID WITH A 

CYLINDRICAL CAVITY 

Ashraf M. ZENKOUR1 

This article investigates the thermoelastic interactions in an orthotropic 

unbounded solid containing a cylindrical cavity with variable thermal conductivity. 

A generalized solution is developed in the context of the one relaxation time 

thermoelasticity theory. The surface of the cylinder is constrained and subjected to a 

harmonically varying heat. The governing equations are treated to be timeless 

dependence by using the Laplace transform. Finally, the transformed equations are 

inverted by the numerical inversion of the Laplace transform. A numerical example 

has been calculated to illustrate the effects of the variability thermal conductivity 

parameter and the angular frequency of the thermal vibration on all fields. 
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MSC2010: 74Dxx, 74Fxx, 74Kxx. 

1. Introduction 

The classical coupled theory of thermoelasticity is insufficient to deal with 

thermoelasticity problems. One part of its solution to the heat equation is extended 

to infinity. This matter contrary to the physical phenomenon since that a part of 

mechanical or thermal disturbance should include an infinite velocity of 

propagation. This paradox may be treated after using one of the generalized 

thermoelasticity theories [1–3]. Lord and Shulman [1] and Green and Lindsay [2] 

introduced new theories of generalized thermoelasticity that predict a finite speed 

for heat propagation. Tzou [3] formulated a new generalized thermoelasticity 

theory called dual-phase-lag (DPL) heat conduction model. 

Most investigations in thermoelasticity are based on the assumption of the 

temperature-independent material properties [4–12]. The applicability of the 

solutions of such problems is limited to certain ranges of temperature. Generally, 

the thermal conductivity should be temperature-dependent at high temperature, 

which definitely alters the thermoelastic behaviors. The effect of temperature-

dependent thermal conductivity is investigated by many authors [13–22]. Most of 
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these authors are taken into account the variable thermal conductivity for problem 

concerned with generalized thermoelastic solids subjected to various types of 

heating sources. 

The aim of the present paper is to investigate the thermoelastic interactions 

in an orthotropic unbounded body containing a cylindrical cavity with variable 

thermal conductivity. The surface of the present cylinder is constrained and 

subjected to a time-dependent thermal shock. The problem is solved in the context 

of generalized thermoelasticity with one relaxation time, developed by Lord and 

Shulman [1]. A direct approach of the Laplace transform is used to obtain the 

solution of the present problem in the Laplace domain. In addition, a numerical 

technique is employed to obtain the solution in the physical domain. The effect of 

the angular frequency of thermal vibration and the variability of thermal 

conductivity parameters is investigated graphically and discussed. 

2. Formulation of the problem 

The unbounded orthotropic body with cylindrical cavity and constrained 

surface is considered to be subjected to a harmonically varying heat. The 

cylindrical coordinates system (𝑟, 𝜃, 𝑧) with 𝑧-axis as the axial axis of the 

cylinder. The present problem is considered as a 1D problem due to symmetry and 

all the functions are depending on the radial distance 𝑟 and the time 𝑡. 

For axially symmetric problem, the radial, hoop, and axial displacement 

components are reduced to be 

𝑢𝑟 = 𝑢(𝑟, 𝑡),    𝑢𝜃(𝑟, 𝑡) = 𝑢𝑧(𝑟, 𝑡) = 0, (1) 

with radial 𝜀𝑟 and hoop 𝜀𝜃 strains given by 

𝜀𝑟 =
𝜕𝑢(𝑟,𝑡)

𝜕𝑟
,     𝜀𝜃 =

𝑢(𝑟,𝑡)

𝑟
. (2) 

