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CHARACTERIZING SUBDIFFERENTIAL OF DECREASING
INVERSE CO-RADIANT FUNCTIONS WITH

APPLICATIONS
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In this paper, we first characterize vector valued decreasing inverse
co-radiant functions in a framework of abstract convexity. Next, we show
that each vector valued decreasing inverse co-radiant function is supremally
generated by a certain class of elementary functions. Finally, as an appli-
cation, the basic properties of this class of functions such as support set and
subdifferential are characterized.
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1. Introduction

Abstract convexity has found many applications in mathematical anal-
ysis and optimization problems [8, 14, 15]. One of the main questions, that
arises in abstract convexity, is to identify a small supremal generator of sets of
abstract convex functions. In general, the identification of such a generator is
not a simple task. Indeed, the fact that the set of affine functions is a supremal
generator of the set of lower semi-continuous convex functions is equivalent to
the Hahn-Banach theorem. So, it is beneficial to have a small enough supre-
mal generator, which consists of simple functions. It is well-known that some
classes of increasing functions are abstract convex. For example, the class of
increasing and positively homogeneous (IPH) functions [5, 6, 11] and the class
of increasing and convex-along-rays functions are abstract convex [12, 13]. The
class of increasing and co-radiant functions is another class of increasing func-
tions, which is abstract convex [3, 4]. In a forthcoming study, our main goal
is to investigate the optimization of dual functions of increasing co-radiant
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and quasi-concave functions. In [9], it has been shown that the dual function
of an increasing co-radiant and quasi-concave function is decreasing inverse
co-radiant. This is a motivation that we first study the class of decreasing
inverse co-radiant functions. In this paper, we first characterize vector val-
ued decreasing inverse co-radiant functions with respect to a certain class of
elementary functions. Next, we show that this class of functions is abstract
convex. Finally, as an application, we present characterizations of support set
and subdifferential for this class of functions.

The structure of the paper is as follows: In Section 2, we provide some
preliminaries and definitions relative to abstract convexity and Banach lat-
tices. In Section 3, we characterize vector valued decreasing inverse co-radiant
functions with respect to a certain class of elementary functions. Next, we
show that the class of vector valued decreasing inverse co-radiant functions is
abstract convex. Finally, as an application, characterizations of support set
and subdifferential of this class of functions are given in Section 4. Section 5,
includes with a discussion on conclusions and applications.

2. Preliminaries

Let X be a real topological vector space. We assume that X is equipped
with a closed convex pointed cone S (the latter means that S ∩ (−S) = {0}).
Assume S ̸= {0}. The increasing property of our functions will be understood
to be with respect to the ordering ≤ induced on X by S :

x ≤ y ⇔ y − x ∈ S, (x, y ∈ X).

We say x < y if and only if y − x ∈ S \ {0}. Throughout the paper we
assume that X is not a finite set.

In the following, we recall some notions and definitions concerning vector
lattices (see [1, 2, 7, 10]).

Definition 2.1. A partially ordered set Y is a set in which a binary relation
≼ is defined, which satisfies the following conditions:
(1) For all x ∈ Y, x ≼ x (reflexivity).
(2) If x, y ∈ Y are such that x ≼ y and y ≼ x, then x = y (antisymmetry).
(3) If x, y, z ∈ Y are such that x ≼ y and y ≼ z, then x ≼ z (transitivity).

If x, y ∈ Y are such that x ≼ y and x ̸= y, one writes x ≺ y, and says that x
“is less than ”y. The relation x ≼ y is also written y ≽ x, and similarly, x ≺ y
is also written y ≻ x.

Definition 2.2. A partially ordered set (Y,≼) is a lattice if each pair of el-
ements x, y ∈ Y has a least upper bound (a supremum) and a greatest lower
bound (an infimum). The supremum and infimum of any two elements x, y ∈ Y
is denoted by

sup{x, y} := x ∨ y and inf{x, y} := x ∧ y,
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where the mappings

∨ : Y × Y −→ Y

(x, y) 7−→ x ∨ y

and

∧ : Y × Y → Y

(x, y) 7−→ x ∧ y

are called the lattice operations on Y.

