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SPECTRAL PROFILES COMPARISON OF CANDIDA 
GUILLIERMONDII AND CANDIDA KRUSEI YEASTS CELLS  
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Hyperspectral imaging has emerged as a powerful tool enabling the analysis 
of spectral signatures at cellular and subcellular levels. In this study, we applied 
enhanced dark-field hyperspectral microscopy to compare two Candida species—C. 
guilliermondii and C. krusei—using ascospore-stained smears. Spectral profiles (SPs) 
were extracted for morphological compartments: cytoplasm, acospores, cell wall 
boundary, bud scars, buds, and free spores. Each SP was analyzed both as an 1D 
function and as a high-dimensional vector. We computed quantitative features 
including areas under the curves and under their first derivatives, vector-based 
metrics such as angles and distances. Statistical analysis revealed that features 
derived from the SPs first derivative provided significant discrimination between the 
species (p < 0.05), especially for the spore. Moreover, vector-based comparisons 
showed highly significant differences (p < 0.0005) between the spore regions of the 
two species. These results suggest that spores may exhibit species-specific optical 
properties, making them strong candidates for automated classification. This work 
demonstrates that simple, yet robust features extracted from hyperspectral profiles 
can support the differentiation of Candida species and could serve as input for future 
machine learning algorithms for microbial identification. 

 

Keywords: Candida guillermondii, Candida krusei yeasts, hyperspectral images, spectral 
profiles, free spores, vectors.  

1. Introduction 

In recent years, the taxonomy of pathogenic Candida species has been 
complicated due to the description of new closely-related species, which are 
difficult to discriminate in clinical diagnostic laboratories with currently available 
phenotypic methods. These challenges have been partially overcome by the 
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development of PCR-based and MALDI-TOF methods [1]. However, these 
approaches are often sophisticated, requiring cultivation and isolation of the yeast 
strains in pure culture and the utilization of toxic chemicals. Therefore, there is a 
need for fast, reliable, and inexpensive methods with high specificity for the 
identification and differentiation of pathogenic Candida species.  

Hyperspectral images (HSI), by capturing both spatial morphology and rich 
spectral profiles, enables distinguishing microbial species based on their unique 
“optical fingerprints”. In addition to classical optical microscopy techniques, 
hyperspectral dark field microscopy provides additional information, through 
spectral profiles over a wide range of wavelengths, with pixel-level resolution, 
allowing for more complex analysis. For example, the Staphylococcus aureus 
strains were identified with 93.9% accuracy using SVM models using thirty-one 
spectral bands extracted from HSI [2]. An early detection procedure for Salmonella 
serotypes was proposed using principal component analysis and Mahalanobis 
distance starting from HSI [3]. A comparative study investigated the foodborne 
pathogens Salmonella spp, Escherichia coli and Listeria spp at 18, 21 and 24 hours 
of growth, with HSI facilitating the finding of single-peak spectral profiles that can 
be analyzed by simple computer methods, in contrast to conventional ones that 
require spectral convolution [4]. Two Gram-positive bacteria were differentiated 
from a mixture using HSI and machine learning based on the observation that there 
is a difference in their pH, detectable by spectral profiles (SPs) [5]. 

A mid-infrared HSI system using quantum cascade lasers was introduced to 
image microbial colonies (including fungi like Candida albicans) at multiple 
wavelengths. This morpho-spectral approach correctly identified ~94% of colonies, 
even discriminating closely related strains, all without staining or culturing beyond 
colony formation [6].  Similarly, in situ spectral analyses of microorganisms have 
achieved high accuracy, near-infrared spectroscopy and HSI being able to classify 
anaerobic gut fungi into three genera with >95% accuracy using discriminant 
analysis[7]. These results underscore that different microbes exhibit characteristic 
spectral signatures (due to variations in cell wall composition, pigments, etc.), 
which HSI can exploit for identification. Notably, pathogenic yeasts of the genus 
Candida have been a focus in some HSI applications. For instance, C. albicans and 
C. tropicalis were successfully detected in a clinical context via HSI of urine 
smears, alongside bacteria, demonstrating HSI’s potential in rapid fungal 
diagnostics[8]. Overall, recent literature supports that HSI, when coupled with 
appropriate analysis, offers a fast and non-destructive means to identify microbes 
at early stages, addressing the long turnaround of culture-based methods [9,10].  