So, the stress-displacement relations may be written as 

{

𝜎𝑟

𝜎𝜃

𝜎𝑧

} = [

𝑐11 𝑐12

𝑐12 𝑐22

𝑐13 𝑐23

] {

𝜕𝑢

𝜕𝑟
𝑢

𝑟

} − {

𝛽11

𝛽22

𝛽33

} 𝛩, (3) 

where 𝜎𝑟, 𝜎𝜃, and 𝜎𝑧 are the radial, hoop, and axial stress components, 

respectively, 𝑐𝑖𝑗 are the isothermal elastic constants, 𝛽𝑖𝑗 are the thermal elastic 

coupling components, and 𝛩 = 𝑇 − 𝑇0 is the dynamical temperature increment of 

the resonator, in which 𝑇0 is the environmental temperature. The dynamic 

equation of motion of the cylindrical cavity, without considering the body forces 

or the heat sources acting in the medium, is expressed as 
𝜕𝜎𝑟

𝜕𝑟
+

𝜎𝑟−𝜎𝜃

𝑟
= 𝜌

𝜕2𝑢

𝜕𝑡2 , (4) 

where 𝜌 is the material density of the medium. From Eq. (3), the above equation 

of motion will be in the form 
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𝑐11 (
𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
) − 𝑐22

𝑢

𝑟2 = 𝜌
𝜕2𝑢

𝜕𝑡2 + 𝛽11
𝜕𝛩

𝜕𝑟
+ (𝛽11 − 𝛽22)

𝛩

𝑟
. (5) 

Here, the generalized heat conduction equation is given by [1] 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐾𝑟

𝜕𝛩

𝜕𝑟
) = (1 + 𝜏0

𝜕

𝜕𝑡
) [𝜌𝐶𝐸

𝜕𝛩

𝜕𝑡
+ 𝑇0

𝜕

𝜕𝑡
(𝛽11

𝜕𝑢

𝜕𝑟
+ 𝛽22

𝑢

𝑟
)], (6) 

where 𝐾𝑟 is the thermal conductivity, 𝐶𝐸 is the specific heat per unit mass at 

constant strain, and 𝜏0 is the thermal relaxation time parameter. The above heat 

equation is given according to the generalized dynamical theory of 

thermoelasticity of Lord and Shulman [1] that eliminate the paradox of the 

classical coupled theory of thermoelasticity. 

3. Temperature-dependent thermal conductivity 

Generally, the assumption that the solid body is thermosensitivity (the 

thermal properties of the material vary with temperature) leads to a nonlinear heat 

conduction problem. The exact solution of such problem can be found by 

assuming the thermal conductivity 𝐾𝑟 and the specific heat 𝐶𝐸 to be linearly-

depending on the temperature [23], but thermal diffusivity is assumed be constant. 

That is 

𝐾𝑟 = 𝐾𝑟(𝛩) = 𝑘0(1 + 𝑘1𝛩), (7) 

where 𝑘0 is the thermal conductivity at ambient temperature 𝑇0 and 𝑘1 is the slope 

of the thermal conductivity-temperature curve divided by the intercept 𝑘0. Now, 

we will consider the Kirchhoff transformation [23] 

𝜓 =
1

𝑘0
∫ 𝐾𝑟(𝛩)d𝛩

𝛩

0
, (8) 

where 𝜓 is a new function expressing the heat conduction. By substituting Eq. (7) 

in Eq. (8), one gets 

𝜓 = 𝛩(1 + 1

2
 𝑘1𝛩). (9) 

From Eq. (9), it follows that 

𝛻𝜓 =
𝐾𝑟(𝛩)

𝑘0
𝛻𝛩,     

𝜕𝜓

𝜕𝑡
=

𝐾𝑟(𝛩)

𝑘0

𝜕𝛩

𝜕𝑡
. (10) 

After substituting Eq. (10) into Eq. (6), the new form of the general heat equation 

of solids with temperature-dependent thermal conductivity is obtained by 

𝛻2𝜓 = (1 + 𝜏0
𝜕

𝜕𝑡
) [

1

𝑘

𝜕𝜓

𝜕𝑡
+

𝑇0

𝑘0

𝜕

𝜕𝑡
(𝛽11

𝜕𝑢

𝜕𝑟
+ 𝛽22

𝑢

𝑟
)], (11) 

where 𝑘 = 𝐾𝑟/𝜌𝐶𝐸 is thermal diffusivity and 

𝛻2 =
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
. (12) 

Then, the equation of motion, Eq. (5), will be in the form 

𝑐11 (
𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
) − 𝑐22

𝑢

𝑟2
= 𝜌

𝜕2𝑢

𝜕𝑡2
+

𝛽11

1+2𝑘1𝛩

𝜕𝜓

𝜕𝑟
  

+
𝛽11−𝛽22

𝑘1𝑟
[√1 + 2𝑘1𝜓 − 1], (13) 

or in an expanding form 
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𝑐11 (
𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
) − 𝑐22