Note that both the supremum and infimum are unique, provided that they
exist.

If, in addition, Y is a real vector space, then, Y is called an ordered
vector space if, for all x, y ∈ Y, the following assertions hold:
(1) If x ≼ y, then, x+ z ≼ y + z for all z ∈ Y.
(2) If x ≼ y, then, αx ≼ αy for all α ≥ 0.

Definition 2.3. A lattice (L,≼) is said to be conditionally complete if it sat-
isfies one of the following equivalent conditions:
(1) Every non-empty lower bounded set admits an infimum.
(2) Every non-empty upper bounded set admits an supremum.
(3) There exists a complete lattice L := L∪{⊥,⊤}, which we call the minimal
completion of L, with bottom element ⊥ and top element ⊤ such that L is a
sublattice of L, inf L := ⊥ and supL := ⊤.

Definition 2.4. A (real) vector lattice (Y,≼,+, ·) is a set Y endowed with a
partial order ≼ such that (Y,≼) is a lattice with a binary operation ” + ” and
the scalar product ” · ” such that (Y,+, ·) is a vector space.

Definition 2.5. A vector lattice (Y,≼,+, ·) such that (Y,≼) is a conditionally
complete lattice is called a conditionally complete vector lattice.

Definition 2.6. A conditionally complete Banach lattice (resp. normed lat-
tice) Y is a (real) Banach space (resp. normed space) which is also a condi-
tionally complete lattice such that

|x| ≼ |y| =⇒ ∥x∥ ≤ ∥y∥, ∀ x, y ∈ Y, (1)

where |x| := x+ + x−, x+ := sup{x, 0} and x− := sup{−x, 0}.

Let Y be a vector lattice. Recall (see [2, 7, 10]) that an element 1 ∈ Y
is called a strong unit, if for each x ∈ Y there exists 0 < λ ∈ R such that
x ≼ λ1. Now, consider the vector lattice Y with the strong unit 1. By using
the strong unit 1, we can define a norm on Y by

∥x∥ := inf{λ > 0 : |x| ≼ λ1}, ∀ x ∈ Y. (2)

It is easy to check that ∥.∥ is a norm on Y, and satisfies

|x| ≼ ∥x∥1, ∀x ∈ Y. (3)
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Then, in view of (2) and (3), we conclude that

B(x, r) := {y ∈ Y : ∥y − x∥ ≤ r}
= {y ∈ Y : x− r1 ≼ y ≼ x+ r1},

where 0 < r ∈ R and x ∈ Y. It is clear that the ball B(x, r) is a closed and
convex subset of Y.

It is well known that Y equipped with this norm is a conditionally com-
plete Banach lattice. Some examples of conditionally complete Banach lattices
were given in [10].
The set Y + := {x ∈ Y : x ≽ 0} is called the positive cone of Y, and its
members are called the positive elements of Y. Clearly, the sum of two positive
elements is again a positive element and that Y + is a closed convex cone in Y.

Throughout the paper we assume that Y is a continuous conditionally
complete Banach lattice over the field of real numbers (R) with the strong unit
1 equipped with the norm defined by (2), and with the minimal completion Y
(see Definition 2.3). For definition of a continuous lattice see [7].

We denote by 0 the zero of both vector spaces X and Y under the oper-
ation ” + ”.

In the sequel, we give a definition of the vector valued decreasing in-
verse co-radiant functions. A version of the following definition for real valued
functions was given in [8].

Definition 2.7. A vector valued function f : X → Y is called inverse co-
radiant if f(γx) ≼ 1

γ
f(x) for all x ∈ X and all γ ∈ (0, 1].

It is easy to see that f is inverse co-radiant if f(γx) ≽ 1
γ
f(x) for all x ∈ X

and all γ ≥ 1.

Definition 2.8. A vector valued function f : X → Y is called decreasing if
x ≤ y implies f(x) ≽ f(y).

Definition 2.9. A vector valued function f : X → Y is called decreasing
inverse co-radiant if f is a decreasing and inverse co-radiant function.

