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VISCOSITY SOLUTIONS OF DIVERGENCE TYPE PDES
ASSOCIATED TO MULTITIME HYBRID GAMES

Constantin UDRISTE', Ionel TEVY? and Elena-Laura OToBicU?

Our original results are associated to a multitime hybrid game, with two equips
of players, based on a multiple integral functional and an m-flow as constraint. The aim
of this paper is three-fold: (i) to define the multitime lower or upper value function; (ii)
to build Divergence type PDEs ; (iit) to give viscosity solutions of previous PDEs.
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1. Multitime lower or upper value function

All variables and functions must satisfy suitable conditions (for example, see [11]).
We refer to a multitime hybrid differential game, with two equips of players, whose Bolza
payoff is the sum between a multiple integral (volume) and a function of the final event (the
terminal cost) and whose evolution PDE is an m-flow. More specifically, this paper refers
to the following optimal control problem:

Find

in max 7(u()o() = / Do, (5), ), o)+ 9(a(7),

subject to the Cauchy problem
Oz’
D5
where i =1,...n;a=1,...m;u= (u?),a=1,..,p,v=(v’), b=1,...,q are the controls;
ds = ds' A ... Ads™ is the volume element.

We vary the starting multitime and the initial point. We obtain a larger family of
similar multitime problems based on the functional

I o(u(), 0()) = / L(s,(s), u(s), o(s))ds + g(a(T))

and the multitime evolution constraint (Cauchy problem for first order PDEs system)
oz’
0s™
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(s) = X.(s,2(s),u(s),v(s)), z(0) =z, s € Qor C RT, z € R,

(s) = XL (s,2(s),u(s),v(s)), z(t) =z, s € Yy CRY, x € R™.
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Remark 1.1. Sometimes, the existence of multitime totally min-max optimal controls and
sheets can be seen without any optimality arguments. For example, the problem

V(x) = min max / ((2(s) + u(s)* — v(s)?)ds, aa—gi(s) = Xo(s,2(5),u(s),v(s)),
u v QtT S
with s € Qur, t € Qor, 2(0) = x9, has a global min-maz solution V(x) =0 for u = —z,v =

0, and all t,T,xy. The set of those sheets is obviously a totally optimal field of sheets
corresponding to given X, for which solutions of {?ﬁr (s) = Xo(s,z(s),—x(s),0) exist over

[0,T] for any xg.

Remark 1.2. Let us consider the problem: find u(t) and F(t) such that
m
W(F) = min/ Dt +ua(t)?dt, uVF =0,t€R™, QCR™
“ Q=1

This problem has a global optimal solution

tl to tm—l tm
p— = — o = —_— DY — PR — PR
W(F)—O7f0rua(t)— t #O,F(t)—sp(t27 ata+17 ) m 7t1)7

with arbitrary function p, any subset 0 and m > 2.

Definition 1.1. Let ¥ and ® be suitable strategies of the two equips of players.
(i) The function

18 called the multitime lower value function.
(i) The function

M(t,x) = max Ul(%iellv I o [®[] (), [v] ()]

1s called the multitime upper value function.

The most important ingredient in our theory is the idea of gemerating vector field.
This mathematical ingredient allow the introduction of PDEs of divergence type (see [11]).

Definition 1.2. Let D, be the total derivative and cpyp, Chyp be hyperbolic constants.
(i) The vector field (m*(t,x)) is called the generating lower vector field of the lower
value function m(t,x), if

m(T,z(T)) = cpyp +m(t, z(t)) + A D,m®(s,z(s))ds.

(#i) The vector field (M*(t,x)) is called the generating upper vector field of the upper
value function M (t,x), if

M(T,z(T)) = Chyp + M(t,x(t)) + ; D M®(s,z(s))ds.