𝑢

𝑟2 = 𝜌
𝜕2𝑢

𝜕𝑡2 + 𝛽11
𝜕𝜓

𝜕𝑟
[1 − (2𝑘1𝛩) + (2𝑘1𝛩)2  

− ⋯ ] +
𝛽11−𝛽22

𝑘1𝑟
[1 + 1

2
 (2𝑘1𝜓) − 1

8
 (2𝑘1𝜓)2 + ⋯ − 1]. (14) 

Now, it is assumed that the temperature change 𝛩 = 𝑇 − 𝑇0 accompanying the 

deformation is small and does not result in significant variations of the elastic and 

thermal coefficients. So, one can consider these coefficient be regarded as 

independent of 𝑇. In addition to the assumption |𝛩/𝑇0| ≪ 1 one can assume that 

second powers and products of the components of strain may be neglected in 

comparison with the strains themselves. Thus, the usual linear theory of 

thermoelasticity is obtained by considering the case where only terms linear in 

strain and temperature change. Then, Eqs. (14) and (3) take the forms 

𝑐11 (
𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
) − 𝑐22

𝑢

𝑟2 = 𝜌
𝜕2𝑢

𝜕𝑡2 + 𝛽11
𝜕𝜓

𝜕𝑟
+ (𝛽11 − 𝛽22)

𝜓

𝑟
, (15) 

{

𝜎𝑟

𝜎𝜃

𝜎𝑧

} = [

𝑐11 𝑐12

𝑐12 𝑐22

𝑐13 𝑐23

] {

𝜕𝑢

𝜕𝑟
𝑢

𝑟

} − {

𝛽11

𝛽22

𝛽33

} 𝜓. (16) 

In what follows, the following dimensionless variables will be used 

{𝑟′, 𝑢′, 𝑅′} =
𝑐0

𝑘
{𝑟, 𝑢, 𝑅},     {𝑡′, 𝜏0

′ } =
𝑐0

2

𝑘
{𝑡, 𝜏0},

𝜓′ =
𝜓

𝑇0
,    𝜎𝑗

′ =
𝜎𝑗

𝑐11
,    𝑘1

′ = 𝑇0𝑘1,    𝑐0
2 =

𝑐11

𝜌
,    (𝑗 = 𝑟, 𝜃, 𝑧).

 (17) 

Therefore, the governing equations take the following forms after dropping the 

primes for convenience, 
𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
− 𝑐2

𝑢

𝑟2 =
𝜕2𝑢

𝜕𝑡2 + 𝜀1
𝜕𝜓

𝜕𝑟
+ 𝜀6

𝜓

𝑟
, (18) 

𝛻2𝜓 = (1 + 𝜏0
𝜕

𝜕𝑡
) [

𝜕𝜓

𝜕𝑡
+

𝜕

𝜕𝑡
(𝜀4

𝜕𝑢

𝜕𝑟
+ 𝜀5

𝑢

𝑟
)], (19) 

{

𝜎𝑟

𝜎𝜃

𝜎𝑧

} = [
1 𝑐1

𝑐1 𝑐2

𝑐3 𝑐4

] {

𝜕𝑢

𝜕𝑟
𝑢

𝑟

} − {

𝜀1

𝜀2

𝜀3

} 𝜓, (20) 

where 

{𝜀1, 𝜀2, 𝜀3, 𝜀6} =
𝑇0

𝑐11
{𝛽11, 𝛽22, 𝛽33, 𝛽11 − 𝛽22},

{𝜀4, 𝜀5} =
1

𝜌𝐶𝐸
{𝛽11, 𝛽22}, {𝑐1, 𝑐2, 𝑐3, 𝑐4} =

1

𝑐11
{𝑐12, 𝑐22, 𝑐13, 𝑐23}.