In this paper, we study vector valued decreasing inverse co-radiant functions
f : X → Y such that

0 ∈ dom f := {x ∈ X : f(x) ̸= ⊤}.
The following definition for real valued functions has been given in [14].

Definition 2.10. Let H := {h : X → Y : h is a vector valued function} and
f : X → Y be a vector valued function.
(1) The support set (or the set of all H-minorants) of f with respect to H is
defined by

supp(f,H) := {h ∈ H : h(x) ≼ f(x), ∀x ∈ X}.

(2) The function f : X → Y is called abstract convex with respect to H (or
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H-convex) if there exists a subset U of H such that f is the upper envelope of
this set:

f(x) = sup
h∈U

h(x), (x ∈ X).

(3) The subdifferential of the function f : X → Y at a point x0 ∈ domf with
respect to H (or H-subdifferential of f) is defined by

∂Hf(x0) := {h ∈ H : h(x)− h(x0) ≼ f(x)− f(x0), ∀ x ∈ X}.

The set H in Definition 2.10 is called the set of elementary functions.

3. Abstract Convexity of Vector Valued Decreasing Inverse Co-
radiant Functions

In this section, we discuss on the abstract convexity of vector valued
decreasing inverse co-radiant functions with respect to a certain class of ele-
mentary decreasing inverse co-radiant functions.

Now, consider the function v : X ×X × (Y + \ {0}) → Y + is defined by:

v(x, y, α) := sup{λ ∈ Y + : 0 ≼ λ ≼ α, ∥λ∥x ≤ y}, ∀x, y ∈ X, ∀α ∈ Y + \ {0},
(4)

(with the convention sup ∅ = 0).

Remark 3.1. Note that, for each x, y ∈ X and α ∈ Y + \{0}, the set Dx,y,α :=
{λ ∈ Y + : 0 ≼ λ ≼ α, ∥λ∥x ≤ y} is closed in Y +. That is, if there exists a
sequence {λn}n≥1 ⊂ Dx,y,α such that ∥λn − λ∥ −→ 0 as n → +∞ for some
λ ∈ Y +, then, λ ∈ Dx,y,α.
To this end, let {λn}n≥1 ⊂ Dx,y,α be such that ∥λn − λ∥ −→ 0 as n → +∞
for some λ ∈ Y +. Since {λn}n≥1 ⊂ Dx,y,α, it follows that 0 ≼ λn ≼ α and
∥λn∥x ≤ y for all n ≥ 1, and so, y − ∥λn∥x ∈ S for all n ≥ 1. This together
with ∥λn∥ −→ ∥λ∥ and the fact that S is closed implies that y − ∥λ∥x ∈ S.
Then, ∥λ∥x ≤ y.
On the other hand, we have 0 ≼ λn ≼ α for all n ≥ 1. Therefore, (α−λn)

− = 0
for all n ≥ 1, and hence,

∥(α− λn)
−∥ = 0, ∀ n ≥ 1. (5)

Since

|(α− λn)
− − (α− λ)−| ≤ |λn − λ|, ∀ n ≥ 1,

it follows from (1) that

∥(α− λn)
− − (α− λ)−∥ ≤ ∥λn − λ∥, ∀ n ≥ 1. (6)

Now, since ∥λn − λ∥ → 0, we conclude from (5) and (6) that ∥(α− λ)−∥ = 0.
This implies that λ ≼ α. Hence, λ ∈ Dx,y,α.

