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ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS
OF INFINITE SEMIPOSITONE PROBLEMS

S. H. Rasouli', M. B. Ghaemi?, G. A. Afrouzi®, M. Choubin*

We discuss the existence of a positive solution to the infinite semipositone
problem

—Au = —au + bu® — du® — f(u) — c

—, €, u=0, x €09,

uCI

where o € (0,1), a,b,d and c are positive constants, 2 is a bounded domain in
RN with smooth boundary 0Q, A is the Laplacian operator, and f : [0,00) — R
is a nondecreasing continuous function such that f(u) — oo and f(u)/u — 0 as
u — oo. We obtain our result via the method of sub- and supersolutions. We
also extend our result to classes of infinite semipositone system and p-Laplacian
problem.
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1. Introduction
Consider the boundary value problem
—Au = —au + bu? — du® — f(u) — i, x € Q,
uOé

(1.1)
u =0, x € 092,

where a € (0,1), a,b,d and ¢ are positive constants, and {2 is a bounded domain in
RV with smooth boundary 952, A is the Laplacian operator, and f : [0,00) — R is
a continuous function. We make the following assumptions:
(H1) f:[0,400) — R is nondecreasing continuous functions such that

lims_s 1 o0 f(8) = 0.
(H2) lim, 100 28 = 0.
Note that (1.1) is as an infinite semipositone problems (lim,_o F'(u) = —o0, where
F(u) == —au + bu? — du® — f(u) — (c/u®)).

In [9], the authors have studied the case when F(u) := g(u) — (¢/u®) where g
is nonnegative and nondecreasing and ul;rglo g(u) = co. The case g(u) := au — f(u)
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has been studied in [8], where f(u) > au — M and f(u) < AuP on [0,00) for
some M,A > 0,p > 1 and this g may have a falling zero. A simple example
of this g is g(u) = u — uP, where p > 1. Note that this ¢ has a falling zero at
u = 1, in fact g is negative for v > 1. In this article, we consider the case when
g(u) := —au+bu® — du® — f(u) and we study more challenging infinite semipositone
problem. A example of f satisfying our hypotheses is f(z) = uP; 0 < p < 1. Further,
let 0, Ry and Ry denote the zeros of —au + bu? — du® (such that Ry < Ry), then
g(u) = —au + bu? — du® — uP is negative for u < Ry and u > Ra.

In recent years, there has been considerable progress on the study of semi-
positione problems (F'(0) < 0 but finite)(see [2],[3],[6]). Many results have been
obtained of infinite semipositone problems; see for example [7], [8], [9] and [10].

In [1], the authors establish the existence of a positive solution to —Au =
—au+bu? —du?®—ch(x) with Dirichlet boundary conditions and the method employed
in it uses the fact that —inf,cjo g, (—au+bu? —du?) < ar, where r is the first positive
zero of (—au + bu? — du?)’. We will use in this paper this fact, too. The main tool
used in this study is the method of sub- and supersolutions ([4]).

2. The main result

In this section, we shall establish our existence result via the method of sub -
supersolution. A function 1 is said to be a subsolution of (1.1) if it is in C?(2)NC(Q)
such that ¢ = 0 on 99 and

c

—Ay < —a¢+b¢2—d”¢13—f(1/1)—% in 2,
and z is said supersolution of (1.1) if it is in C?(2) N C() such that z = 0 on 99
and
—Az> —az+b2? —d2? — f(z) — % in Q.
z

Then it is well known that if there exist a subsolution ¢ and supersolution z such
that ¢ < z in © then (1.1) has a solution u such that ¥ < u < z, see [4].

Theorem 2.1. Let (H1) and (H2) hold, Then there exists positive constants by :=
bo(a,d, ) and co := co(a,b,d, Q) such that for b > by and ¢ < cg, problem (1.1) has
a positive solution.

Proof. Let A\ > 0 be the first eigenvalue of the operator —A with Dirichlet boundary
condition and ¢; be the corresponding eigenfunction satisfying ¢; > 0 in  and
% < 0 on 99, where v is outward normal vector on 9 and ||¢1|lcc = 1, see [5].
Note that A\; and ¢; satisfy:

—A¢p1 = A1 in Q

$1 =0 on 0.
Let 6 > 0, u > 0, m > 0 be such that
2 11—« o
( N )IVo1l* — M1’} > m  in Qj, (2.1)

1+« 1+«

and ¢ € [u, 1] in Q\ Q5, where Qs := {2 € Q : d(x,00Q) < §}. This is possible since
V1| # 0 on 9Q while ¢1 = 0 on 9.
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P(s)

FIGURE 1. Graph of P(s).