 (21) 

4. Initial and boundary conditions 

Both the initial and boundary conditions of the problem should be 

considered. The initial conditions are assumed to be in the form 

𝑢(𝑟, 0) =
𝜕𝑢(𝑟,𝑡)

𝜕𝑡
|

𝑡=0
= 0,     𝜓(𝑟, 0) =

𝜕𝜓(𝑟,𝑡)

𝜕𝑡
|

𝑡=0
= 0. (22) 

The following boundary conditions hold since the boundary of the cylinder is 

constrained and subjected to a to harmonically varying heat 
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 The surface of the cylinder 𝒓 = 𝑹 is subjected to a harmonically varying 

heat 

𝛩(𝑅, 𝑡) = 𝛩0 𝑐𝑜𝑠(𝜔𝑡) ,      𝜔 > 0, (23) 

where 𝜔 is the angular frequency of the thermal vibration and 𝛩0 is a constant. 

Using Eq. (9), then one gets 

𝜓(𝑅, 𝑡) = 𝛩0 𝑐𝑜𝑠(𝜔𝑡) + 1

2
 𝑘1[𝛩0 𝑐𝑜𝑠(𝜔𝑡)]2. (24) 

It is to be noted that 𝜔 = 0 for the thermal shock problem. 

 The mechanical boundary condition is due to the displacement of the 

surface is constrained. That is 

𝑢(𝑅, 𝑡) = 0. (25) 

5. Solution of the problem in the Laplace transform domain 

Using the Laplace transform of Eqs. (18)-(20) and taking into account the 

initial conditions given in Eq. (21) and assuming that 𝛽11 = 𝛽22 (i.e., 𝜀4 = 𝜀5 =
𝜀) and 𝑐11 = 𝑐22 (i.e., 𝑐2 = 1), we obtain the following equations: 

d2𝑢

d𝑟2 +
1

𝑟

d𝑢

d𝑟
−

𝑢

𝑟2 − 𝑠2𝑢̅ = 𝜀1
d𝜓̅

d𝑟
, (26) 

d2𝜓̅

d𝑟2 +
1

𝑟

d𝜓̅

d𝑟
= 𝑠(1 + 𝜏0𝑠) [𝜓̅ + 𝜀 (

d𝑢

d𝑟
+

𝑢

𝑟
)], (27) 

{
𝜎𝑟

𝜎𝜃

𝜎𝑧

} = [
1 𝑐1

𝑐1 1
𝑐3 𝑐4

] {

d𝑢

d𝑟
𝑢

𝑟

} − {

𝜀1

𝜀1

𝜀3

} 𝜓̅. (28) 

Here, any variable with an over bar denotes the Laplace transform of this variable 

and 𝑠 denotes the transform parameter. Equations (26) and (27) can be written in 

the forms 

(𝐷𝐷1 − 𝑠2)𝑢̅ = 𝜀1𝐷𝜓̅, (29) 

𝜀𝑞𝐷1𝑢̅ = (𝐷1𝐷 − 𝑞)𝜓̅, (30) 

where 

𝐷 =
d

d𝑟
,     𝐷1 =

d

d𝑟
+

1

𝑟
,     𝑞 = 𝑠(1 + 𝜏0𝑠). (31) 

Now, let us define the radial displacement 𝑢̅ in terms of the thermoelastic 

potential function 𝜑̅ by the relation 

𝑢̅ =
d𝜑̅

d𝑟
, (32) 

then, one can rewrite Eqs. (29) and (30) as 

(𝐷1𝐷 − 𝑠2)𝜑̅ = 𝜀1𝜓̅, (33) 

𝜀𝑞𝐷1𝐷𝜑̅ = (𝐷1𝐷 − 𝑞)𝜓̅. (34) 

Eliminating 𝜓̅ from Eqs. (33) and (34), one gets 

{𝛻4 − [𝑠2 + 𝑞(1 + 𝜀𝜀1)]𝛻2 + 𝑞𝑠2}𝜑̅ = 0. (35) 

The above equation leads to the modified Bessel equation for 𝜑̅ of zero order 
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(
d2

d𝑟2 +
1

𝑟

d

d𝑟
− 𝑚1

2) (
d2

d𝑟2 +
1

𝑟

d

d𝑟
− 𝑚2

2) 𝜑̅ = 0, (36) 

where 𝑚1
2 and 𝑚2

2 are the roots 

𝑚1
2 = 1

2
(2𝐴 + √𝐴2 − 4𝐵),     𝑚2

2 = 1

2
(2𝐴 − √𝐴2 − 4𝐵), (37) 

in which 

𝐴 = 𝑠2 + 𝑞(1 + 𝜀𝜀1),     𝐵 = 𝑞𝑠2. (38) 