The papers [1]-[4], [12] refer to viscosity solutions of Hamilton-Jacobi-Isaacs equations.
Our papers [5]-[11] are listed for understanding the multitime optimal control and our recent
results which led to the present work.
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2. Viscosity solutions of divergence type PDEs

Let us recall some PDEs that admit viscosity solutions: (i) the FEikonal Equation:
|Du| = f(z), which is related to geometric optics (rays); (ii) (stationary) Hamilton-Jacobi
equation: H(x,u, Du) =0, Q@ C R, where H : O x R x R™ — R is called Hamiltonian and is
continuous and in general convex in p (i.e. in the gradient-variable); the eikonal equation is
in particular a (stationary) Hamilton-Jacobi equation; (iii) (single time evolution) Hamilton-
Jacobi equation: uy + H(x,u, Du) = 0, R™ x (0,00); (iv) the single time Hamilton-Jacobi-
Bellman equation, based on the Hamiltonian

H(z,p) = SEE{_f(x’a) p—Il(z,a);

this is a particular Hamilton-Jacobi equation which is very important in single-time control
theory and economics; (v) in Differential Games, with two equips of players, the (lower)
value function

u(t,r) = aeigfm sup J(t,z, o, B)

solves the Hamilton-Jacobi-Bellman PDE
us + H(z, Du) =0, x € R",

where

H(t,z,p) := min r;leajc{—f(t, x,a,b) -p—1(t,z,a,b)}.

(vi) there exists multitime Hamilton-Jacobi PDEs systems which admit no viscosity solution,
in the non-convex setting, even when the Hamiltonians are in involution [12].

Our aim is to introduce multitime divergence type PDEs that admit viscosity solu-
tions. Viscosity solutions need not be differentiable anywhere and thus are not sensitive to
the classical problem of the crossing of characteristics.

The generating lower and upper vector fields, denoted by (m®) and (M®), define the
relations

m(t) —m(t +h) = —cpyp — / D,m*® ds.

Qtttn

M(t) = M(t + h) = —Chyp — / DM ds.
Qitgn
The key original idea is that the generating upper vector field or the generating lower
vector field are solutions of divergence type PDEs, defined in the next Theorem. Our PDEs
contain some implicit assumptions, and are valid under certain conditions which are defined
and analyzed for multitime hybrid differential games.

Theorem 2.1. (i) The generating upper vector field (M*(t,x)) is the viscosity solution of
the multitime upper divergence type PDFE
oM« ) OM® ;
W(t,x) + min max {axi(t,x)X;(t,x,u,v) + L(t, x,uw)} =0,
which satisfies the terminal condition M*(T, x) = g*(x).
(ii) The generating lower vector field (m®(t,x)) is the viscosity solution of the multi-
time lower divergence type PDE

Om® Om® ;
o —|—maxmin{ - (Lx)X&(t,x,u,v)—|—L(t,x,u,v)}:0,

ote wel veV | Ozt

which satisfies the terminal condition m*(T,x) = g*(z).
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Proof. To simplify the divergence type PDEs, we introduce the so-called upper and lower
Hamiltonian defined respectively by

HT(t,z,p) = minmax{p¢ () X" (¢, z,u,v) + L(t,z,u,v)},

veEV uell
H™(t, 2, p) = maxmin{p® (1) X4 (t,2,u,0) + L(t,,u,v)}.
ueU vev
We prove only the first statement. For s € Q44, we use the Cauchy problem

oz’
0s®
and the cost functional (volume)

I (u(-),v(")) :/ L(s,z(s),u(s),v(s)) ds.
Qitin
For s € Q1 \ Q¢t1n, the cost is M (t + h, z(t + h)). Consequently,

Tiw (u(-), 0(-) :/Q L(s, x(s),u(s), v(s)) ds + M(t + h, z(t + h)),

(s) = XL (s,2(s),u(s),v(s)), z(t) =z, s € Quyp CRY, z €R"

with M (t,z) > M(t + h,z(t + h)), because M(t,x) is the greatest cost. Thus we have the
multitime dynamic programming optimality condition

M(t,z) = @rgjﬁ) Urené?t) { /Qtt% L(s,z(s), ®w](s),v(s))ds + M(t + h,z(t + h))}

Let (w®) € C1(Qo7 x R™) be a generating vector field. We analyse two cases:

Case 1 Suppose M* — w® attains a local maximum at (¢,x) € Qo x R™. To prove
the inequality
owe

5a (t,x)+ H" (mp, g;?;(t,@) >0, (1)
it is enough to prove that the relation
owe
ot
is false, for some constant 6 > 0.