In the following, we give some properties of the function v.
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Proposition 3.1. For every x, y, x′, y′ ∈ X; γ ∈ (0, 1]; α, α′ ∈ Y + \
{0}, β > 0, one has

x ≤ x′ ⇒ v(x, y, α) ≽ v(x′, y, α), (7)

y ≤ y′ ⇒ v(x, y, α) ≼ v(x, y′, α), (8)

α ≼ α′ ⇒ v(x, y, α) ≼ v(x, y, α′), (9)

v(γx, y, α) ≼ 1

γ
v(x, y, α), (10)

v(x, γy, α) ≽ γv(x, y, α), (11)

v(βx, y, α) =
1

β
v(x, y, αβ), (12)

v(x, βy, α) = βv(x, y,
α

β
), (13)

v(x, y, α) = α ⇐⇒ ∥α∥x ≤ y, (14)

v(x, y, α) ≼ α, (15)

∥v(x, y, α)∥x ≤ y, whenever v(x, y, α) ̸= 0. (16)

Proof. We only prove (10). Indeed, we have:

v(γx, y, α) = sup{λ : 0 ≼ λ ≼ α, ∥λ∥γx ≤ y}
= sup{λ : 0 ≼ λ ≼ α, ∥λγ∥x ≤ y}

= sup{β
γ
: 0 ≼ β

γ
≼ α, ∥β∥x ≤ y}

=
1

γ
sup{β : 0 ≼ β ≼ αγ, ∥β∥x ≤ y}

≼ 1

γ
sup{β : 0 ≼ β ≼ α, ∥β∥x ≤ y}

=
1

γ
v(x, y, α).

�
Remark 3.2. In view of (7) and (10), it is worth noting that the function
v(., y, α) is decreasing inverse co-radiant for each y ∈ X and each α ∈ Y +\{0}.
Now, for each y ∈ X and each α ∈ Y +\{0}, define the function v(y,α) : X → Y +

by v(y,α)(x) = v(x, y, α) for all x ∈ X.
Note that in view of Remark 3.2, one has each function v(y,α) is decreasing
inverse co-radiant. Let

L0 := {v(y,α) : y ∈ X, α ∈ Y + \ {0}}.
L0 is called a set of elementary functions.

In the following, we give a characterization of vector valued decreasing
inverse co-radiant functions with respect to L0 (the set of elementary func-
tions).
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Theorem 3.1. Let f : X → Y + be a vector valued function. Then the follow-
ing assertions are equivalent:
(i) f is decreasing inverse co-radiant.
(ii) γf(y) ≼ f(x) for all x, y ∈ X and all γ ∈ (0, 1] such that γx ≤ y.
(iii) ∥v(y,α)(x)∥f( y

∥α∥) ≼ ∥α∥f(x) for all x, y ∈ X and all α ∈ Y + \ {0}.

Proof. (i) =⇒ (ii). It is obvious.
(ii) =⇒ (iii). Let α ∈ Y + \ {0} and x, y ∈ X be arbitrary. Clearly, (iii)
holds if v(y,α)(x) = 0. Suppose that v(y,α)(x) ̸= 0. Then, by (15) and (16), 0 ≺
v(y,α)(x) ≼ α and ∥v(y,α)(x)∥x ≤ y. It follows from (1) that 0 <

∥v(y,α)(x)∥
∥α∥ ≤ 1.

Thus, by the hypothesis (ii) and the fact that
∥v(y,α)(x)∥

∥α∥ x ≤ y
∥α∥ , we conclude

that
∥v(y,α)(x)∥

∥α∥ f( y
∥α∥) ≼ f(x). Therefore, (iii) holds.

(iii) =⇒ (i). Now, let x ≤ y, then, by (14), v(y, α
∥α∥ )

(x) = α
∥α∥ . Thus, in view

of the hypothesis (iii), one has f(y) = ∥v(y, α
∥α∥ )

(x)∥f(y) ≼ f(x). So, f is

decreasing. Now, let γ ∈]0, 1] and x ∈ X be arbitrary. Therefore, it follows
from (11) and (14) that

γ
α

∥α∥
= γv(x, α

∥α∥ )
(x) ≼ v(γx, α

∥α∥ )
(x).

This together with (1) implies that

γ ≤ ∥v(γx, α
∥α∥ )

(x)∥. (17)

So, by the hypothesis (iii) and (17) and the fact that Y + is a cone, we deduce
that

γf(γx) ≼ ∥v(γx, α
∥α∥ )

(x)∥f(γx) ≼ f(x).