The solution of Eq. (36) under the regularity conditions that 𝑢, 𝛩, 𝜓 → 0 as 𝑟 →
∞ can be written as 

𝜑̅ = ∑ 𝐴𝑖𝐾0(𝑚𝑖𝑟)2
𝑖=1 , (39) 

where 𝐾0(∙) is the modified Bessel’s function of the first kind of order zero and 

𝐴𝑖, 𝑖 = 1,2 are two parameters depending on 𝑠 of the Laplace transform. Using 

Eqs. (33) and (39), we obtain 

𝜓̅ =
1

𝜀1
∑ (𝑚𝑖

2 − 𝑠2)𝐴𝑖𝐾0(𝑚𝑖𝑟)2
𝑖=1 . (40) 

Substituting from Eq. (41) into the Laplace transform of Eq. (32), we obtain 

𝑢̅ = − ∑ 𝐴𝑖𝐾1(𝑚𝑖𝑟)2
𝑖=1 . (41) 

where 𝐾1(∙) is the modified Bessel function of the first kind of order one. So, the 

stresses can be written as 

𝜎𝑟 = ∑ [𝑠2𝐾0(𝑚𝑖𝑟) +
𝑚𝑖(1−𝑐1)

𝑟
𝐾1(𝑚𝑖𝑟)] 𝐴𝑖

2
𝑖=1 , (42) 

𝜎𝜃 = ∑ {[𝑠2 + 𝑚𝑖
2(𝑐1 − 1)]𝐾0(𝑚𝑖𝑟) +

𝑚𝑖(𝑐1−1)

𝑟
𝐾1(𝑚𝑖𝑟)} 𝐴𝑖

2
𝑖=1 ,(43) 

𝜎𝑧 = ∑ {[
𝑚𝑖

2𝑐3

2
−

𝜀3

𝜀1
(𝑚𝑖

2 − 𝑠2)] 𝐾0(𝑚𝑖𝑟) −
𝑚𝑖𝑐4

𝑟
𝐾1(𝑚𝑖𝑟)2

𝑖=1   

+
𝑚𝑖

2𝑐3

2
𝐾2(𝑚𝑖𝑟)} 𝐴𝑖 . (44) 

where 𝐾2(∙) is the modified Bessel function of the first kind of order two. In 

addition, the boundary conditions given in Eqs. (24) and (25), after using Laplace 

transform, take the forms 

𝜓̅(𝑅, 𝑠) = 𝛩0 [
𝑠

𝑠2+𝜔2 +
𝑘1(𝑠2+2𝜔2)

2𝑠(𝑠2+4𝜔2)
] = 𝐺̅(𝑠), (45) 

𝑢̅(𝑅, 𝑠) = 0. (46) 
Substituting Eqs. (40) and (41) into the above boundary conditions, one obtains 

two equations in the unknown parameters 𝐴𝑖, as 

∑ (𝑚𝑖
2 − 𝑠2)𝐴𝑖𝐾0(𝑚𝑖𝑅)2

𝑖=1 = 𝜀1𝐺̅(𝑠), (47) 

∑ 𝑚𝑖𝐴𝑖𝐾1(𝑚𝑖𝑅)2
𝑖=1 = 0. (48) 

The solution of the problem will be completed in the Laplace transform domain 

after obtaining the two constants 𝐴1 and 𝐴2. Solving the above two equations, one 

gets 

𝐴1 =
𝜀1𝐺̅(𝑠)𝑚2𝐾1(𝑚2𝑅)

𝑚2(𝑚1
2−𝑠2)𝐾0(𝑚1𝑅)𝐾1(𝑚2𝑅)−𝑚1(𝑚2

2−𝑠2)𝐾0(𝑚2𝑅)𝐾1(𝑚1𝑅)
,

𝐴2 =
𝜀1𝐺̅(𝑠)𝑚1𝐾1(𝑚1𝑅)