Combination between HSI and machine learning allows automated analysis 
using spectral criteria to: determine quality of food [11], to classify neurons and 
glia in neural stem cell cultures [12], to classify irradiated nuclei [13], to detect 
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bacterial, fungal and viral contaminants in food [14] or to compute distances 
between three species [15]. 

The objective of our study was to test the hypothesis that HSI can provide 
useful information regarding the characteristics of two Candida species allowing to 
differentiate them and thus improve their automatic classification. For this, we 
recorded hyperspectral images for C. guillermondii (CGY) and C. krusei (CKY) 
yeasts smears stained by the specific ascospores staining.  

For both types of yeasts, we selected separate spectral profiles (SP) for 
morphological components: cytoplasm (C), ascospores (A), cell wall boundary 
(CWB), bud scars (BS), buds (B), and free spores (FS). These components are 
essential to characterize and compare these cell types. 

In our analysis, SPs were viewed both as I(λ), 1D functions (intensity in 
each spectral band) and also as vectors with 468 elements (corresponding to each 
band between 400 nm and 1000 nm). For SPs functions, we computed areas under 
curves and their derivatives; in vector space, the computation of angles and 
distances between vectors was performed. These features were computed both 
between components of a single species and between species. We chose to test the 
significance of these types of features because the standard ones (texture, 
roughness) are not possible here due to the very small areas occupied by each 
component in the image. 

2. Experimental procedures 
 

2.1 Samples preparation 

To induce sporulation, yeast strains from the collection of the University of 
Bucharest, Faculty of Biology, Microbiology Department were subcultured through 
three successive passages on malt extract agar, incubated at 28°C, with transfers 
performed at 24-hour intervals. Following the final incubation, the supernatant was 
carefully removed using a sterile Pasteur pipette, and the resulting dense cellular 
sediment was collected. Using a sterile Pasteur pipette, aliquots of the sediment 
were deposited in small spots onto the surface of sterile Petri dishes containing 
sporulation medium. The inoculated plates were then incubated at room 
temperature (22–28°C), in the dark, for a period ranging from 2 to 7 days to promote 
ascospore formation. For microscopic examination, smears were prepared from the 
sporulated spots by gently spreading a small amount of material onto clean glass 
slides. The smears were allowed to dry air at room temperature and were 
subsequently heat-fixed by briefly passing the slides through a flame. Staining was 
performed using a modified ascospore staining technique. The heat-fixed smears 
were stained with a 1:10 dilution of basic fuchsin solution, applied under gentle 
heating for 2–3 minutes (with 2–3 steam emissions to enhance penetration). Slides 
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were then rinsed thoroughly with tap water and decolorized using a mixture of 0.1N 
hydrochloric acid and ethanol in a 2:1 (v/v) ratio for 30 seconds. After another rinse 
with tap water, counterstaining was performed using 1% methylene blue solution 
for 1–2 minutes. A final rinse with tap water was followed by air drying at room 
temperature [16]. 

2.2 Images acquisition and preprocessing 

  Hyperspectral images under enhanced darkfield microscopy were recorded 
using CytoVivaR commercial system which allows obtaining images with a very 
dark background thanks to an oil-immersed condenser that ensures illumination of 
the sample at a very oblique angle. Hyperspectral images containing in each pixel 
information about intensity on 468 spectral bands between 400 nm and 1000 nm 
wavelengths were obtained by scanning the sample in the XY plane with a 
motorized stage (NanoScanZ, Prior Scientific Instruments Ltd, UK, 10 nm step size, 
114 × 75 mm travel range). From this reason, each image is considered as a spectral 
data cube (x, y, λ) (696x696x468). 