Hence, f is inverse co-radiant, which implies that (i) holds. �

Now, we are going to show that each vector valued decreasing inverse
co-radiant function is supremally generated by a certain class of decreasing
inverse co-radiant functions.
In the sequel, for each y ∈ X and each α ∈ Y + \ {0}, define the function
u(y,α) : X → Y + by

u(y,α)(x) :=
α

∥α∥
∥v(y,α)(x)∥, ∀ x ∈ X. (18)

Remark 3.3. In view of (1) and Remark 3.2 and the fact that Y + is a cone,
it is easy to check that each function u(y,α) is decreasing inverse co-radiant and
satisfies (7), (8) and (10)-(16).

Let

L := {u(y,α) : y ∈ X, α ∈ Y + \ {0}}. (19)

We call L the set of elementary functions.
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Lemma 3.1. Let α, α′ ∈ Y + \ {0} be such that α ≼ α′, and let y ∈ X be
arbitrary. Then,

u(y,α)(x) ≼
∥α′∥
∥α∥

u(y,α′)(x), ∀ ∈ X.

Proof. Since α ≼ α′, it follows from (1) that ∥α∥ ≤ ∥α′∥, and by (9), one has
v(y,α)(x) ≼ v(y,α′)(x) for all x ∈ X. So, again, in view of (1), we have

∥v(y,α)(x)∥ ≤ ∥v(y,α′)(x)∥, ∀ x ∈ X. (20)

This together with (18) and (20) and the fact that Y + is a cone implies that

u(y,α′)(x) =
α′

∥α′∥
∥v(y,α′)(x)∥

≽ α′

∥α′∥
∥v(y,α)(x)∥

≽ α

∥α′∥
∥v(y,α)(x)∥

=
∥α∥
∥α′∥

α

∥α∥
∥v(y,α)(x)∥

=
∥α∥
∥α′∥

u(y,α)(x), ∀ x ∈ X,

which completes the proof. �

Theorem 3.2. Let f : X → Y +∪{⊤} be a vector valued function. Then, f is
decreasing inverse co-radiant if and only if there exists a set △ ⊆ L such that

f(x) = sup
u(y,α)∈△

u(y,α)(x), (x ∈ X). (21)

In this case, one can take △ := {u(y,α) ∈ L : α ≼ f( y
∥α∥)}. Hence, the vector

valued function f is decreasing inverse co-radiant if and only if f is L-convex.

Proof. Suppose that (21) holds. Then, in view of Remark 3.3, f is decreasing
inverse co-radiant. Conversely, assume that f is decreasing inverse co-radiant.
Thus, according to Theorem 3.1 (the implication (i) =⇒ (iii)), we have

∥v(y,α)(x)∥f(
y

∥α∥
) ≼ ∥α∥f(x), ∀ x, y ∈ X, ∀ α ∈ Y + \ {0}. (22)

Now, fix x ∈ X, and let u(y,α) ∈ △ be arbitrary. Then, it follows from (22)
that α∥v(y,α)(x)∥ ≼ ∥α∥f(x), and hence,

α

∥α∥
∥v(y,α)(x)∥ ≼ f(x).

Thus, in view of (18), we have

u(y,α)(x) ≼ f(x), ∀ u(y,α) ∈ △. (23)
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Now, Consider three possible cases.
Case (i). Suppose that f(x) ̸= 0,⊤. Let α0 = f(x) and y0 = ∥f(x)∥x. Then,
α0 = f( y0

∥α0∥), and so, u(y0,α0) ∈ △. Also, in view of (13) and (14), we have

u(y0,α0)(x) =
α0

∥α0∥
∥v(y0,α0)(x)∥ = f(x). (24)

Thus, it follows from (23) and (24) that

f(x) = sup
u(y,α)∈△

u(y,α)(x).