𝑚1(𝑚2
2−𝑠2)𝐾0(𝑚2𝑅)𝐾1(𝑚1𝑅)−𝑚2(𝑚1

2−𝑠2)𝐾0(𝑚1𝑅)𝐾1(𝑚2𝑅)
.
 (49) 



Effect of a temperature-dependent thermal conductivity […] solid with a cylindrical cavity    237 

Hence, one can easily obtain the displacement and stresses as well as other 

physical quantities of the medium. The temperature 𝛩̅ can be obtained by solving 

Eq. (9) after applying the Laplace transform as 

𝛩̅(𝑟, 𝑠) =
−1+√1+2𝑘1𝜓̅

𝑘1
. (50) 

6. Numerical results and discussion 

In this section, the temperature 𝛩, radial displacement 𝑢, and stresses 𝜎𝑟, 

𝜎𝜃 and 𝜎𝑧 distributions will be obtained inside the medium in their inverted forms. 

To invert the Laplace transform in Eqs. (39)-(44), a numerical inversion method 

based on a Fourier series expansion [24] shouuld be adopted. Any function in 

Laplace domain can be inverted in this method to the time domain as 

𝑓(𝑡) =
𝑒𝑐𝑡

𝑡
{1

2
 𝑓(̅𝑐) + Re [∑ (−1)𝑛𝑁

𝑛=1 𝑓̅ (𝑐 +
𝑖𝑛𝜋

𝑡
)] }. (53) 

In most numerical experiments, the reliable value of 𝑐 should satisfies the relation 

𝑐𝑡 ≈ 4.7 [25]. So, the numerical calculations are faster convergence for the same 

value of 𝑐. 

Numerical evaluations are made by choosing an orthotropic material such 

as the cobalt. The properties of such material are thus given in SI units [26] as 

𝑐11 = 𝑐22 = 3.071×1011 (N/m),

𝑐12 = 1.650×1011 (N/m),

𝛽11 = 𝛽22 = 7.04 ×106 (N/m2K),

𝛽33 = 6.90 ×106 (N/m2K),

𝐶𝐸 = 427 (J/kg K),   𝐾𝑟 = 69 (W/m K s),

𝜌 = 8836 (kg/m3).

 (54) 

The cylindrical cavity of radius 𝑅 = 1 with its center at the origin is 

considered. The results are illustrated graphically in Figures 1–5 for different 

values of 𝑅, (𝑅 ≥ 1). It is assumed in all cases studied, except otherwise stated, 

that 𝑇0 = 298 K, 𝑘1 = −0.5, 𝜔 = 5, and 𝑡 = 0.07. The variations of the field 

quantities along the radial direction are plotted in Figures 1–5 for various 

parameters: (a) thermal conductivity 𝑘1, (b) angular frequency 𝜔, and (c) time 𝑡. 

Figures 1a, 2a, 3a, 4a and 5a represent the first case in which three different 

values the thermal conductivity parameter 𝑘1 are considered to discuss the effect 

of thermal conductivity. It is assumed that 𝑘1 = −1 and −0.5 for temperature-

dependent thermal conductivity while 𝑘1 = 0 otherwise. The second case of 

results is illustrated in Figures 1b, 2b, 3b, 4b and 5b for different values of the 

angular frequency parameter of thermal vibration 𝜔. For thermal shock problem, 

we put 𝜔 = 0 and for harmonically heat 𝜔 is set to be either 5 or 10. In the last 

case of results, Figures 1c, 2c, 3c, 4c and 5c display the values of the considered 
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physical variables in the direction of wave propagation for different values of 

dimensionless time 𝑡 which is taken to be 0.05, 0.07, and 0.1. 

Fig. 1 shows that the temperature 𝛩 is increasing as 𝑘1 increases and as 

both 𝜔 and 𝑡 decrease. The distribution of temperature may be found as a wave 

type of heat propagation in the medium. The heat wave front moves forward with 

a finite speed in the medium with the passage of time. The temperature 𝛩 maybe 

have a local maximum values at the position 𝑟 = 1.19. 

 

 

Fig. 1. Variation of temperature 𝛩 along the radial direction for various parameters: (a) thermal 

conductivity 𝑘1, (b) angular frequency 𝜔, and (c) time 𝑡. 