The system is equipped with a spectrophotometer (ImSpectrum V10E, 
Specim Finland) containing a transmission diffraction grating inserted between the 
objective and a hyperspectral camera (Pixelfly 1392 × 1040-pixel resolution, 6.45 
× 6.45 µm pixel size, 7.3 to 13.5 fps, 5 µs-60 s exposure time range, 62% quantum 
efficiency). Other constructive and operational details are in [17]. 

Hyperspectral images for each of the studied yeast species are recorded with 
100x microscope objective and are presented in Fig. 1.  

 

a) b)  
Fig. 1. Experimental hyperspectral images for a) CGY and b) CKY. 

 
Using the specialized software ENVI [18], spectral profiles (SPs) can be 

viewed at the pixel level, averages over 3x3 neighboring pixels or averages over a 
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region of interest chosen by the user. We saved in the spectral library specific SPs 
for all morphological components of the two yeast species (cytoplasm, ascospores, 
cell wall boundary, bud scars, buds, and free spores). 

3. Results and discussions 
 
3.1. Spectral profiles 

a)     

aa

b)

aa
Fig. 2. Spectral profiles for each compartment from a) CGY, b) CKY. 

In our study we used SPs displayed in ENVI as averages on 3x3 pixels. In 
the Fig. 2 are represented separately SPs for each analized yeast (CGY and CKY) 
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on morphological compartments: cytoplasm (C), ascospores (A), cell wall boundary 
(CWB), bud scars (BS), buds (B), and free spores (FS). 

All these spectral profiles have a steep maximum in the spectral range 700-
750nm, shifted towards the lower border for the spore and cell wall boundary and 
towards the upper border of the range for the ascospore. For the spore compartment, 
for both yeast species investigated, the secondary maximum appears more 
pronounced around 625 nm. For budding scars, the third maximum is also visible 
around the spectral band of 550nm (more evident for CKY). By simple visual 
observation, these SPs are hard to be differentiated and for this reason, we computed 
features based on mathematical rules from functions and vectors. We collected ten 
SPs from each category from Fig. 2 and computed the features from SPs function 
(areas under curve and its first derivative) and SPs vector (angles, distances). 
All these SPs are normalized and considered as inputs for our home-made code in 
MATLAB. From an SP we consider three entities: SP, its first derivative, SP-vector 
with 468 elements to compute spectral features: areas under curves, angles, 
distances. Normalization was performed in respect to intensity values from the 
spectral profiles, computing the rations between each intensity value (at each 
spectral band) and the maximum value in that SP. In this king, each SP will have 
intensity values between 0 and 1 to compensate for any artifacts that may appear in 
the experimental procedures: non-uniform staining with chromatographic marker, 
different illumination from image to image or from sample to sample during 
experimental image recording.  

3.2. SP functions 

SPs were saved from ENVI software and imported in MATLAB. They are 
1D functions: I(λ), the intensity values for each spectral band between 400-1000 
nm. A home-made code computed the values of the areas under the curve and its 
first derivative (Fig. 3) for each morphological component of the two Candida 
species. We worked with normalized values for SPs. The areas under spectral 
curves (or spectral curves derived) are considered as cumulated sums of intensity 
values (or derived intensities) on the whole spectral interval 400 - 1000 nm. We 
selected to analyze the first derivative of the SPs because it emphasizes significant 
spectral intensity variations, effectively highlighting the wavelengths where sharp 
spectral changes occur.  
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a)                                                                    b) 

Fig. 3. Areas under a) SPs and b) derived SPs considered as curves. 
 