Case (ii). If f(x) = 0. Assume that u(y,α) ∈ △ is such that u(y,α)(x) ̸= 0. In
view of (18), one has

∥v(y,α)(x)∥ = ∥u(y,α)(x)∥ > 0. (25)

According to (22), we have ∥v(y,α)(x)∥f( y
∥α∥) ≼ ∥α∥f(x) = 0. This together

with (25) and the fact that Y + is a cone implies that f( y
∥α∥) = 0. Since u(y,α) ∈

△, we conclude that α ≼ f( y
∥α∥) = 0, which contradicts α ∈ Y + \ {0}. So,

u(y,α)(x) = 0 for all u(y,α) ∈ △. Therefore,

f(x) = 0 = sup
u(y,α)∈△

u(y,α)(x).

Case (iii). Assume that f(x) = ⊤. Let γ ∈ R be such that γ > 0. Put
yγ = γx ∈ X and αγ = γ1 ∈ Y + \ {0}. Then, f( yγ

∥αγ∥) = f(x) = ⊤ ≻ αγ.

Hence, u(yγ ,αγ) ∈ △ for all γ > 0. Also, in view of (13) and (14), it is easy to
check that u(yγ ,αγ)(x) = γ1 for all γ > 0. Therefore, by (23) , one has

f(x) = ⊤
= sup

γ>0
γ1

= sup
u(yγ,αγ )

u(yγ ,αγ)(x)

≼ sup
u(y,α)∈△

u(y,α)(x)

≼ f(x),

which completes the proof. �

4. Characterizations of Support Set and Subdifferential of Vec-
tor Valued Decreasing Inverse Co-radiant Functions

In this section, we present a description of the support set and the L-
subdifferential of a vector valued decreasing inverse co-radiant function f :
X → Y + ∪ {⊤}. Let L be the set of elementary functions defined by (19).

Recall [14] that for a function f : X → Y + ∪ {⊤}, the support set of f
with respect to L is defined by:

supp(f, L) := {u(y,α) ∈ L : u(y,α)(x) ≼ f(x), ∀ x ∈ X}.
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The following result gives us a characterization of the support set of a
vector valued decreasing inverse co-radiant function f : X → Y + ∪ {⊤}.

Proposition 4.1. Let f : X → Y +∪{⊤} be a vector valued decreasing inverse
co-radiant function. Then,

supp(f, L) = {u(y,α) ∈ L : α ≼ f(
y

∥α∥
)}.

Proof. Let u(y,α) ∈ supp(f, L) be arbitrary. Then, u(y,α)(x) ≼ f(x) for all
x ∈ X, and so, for x := y

∥α∥ , it follows from (12), (14) and (18) that α =

u(y,α)(
y

∥α∥) ≼ f( y
∥α∥). Conversely, suppose that u(y,α) ∈ L is such that α ≼

f( y
∥α∥). According to Theorem 3.1 (the implication (i) =⇒ (iii)), for v(y,α)

(corresponding to u(y,α)), we have

∥v(y,α)(x)∥f(
y

∥α∥
) ≼ ∥α∥f(x), ∀ x ∈ X. (26)

Thus, in view of (26) and the fact that α ≼ f( y
∥α∥), we conclude that α∥v(y,α)(x)∥ ≼

∥α∥f(x) for all x ∈ X, and hence,
α

∥α∥
∥v(y,α)(x)∥ ≼ f(x), ∀ x ∈ X.

Then, by (18), one has

u(y,α)(x) ≼ f(x), ∀ x ∈ X,

which completes the proof. �
Recall [14] that for a function f : X → Y + ∪ {⊤}, the L-subdifferential

of f at a point x0 ∈ X with f(x0) ∈ Y +, is defined as follows:

∂Lf(x0) := {u(y,α) ∈ L : u(y,α)(x)− u(y,α)(x0) ≼ f(x)− f(x0), ∀ x ∈ X},
and for f(x0) = ⊤, define ∂Lf(x0) := ∅.

In the following, we give a description of the L-subdifferential of a vector
valued decreasing inverse co-radiant function f : X → Y + ∪ {⊤} with respect
to the elementary set L.

Proposition 4.2. Let f : X → Y +∪{⊤} be a vector valued decreasing inverse
co-radiant function, and let x0 ∈ X be such that f(x0) ̸= 0,⊤. Then,

{u(y,α) ∈ L : α ≼ f(
y

∥α∥
), u(y,α)(x0) = f(x0)} ⊆ ∂Lf(x0).