Let by > 2vab and P(s) = —as + bs> — ds®>. Then the zeros of P(s) are
0,R; = b=vb —dad W and Ry = YVl —dad e note that P(s) can be factored as

2d
P(s) = —ds(s — R1)(s — Ry). Let rr = b=v¥=3ad V’;ji_g‘“l denote the first positive zero of
P'(s). since P(s) is convex on (0, %) and r < 3%, we have p := —infc(g g, P(s) <
a(b— vb? — 3ad/3d) = ar (see Fig 1). We note that
p _a(b—+b?—3ad/3d) 2a2d

= —0as b— oo,

— <
Ry b+ Vb? — dad/2d (b+ Vb? — 4ad) (b + Vb? — 3ad)
Ry b+ VB —dad  (b+ Vi® — dad)’

Ri b— b2 — 4ad 4ad

Hence there exists b(()l) = b(()l)(a, d, ) such that for every b > b(()l) we have

p m
—_— — 2.2
7 <6 (2.2)

— o0 as b— oo

[%,ul%a, 2]  (Ry, Ry) and ky, := inf ﬂ]P(s) > 0. Next we see that
2

2
R
SE[TQ}Ll“FD‘ s

Ry Ry
2
/1’ 1+a

2

el RQ—RQ}—)ooas b — oo,

), d

- mm{d?wia(?uﬁ ~Ri)(1 - IE

and hence there exists b(()2) = b(()z)(a, d, ) such that for every b > b((]Q) we have

ko 2\
Ry ” 1+a
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Finally from (H1) and (H2), f(R2) — oo and f(R2/2)/(R2/2) — 0 as b — oc.

Thus there exists b(()g) = b(()?’)(a, d, ) such that for every b > b(()g) we have f(Rg) >0

and

FCRoe) < FC2) < min{a, T} (2), (2.3

For a given a,d > 0, define by := max{b(()l), b(()Q), b(()g)} and ¢g := co(a,b,d, Q) :=
mln{ n(faylte (Haya20/ita(g, — 20 Rg)}, and let b > by and ¢ < ¢p. We will

Ry

show that ¢ := R¢1?/17* is a subsolution of (1.1), where R := 5 -

We first note that

Vi = ()60 Vo

and

1— 2a
A% = R85 Ad + ([0 )1 T Von)

—a ,
+aﬂv¢ﬂ}-

1+a

2 1

1
_ 2
_R(1+a)(¢11%)a{)\1¢1 —(1

Next for x € Qs since L >1, from (2.1),(2.2),(2.3) and ¢ < ¢y we have

(¢ TFa)
- 2 - 9
—Ay = (1+ )(¢11+a) {Moi® (1+Q)W¢1| }
S
(p17+a)e
_ mR _ mR _ mR
3(g17he) B(gTia) B(gyTia)
_mR _ mR _ mR
T3 3 3T
9 1+«
< f(ReyT) - MRS
(R e )
< —app + bp? — do — F() — —. (2.4)

wa
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Also for x € Q\ Qs, since 0 < pu < ¢, from (2.3) and ¢ < co,

2 1 l1-«o

_ 2 2
—Aw—R(lJra)(qﬁlH%)a{/\l% (1+a)\v¢1! }
2 2
< R(H)Al¢1+a
2
- R(l —i—oa))\l
2 2
= Q[R(m))\l} - R(y n )M
4\
< g aR — R\
<hy— ——— — f(R¢ )
(Rput+e)e
< —at+ b — AP — f(y) 17 (2.5)

According to (2.4) and (2.5), we can conclude that 1 is a subsolution of (1.1). We
also show that z := Ry is a supersolution, by noting that

—Az:OZ—f(z)—i:—az—i—sz—dz?’—f(z)—i.

2% 2%

Further z > ¢. Thus, (1.1) has a positive solution. This completes the proof
of Theorem 2.1. g

3. Extension of (1.1) to system (3.1)

In this section, we consider the extension of (1.1) to the following system:
c
—Au = —aju + byu? — dyud — fi(u) — —;, x €,
v

—Av = —agv + bav? — dav3 — fo(v) — ;—z, x € €, (3.1)
u=0=wv, x € 09,

where a € (0, 1), a1, ag,b1,be,dq,ds, c1 and co are positive constants, €2 is a bounded
domain in R with smooth boundary 92, and f; : [0,00) — R is a continuous
function for ¢ = 1,2. We make the following assumptions:

(H3) fi:[0,400) — R is nondecreasing continuous functions such that
limg_s 40 fi(s) = 00 fori=1,2.
(H4) lim, 400 250 = 0 for i = 1,2.

s

We prove the following result by finding sub-super solutions to infinite semi-
positone system (3.1).