An ANOVA test was performed on two datasets: the area under the original 
SP curves and the area under their first derivatives. The analysis yielded a p-value 
of < 0.5 for the original curves, indicating no statistically significant difference 
between C. guilliermondii (CGY) and C. krusei (CKY). In contrast, the derivative-
based curves produced a p-value < 0.05, suggesting a statistically significant 
distinction between the two species. 

These findings support the general observation that the original spectral 
profiles exhibit similar overall trends for CGY and CKY, whereas their derivatives 
reveal more distinct patterns. Based on this result, we propose that the area under 
the derivative of the SP curve may serve as a discriminative feature for 
distinguishing between the two yeast species, particularly when analyzing the cell 
wall boundaries, bud, and free spore compartments. 

3.3. SP vectors 
 

The SP values in each spectral band between 400 and 1000 nm can be 
considered as forming a vector with 468 values. In this way, we will have ten 
vectors that characterize each component of the two Candida species of candida 
yeasts. The in-house developed MATLAB code computed four features to 
characterize the differences/similarities between the components of the species: 1/ 
angles between SP vectors associated with the same type of component from the 
two species, 2/ angles between SP vectors associated with components of different 
types from the same species, 3/ distances between SP vectors associated with the 
same type of component from the two species, 4/ distances between SP vectors 
associated with components of different types from the same species. Figs. 4 and 5 
represent the analysis of all these features. The larger the values of the angles and 
distances, the more dissimilar the two species/compartments are. 
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From the Fig. 4 a) we can observe that angles above 0.2 rad between the 
same compartment from the two species, are only for cytoplasm and free spores. 
From the Fig. 4 b) and c) we can observe that the spores have the largest values for 
angles computed besides all other compartments for the same species. The same 
observation also from the Fig. 5 b) and c): the free spores have the highest distances 
computed against all other compartments belonging to the same species. 
 

a)  

b)  

c)  
Fig. 4. Angles between SP vectors associated with a) the same type of component from the two 
species, b) components of different types, from CGY, c) components of different types, from 

CKY. 
  

The ANOVA tests performed on the data presented in Fig. 4 yielded highly 
significant results (p < 0.0005) when comparing the angles between spectral profile 
(SP) vectors of the free spore compartment and those of other compartments, as 
opposed to comparisons between non-spore compartments. A similar level of 
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significance (p < 0.0005) was observed for the distances represented in Fig. 5. 
These findings suggest that the spore compartment exhibits distinctly different 
spectral behavior relative to other cellular structures. Biologically, this supports the 
hypothesis that the spore region may contain species-specific biochemical or 
structural features —such as variations in wall composition or pigment 
accumulation— which result in differentiable spectral signatures. Therefore, 
spectral features derived from the spore compartment may serve as valuable 
discriminative markers for automated species identification between C. 
guilliermondii and C. krusei. 

 

a)  

b)  

c)   
Fig.  5. Distances between SP vectors associated with a) the same type of component from the two 
species, b) components of different types, from CGY, c) components of different types, from CKY. 
 

Starting from the first derivate of the SP functions, we associated the vectors 
and computed the same features: 1/ angles between SP vectors associated with the 
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same type of component from the two species, 2/ angles between SP vectors 
associated with components of different types from the same species, 3/ distances 
between SP vectors associated with the same type of component from the two 
species, 4/ distances between SP vectors associated with components of different 
types from the same species (Figs. 6 and 7). 
 

a)  

b)  

c)  
Fig. 6. Angles between SP derivative vectors associated with a) the same type of component from 

the two species, b) components of different types from CGY, c) components of different types 
from CKY. 