Moreover, ∂Lf(x0) ̸= ∅.

Proof. Let

u(y,α) ∈ {u(y,α) ∈ L : α ≼ f(
y

∥α∥
), u(y,α)(x0) = f(x0)}

be arbitrary. In view of Proposition 4.1, one has α ≼ f( y
∥α∥) if and only if

u(y,α)(x) ≼ f(x) for all x ∈ X. This together with the fact that u(y,α)(x0) =
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f(x0) implies that u(y,α) ∈ ∂Lf(x0). Moreover, put y := ∥f(x0)∥x0 and α :=
f(x0). Therefore, it follows from (13), (14) and (18) that u(y,α)(x0) = f(x0)
and f( y

∥α∥) = α. Hence, u(y,α) ∈ ∂Lf(x0). �

Theorem 4.1. Let f : X → Y + ∪ {⊤} be a vector valued decreasing inverse
co-radiant function, and let x0 ∈ X be such that f(x0) ̸= ⊤. Then,

{u(y,α) ∈ L : f(x0) ≼ u(y,α)(x0), α− u(y,α)(x0) ≼ f(
y

∥α∥
)− f(x0)} ⊆ ∂Lf(x0).

Moreover, the equality holds if and only if infx∈X f(x) = 0.

Proof. Let

∆ := {u(y,α) ∈ L : f(x0) ≼ u(y,α)(x0), α− u(y,α)(x0) ≼ f(
y

∥α∥
)− f(x0)},

and u(y,α) ∈ ∆ be arbitrary. First, note that in view of (15), we have

0 ≼ v(y,α)(x) ≼ α

for all x ∈ X. Thus, by (1),

0 ≤
∥v(y,α)(x)∥

∥α∥
≤ 1

for all x ∈ X. This together with u(y,α) ∈ ∆ and the fact that Y + is a cone
implies that

∥v(y,α)(x)∥
∥α∥

(α− f(
y

∥α∥
)) ≼

∥v(y,α)(x)∥
∥α∥

(u(y,α)(x0)− f(x0))

≼ u(y,α)(x0)− f(x0), ∀ x ∈ X. (27)

According to Theorem 3.1 (the implication (i) =⇒ (iii)), we have

∥v(y,α)(x)∥
∥α∥

f(
y

∥α∥
) ≼ f(x), ∀ x ∈ X. (28)

This together with (27) implies that

α∥v(y,α)(x)∥
∥α∥

− f(x) ≼
∥v(y,α)(x)∥

∥α∥
(α− f(

y

∥α∥
))

≼ u(y,α)(x0)− f(x0), ∀ x ∈ X. (29)

This implies that

α∥v(y,α)(x)∥
∥α∥

− u(y,α)(x0) ≼ f(x)− f(x0), ∀ x ∈ X. (30)

Now, by using (18) and (30), we conclude that

u(y,α)(x)− u(y,α)(x0) ≼ f(x)− f(x0), ∀ x ∈ X,

and hence, u(y,α) ∈ ∂Lf(x0).
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Now, suppose that infx∈X f(x) = 0, and u(y,α) ∈ ∂Lf(x0) is arbitrary. So, by
the definition,

u(y,α)(x)− u(y,α)(x0) ≼ f(x)− f(x0), ∀ x ∈ X. (31)

Since 0 ≼ u(y,α)(x) for all x ∈ X, it follows from (31) that

−u(y,α)(x0) ≼ u(y,α)(x)− u(y,α)(x0) ≼ f(x)− f(x0), ∀ x ∈ X.

Thus, f(x0) − u(y,α)(x0) ≼ infx∈X f(x) = 0, which implies that f(x0) ≼
u(y,α)(x0). Moreover, by putting x := y

∥α∥ in (31), we obtain from (12), (14)

and (18),

α− u(y,α)(x0) ≼ f(
y

∥α∥
)− f(x0).