We use the Fundamental Lemma in the next Section. For a sufficiently small ||| > 0,
all w € A(t), for v € V(t), we obtain that the relation

O i du\ _ Bvol(h)
/g <L(S’x(s)’q’[v](5)v“<8>> + X (s, 2(s), Blo)(5), 0(s)) + )ds <
holds for v € V. Thus

w i { [ (2062060, 0101(9,0(6) + G Kl (o), B1el(9).0(5) + G ) s}

PEA(H) veV(2) Opi e
- Ovol (h) 7
- 2
with z(-) solution of the previous Cauchy problem.
Because M®* — w® has a local maximum at (¢, z), we have

WOt + Bzt + h)) — W (8, ) > MOt + h, a(t + h)) — MO (¢, 2).

(t,x)+H* <t,x, %(t, x)) < <o,

Dividing by A®, taking the limit for h* — 0, summing after «, we find the inequality
Dow® > D, ,M? and finally

M(t,z) — M(t+h,z(t+h)) > w(t,z) —w(t + h,z(t + h)).
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The multitime dynamic programming optimality condition and the local maximum
definition give us

M(t,x) — M(t+ h,z(t+h)) = @Iél%%(t) vrengr(lt) {/Q L(s,z(s), ®[v](s), v(s))ds} .

Consequently, we have

DEA(L) vEV(L)

max min {/Q L(s,z(s), ®[v](s), v(s))ds} > w(t,x) —w(t+ h,z(t+ h))

or

@Iéli)((t) 'ulen\}I(lt) {/Qwrh L(s, z(s), @[v](s),v(s))ds} +w(t+h,x(t+h)) —w(t,z) > 0.

By the definition of the generating vector field, the m-dimensional hyperbolic differ-
ence is

w(t+ h,z(t+h)) —wt,x) = / D, w%ds

Qttth

B /Qtt+h (%I; X;(S’x(‘g)v dw](s),v(s)) + 861;]04 )ds
and thus the contradiction with (2) arises.

Case 2 Suppose M® — w® attains a local minimum at (¢,x) € Qo X R™. Analogously
to the previous case, we shall prove the relation

ow®

0
3ta (t7$)+H+(t7LI,‘, v

ox?

(t,z)) <0 (3)

by supposing the contrary

o

ote

ow

(t,z) + HT(t,x, e

(t,z)) >0 >0,

for some constant 6 > 0.
According to Fundamental Lemma (see next Section), for each sufficiently small ||h|| >
0 and all w € A(t), the foregoing results imply that the relation

/QHH (L(s,m(s)#b[v](S),v(s)) + %ZTXQ(S,SC(S),cI)[v](s)w(S)) i %7«;’:) s > fvol(h)

holds for v € V (¢). It follows that the relation

. ow” _,
g, min (L6060, 80100, 06) + G K200, D010, 06)
et e

is true.
Because M* — w® has a minimum at (¢, z), we have the inequality

MO (¢, ) — wo(t, ) < ME(t + h,x(t + h)) — w (¢ + h, z(t + h))

and so Do,w® < D, ,M“. By the local minimum definition and by the multitime dynamic
programming optimality condition, we can state the relation

M(t,xz) = M({t+h,z(t+h)) = @rél%ﬁ) Uren\;%) {/Q L(s, z(s), ®[v](s), v(s))ds} .
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Consequently, we obtain

@Igﬁﬁ) Urené?t) { /Q“M L(s,z(s), ®[v](s), v(s))ds} +w(t+ h,z(t+h)) —w(t,z) <O0.
On the other hand, we know that
w(t+ h,z(t+h)) —w(t,z) = / D, w*ds

Qittn

ow®

B /QM (%ﬁa Xo(s,2(s), ®[v](s), v(s)) + asa>ds.