 
We can observe in Fig. 6 a) that there is no angle above 0.2 radians, so this 

feature cannot be used to highlight the differences between yeast species. The same 
behavior is observed in Fig. 6 b) and c) for the angles computed between different 
compartments of the same species. For distances, the one computed between the 
vectors from the derivative of the SP function, corresponding to the edges CGY and 
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CKY is 1.5 times greater than those calculated for cytoplasm, ascospores, bud and 
free spore. Distances computed between vectors from the SP derivative function 
associated with components of different types from CGY and from CKY have very 
close values; they do not represent features that differentiate between the 
investigated yeasts species. 
 

a)  

b)  

c)  
Fig. 7. Distances between SP derivative vectors associated with a) the same type of component 
from the two species, b) components of different types, from CGY, c) components of different 

types, from CKY. 
 

The findings from our spectral comparisons of C. guilliermondii and C. 
krusei can be contextualized by recent HSI studies on microbial identification. High 
accuracy rates reported in the literature bolster the significance of any spectral 
differences we observed between these two Candida species. For instance, our work 
resonates with the 2024 report of Neurauter et al., who achieved >95% accuracy 
differentiating fungal genera via HSI [7]. While their study dealt with anaerobic gut 
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fungi, the principle is similar – microbial taxa can be robustly distinguished by their 
spectral “fingerprint,” supporting our approach. Moreover, the successful 
identification of C. albicans in mixed samples by mid-IR HSI and in clinical smears 
suggests that Candida yeasts have discernible spectral signatures [6]; our results 
extend this knowledge to C. guilliermondii and C. krusei, two non-albicans species 
of clinical interest. On the other hand, if the spectral differences we found are subtle, 
literature still offers strategies to amplify or interpret them. For example, Liu et al. 
(2023) improved fungal classification by moving to the SWIR range and applying 
advanced preprocessing, implying that certain spectral ranges or normalization 
techniques might enhance species distinctions [19]. 

The success of deep learning models (94–99% accuracy) in classifying 
single bacterial cells from HSI suggests that even higher accuracy might be 
achievable for yeast identification as more data are gathered. Indeed, Tao et al. [10] 
demonstrated a genus-level bacteria classifier with 94.9% accuracy by training on 
130,000+ spectral images and deploying a custom CNN (“Buffer Net”). While our 
dataset is smaller, our results contribute to this growing evidence that HSI combined 
with automated features computation is a viable path for rapid yeast identification 
and a starting point for ML classification. We note that unlike some colony-based 
HSI methods that still require growth on plates, our dark-field microscopic HSI can 
potentially identify Candida at the single-cell level, reducing the time to result. This 
advantage is frequently cited as crucial for timely antifungal therapy. Finally, we 
consider how our findings could be applied or extended. The literature points 
toward integrating HSI with clinical workflows. In light of this, the spectral 
differences we document between C. guilliermondii and C. krusei could be used to 
train detection algorithms in similar diagnostic HSI systems.  

2. Conclusions 

We computed features to evaluate the differences/similarities among the 
properties of two Candida species starting from SP. First, we considered SP as 
functions and computed the areas under the curves and its first derivative for each 
component from both species of candida yeasts. Then, we associated vectors with 
the two functions and computed angles and distances between the vectors of each 
component from the two species and between each component of the same species. 
Our goal was to find those features, simple to be computed, that would allow further 
automated identification of the two species based on single-cell analysis. 

Among the features investigated, those that are significant in highlighting 
the differences between the compartments of the two species are: 1/ the area under 
the SP derivative curve, 2/ the angles between SP vectors and 3/ the distances 
between SP vectors. Significant statistical distinctions between the optical 
properties of two species are observed in the case of areas under derivative curves 
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(p<0.05), and when comparing the angles and distances between SP-vectors of the 
free spore compartment and those of other compartments (p < 0.0005). 

Finding relevant features is a challenge in automatic classification, as it has 
been proven that the values of the evaluation metrics of the supervised machine 
learning algorithms change depending on the input data. For the task of automated 
pathogen identification, hyperspectral images have proven to be a powerful tool 
that contain information about the chemical composition of samples, and spectral 
profiles are easy to use in features computation. In conclusion, the technique has 
potential for future use in combination with machine learning and deep learning 
algorithms. 
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