 

 

Fig. 2. Variation of radial displacement 𝑢 along the radial direction for various parameters: (a) 

thermal conductivity 𝑘1, (b) angular frequency 𝜔, and (c) time 𝑡. 
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Fig. 2 shows that the radial displacement 𝑢 is increasing as 𝑘1 and 𝑡 

increase and as 𝜔 decreases. In Figure 2, 𝑢 is no longer increasing along the radial 

direction and has its maximum value at the location 𝑟 = 1.11 and this irrespective 

to the values of 𝑘1, 𝜔 and 𝑡. 

Fig. 3 shows that the radial stress 𝜎𝑟 is increasing as 𝑘1 decreases and as 𝜔 

and 𝑡 increase. The radial stress is increasing through the radial direction 

according to all cases. It starts with negative values at 𝑟 = 1 and it is continuously 

increasing to diminish to zero value. 

 

Fig. 3. Variation of radial stress 𝜎𝑟 along the radial direction for various parameters: (a) thermal 

conductivity 𝑘1, (b) angular frequency 𝜔, and (c) time 𝑡. 

 

 

Fig. 4. Variation of hoop stress 𝜎𝜃 along the radial direction for various parameters: (a) thermal 

conductivity 𝑘1, (b) angular frequency 𝜔, and (c) time 𝑡. 
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Fig. 5. Variation of axial stress 𝜎𝑧 along the radial direction for various parameters: (a) thermal 

conductivity 𝑘1, (b) angular frequency 𝜔, and (c) time 𝑡. 

 

Fig. 4 shows that the hoop stress 𝜎𝜃 is increasing as 𝑘1 decreases, and as 𝜔 

and 𝑡 increase. The hoop stress is increasing through the radial direction. Also, it 

starts with negative values at 𝑟 = 1 and it is increasing to diminish to zero value. 

It maybe have a local maximum value at 𝑟 = 1.125 for some values of 𝑘1, 𝜔 and 

𝑡. 

Finally, Figs. 5a and 5b show that the axial stress 𝜎𝑧 is increasing as 𝑘1 

decreases 𝜔 increases. The axial stress 𝜎𝑧 is no longer decreasing along the radial 

direction and has its minimum value at the location 𝑟 = 1.11 and this irrespective 

to the values of 𝑘1 and 𝜔. In Figure 5c, the minimum values the axial stress 𝜎𝑧 are 

occurring at different positions in the neighborhoods of 𝑟 = 1.1 and this 

depending on the value of 𝑡. 

In general, it is to be noted that the variability thermal conductivity 

parameter 𝑘1 has a significant effect on all the fields which add an importance to 

our consideration about the thermal conductivity to be variable. The behavior of 

the three cases of the angular frequency parameter 𝜔 is generally quite similar and 

𝜔 has a significant effect on all fields. The influence of time parameter is very 

pronounced on all the studied field variables. It is to be noticed that all the 

variables behave the same manner due to the change in the values of time 

parameter with some difference in their magnitudes. 

7. Conclusions 

In this work, we construct the equations of generalized thermoelasticity for 

a homogeneous orthotropic infinite unbounded body containing a cylindrical 

cavity with a variable thermal conductivity based on the Lord-Shulman’s model. 
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The outer surface is taken to be fixed and subjected to a time-dependent 

temperature. The problem has been solved numerically using the Laplace 

transform technique. Numerical results for radial displacement, temperature, and 

thermal stresses are illustrated graphically. Comparisons are made between the 

results predicted by the theory of generalized thermoelasticity with one relaxation 

time. It is concluded, from the numerical results, that the variability thermal 

conductivity parameter has significant effects on the speed of the wave 

propagation of all the studied fields. The thermoelastic temperature, displacement, 

and stresses have strong dependencies on the angular frequency parameter. The 

heat propagates as a wave with finite velocity instead of infinite velocity in 

medium since the generalized thermoelasticity theory with one relaxation time is 

used. The theory of coupled thermoelasticity can extracted from our model as 

special case. Finally, the results presented here should prove useful for researchers 

in scientific and engineering, as well as for those working on the development of 

mechanics of solids. 
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