The last two relations contradicts the relation (4) and thus the relation (3) must be true. O

3. Fundamental contradict Lemma

It is preferable to put the Lemma in this Section to receive notations from the previous
Section.

Lemma 3.1. Let w € C*(Qor x R™) and the associated generating vector field (w®).
(i) If M® — w® attains a local maximum at (to, z9) € Qor X R™, for each «, and
ow® ow

8?(150,3?0) +H* (toyxo, %(to,ﬂfo)> < -0 <0,

then for all sufficiently small ||h|| > 0, there exists a control v = (vy) € V(to) such that the
relation (2) holds for all strategies ® € A(tg).
(ii) If M* — w® attains a local minimum at (tg, zo) € Qor X R™, for each «, and

ow® ow
a?(to,xo) +H* (toﬂfo, M(%JM)) >6>0,

then for all sufficiently small ||h|| > 0, there exists a control u = (uy) € U(to) such that the
relation (4) holds for all strategies ¥ € B(tp).

Proof. The basic object is the m-form (identified with one component function, see multiple
integral)
ow®

ozt

ow®

ot

A = L(s, x(s), ®[v](s), v(s)) + - Xa(s,2(s), D[v](s), v(s)) +

(i) By hypothesis

min max A(tg, zg, u,v) < —6 < 0.
veEV wel

Consequently there exists some control v* € V such that

max A(tg, xo,u,v") < —0.
ueU

By the uniform continuity of the m-form A, we have

1
A(t 1< —=40
quleaﬁ( ( 071"(5)7’”7’0 ) = 9
provided s € Q1,4+, for any small ||h]| > 0, and x(-) is solution of PDE on Qy,¢,+4, for any
u(+),v(+), with initial condition x(¢p) = xg. For the control v(-) = v* and for any strategy
O € A(tg), we find

(03 (0%

owe _, ow 1
2 X (5,20, D] (9),w(s) + - < 20,

for s € Qtpty + h. Taking the hyperbolic primitive integral on €2;,:,+n, we obtain the relation

(2).

L(s, z(s), ®[v](s), v(s)) +
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(ii) The inequality in the Lemma reads

min max A(tg, zg,u,v) > 60 > 0.
vEV uelU (0’ 0 )_

Consequently, for each control v € V there exists a control u = u(v) € U such that
A(to, o, u,v) > 6.
The uniform continuity of the m-form A implies
A(to, xo,u, &) > 29, V¢ € B(v,r) NV and some r = r(v) > 0.
Due to compactness of V, there exists finitely many distinct points
Vly ooy Un € V5 Up,...,up €U

and the numbers 71, ...,7, > 0 such that V ¢ J'_; B(v;, ;) and
3
A(to, wo,us, &) > 197 V¢ € B(vi, 7).

Define
k—1
PV —=U Pv) =u if v € Blug, ) \ U B(ui,r;), k=1,n.
i=1

In this way, we have the inequality
A(to, zo, ¥(v),v) > 20, Yv e V.
Again, the uniform continuity of the m-form A and a sufficiently small ||h|| > 0 give
A(s,z(s),v(v),v) > %G,VU eV, s € Noto+hs

and any solution z(-) of PDE on Q4.+, 14, for any u(-),v(-) and with initial condition z(tg) =
zg. Now define the strategy

U € B(tg), v](s) =1(v(s)), Vo € V(to), $ € Uytoth-
Finally, we have the inequality

AGs, 2(s), U0)](s), v(s)) > %H,Vs € Quroin,

and taking the hyperbolic primitive integral on Qy,¢,+r, we find the result in Lemma. [

4. Conclusions

Our problem of multitime hybrid differential games requires some original ideas issued
from our research in multitime dynamic programming: generating vector field, divergence
type PDEs and their viscosity solutions. Also, to formulate and prove such Theorems we
need a proper geometric language. This research shows how the general theory of multitime
dynamic programming can be applied to special problems, here multitime optimal games.
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