Theorem 3.1. Let (H3) and (H4) hold, Then there exists positive constants b :=
by(a1, az,dy,da, Q) and cfy := ci(ar, az, by, ba, d1,d2, Q) such that for min{by, ba} > b
and max{cy, ca} < ¢, problem (3.1) has a positive solution.
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Proof. Let (Rgi), Rgi),p("), k:ff)), P;(s) := —a;s+b;s*> —d;s® for i = 1,2 be given, as in
section 2. By the same argument as in section 2, there exists b, := bjj(a1, az, d1, dz2, Q)
such that for min{b;, b} > bj; we have

P m k,(j) 2M\

~ < ,
Rg) 6 Rgl) 1+«

)

(%) (4)
and f;(%-¢17) < min (A, 2} (5) for i = 1,2. Define
cy = cplar, az, by, b, di, d2, Q)

(1) (2) (1) (2) (2)
_(m RY RY om R R RS oa/iie
= min { 2 (720) (F2), () (), (R e D

(1)
Ry 2a/1+a(1.(2) _ 2M1 L2
(S (k) - R |

2)\1 (1)
—R
1 2 )7

and (Y1, 12) = (RWg2/1+e R@ g, 2/14e) where RO = R /2. Let min{by, by} >
bi and max{cy,c1} < ¢, then for z € Q5 we have

2 1 1—«
o _ (1) 2 2
Ay =R (1+a) = a{)\1¢1 (1+a)|v¢>1\ }
(p17+)
< —mRW 12
(@1 THa )
mRL  mRM mR®
< - - - PR
3 3. 3(pTe)
1 2
< o f(RWg ) mR )[R(j]a/?’
- (R2) gy Ta)e
C
< —atpy + byt — dyd — f(vr) — =
(B
And for z € Q\ Q5, we have
2 1 11—«
_ — pM 2 _ 2
(pr7+)
2
(1)
SR (1 + oz)/\l
= 2[R x| - ROy
1+« 1+«
< gl R(l) - R(l))\l
T 14+«
C _2
< = — f(RWgr )
(R T+a )
_a

< —a1r + blﬂlf - dﬂﬁ? - f(djl) wa'
2
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Similarly

— Aty < —agthy + bo? — dot — F(th) — =, wEQ
1

Thus the (¢1,12) is a subsolution of (3.1). It is obvious that (21, 22) := (Rgl), RéQ))
is a supersolution of (3.1), such that (z1,22) > (¥1,%2). Thus Theorem 3.1 is
proven. ]

4. Extension of (1.1) to problem (4.1)

In this section, we consider the extension of (1.1) to the following problem:
{—Apu = —au + bu? — du® — f(u) — %, x € €,
u

(4.1)
u =0, x € 01,

where Ayz = div(|V2|P72Vz), p > 1, a € (0,1), a,b,d and c are positive constants,
Q) is a bounded domain in RY with smooth boundary 9, and f : [0,00) — R is a
continuous function. Then we have the following result.

Theorem 4.1. Let (H1) and (H2) hold, Then there exists positive constants by* :=
by (a,d, Q) and cf* = c§*(a,b,d, Q) such that for b > b§* and c < ¢§*, problem (4.1)
has a positive solution.

Proof. We shall establish Theorem 4.1 by constructing positive sub-super solutions
to equation (4.1). Let A; be the first eigenvalue of the problem

—Appr =M@ e, ¢ =0,z €09,

where ¢ denote the corresponding eigenfunction, satisfying ¢1 > 01in Q and |V | >
0 on 0%, see [5]. Without loss of generality, we let ||¢1]lcc = 1. Let 6 > 0, u > 0,
m > 0 be such that

1-— -1 B
(p—]lj+a)p_l{( p_a)l(f_a )|V¢1’p—)\1¢1p} >m  in Qs,

and ¢ € [, 1] in Q\ Q5, where Qs := {2 € Q : d(x,00Q) < §}. This is possible since
V1| # 0 on 02 while ¢; = 0 on 99Q. Also let Ry, Ry be as in section 2 and b§* be
such that for every b > bj*

R2ppfl < % 7 Rf’lfl > ()\21)(19—1p—|—a)p1’
and

P26, < i 0, 2 (B2t
Define

eyt =y (a,b,d, Q)

e MR D (ta) (S2vap-1) SR P
= min { 3(F) (DR — Bodi (7).

and ¢ := R¢q »-17a. Then

vy = R(— L

11—«
m)ébl PtV
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and
Apth = div(|V[P V)
1-a)(p-1) B
= RPN o) iy T Va6
(1—a)(p—1) (1-a)(p—1)
— pr1 P 1 p—1+ta p—2 —ita A
(p—1+a) V¢ Vo1 "V1 + ¢ p®1
_ _ l—a)(p—1), —er_ p(p—1)
:Rpl p p—1 ( “ita |V p_)\ ta
(p7—1+a) T olta P17+ [V | 1917
_ _ 1 1-a)p-1)
—pri(— L a{ Vo — Mér” ¢,
thus

1 (1-a)(p—1)
(qglpfﬁa)a {)\wlp  p—l+a

By the same argument as in the proof of theorem 2.1, we can show that v is a
subsolution of (4.1) for b > b§* and ¢ < ¢f*. Next, it is easy to check that z := Ry
is a supersolution of (4.1) with z > 1. Hence (4.1) has a positive solution and the
proof is complete. O

_Ap = RP1 p p—1
o (p—l—i-a)

rwnp}.
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