Hence, u(y,α) ∈ ∆.
In the sequel, we show that if ∆ = ∂Lf(x0), then, infx∈X f(x) = 0. Let

α ∈ Y + \ {0} be arbitrary such that α ≻ f(0) − infx∈X f(x). We claim that
u(0,α) ∈ ∂Lf(0). To this end, note that in view of (4), one has

v(0,α)(x) :=

{
α, x ∈ −S
0, x /∈ −S,

So, it follows from (18) that

u(0,α)(x) :=

{
α, x ∈ −S
0, x /∈ −S.

(32)

Now, let x ∈ −S. Since f is decreasing, so, f(0) ≼ f(x). Then, by (32),

u(0,α)(x)− u(0,α)(0) = α− α = 0 ≼ f(x)− f(0), ∀ x ∈ −S.

On the other hand, since α ≻ f(0)− infx∈X f(x), it follows from (32) that

u(0,α)(x)− u(0,α)(0) = 0− α ≼ f(x)− f(0), ∀ x ∈ X \ (−S).

Therefore, u(0,α) ∈ ∂Lf(0) for all α ∈ Y + \ {0} with α ≻ f(0) − infx∈X f(x).
Moreover, since ∂Lf(0) = ∆, we conclude that

f(0) ≼ u(0,α)(0) = α, ∀ α ∈ Y + \ {0} with α ≻ f(0)− inf
x∈X

f(x).

Now, let α → [f(0)− infx∈X f(x)], we conclude that infx∈X f(x) = 0. �
Corollary 4.1. Let f : X → Y + ∪ {⊤} be a vector valued decreasing inverse
co-radiant function, and let x0 ∈ X be such that f(x0) ̸= ⊤. Define the function
g : X → Y + ∪ {⊤} by g(x) := f(x)− infx∈X f(x) for all x ∈ X. Suppose that
g is a decreasing inverse co-radiant function. Then,

∂Lf(x0) = {u(y,α) ∈ L : f(x0) ≼ u(y,α)(x0) + inf
x∈X

f(x), α− u(y,α)(x0)

≼ f(
y

∥α∥
)− f(x0)}.
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Proof. Since infx∈X g(x) = 0 and ∂Lg(x0) = ∂Lf(x0), so the result follows from
Theorem 4.1. �

5. Conclusions

We first introduced and studied a new class of elementary functions, and
by using this class, we characterized vector valued decreasing inverse co-radiant
functions in a framework of abstract convexity. Moreover, we showed that the
class of vector valued decreasing inverse co-radiant functions is abstract convex
with respect to this class of elementary functions. Finally, as an application,
we presented characterizations of the support set and the subdifferential of
this class of functions. Decreasing inverse co-radiant functions have many
applications in mathematical economics and optimization problems [6, 8, 9].

REFERENCES

[1] C.D. Aliprantis and O. Burkinshaw, Principles of real analysis, second edition, Aca-

demic Press, INC., 1998.

[2] G. Birkhoff, Lattice theory, Colloquium, Publications, vol. 25, Amer. Math. Soc., 1967.

[3] M.H. Daryaei and H. Mohebi, Abstract convexity of extended real valud ICR functions,

Optim., 62 (2013), 835-855.

[4] A.R. Doagooei and H. Mohebi, Monotonic analysis over ordered topological vector

spaces: IV, J. Global Optim., 45 (2009), 355-369.

[5] J. Dutta, J.-E. Mart́ınez-Legaz and A.M. Rubinov, Monotonic analysis over cones: I,

Optim., 53 (2004), 165-177.

[6] J. Dutta, J.-E. Mart́ınez-Legaz and A.M. Rubinov, Monotonic analysis over cones: II,

Optim., 53 (2004), 529-547.

[7] G. Gierz, K.H. Hoffman, K. Keimel, J.D. Lawson and D.S. Scott, Continuous lattices

and domains, Cambridge University Press, Cambridge, 2003.

[8] J.-E. Mart́ınez-Legaz, A.M. Rubinov and S. Schaible, Increasing quasi-concave co-

radiant functions with applications in mathematical economics, Math. Meth. Oper.

Res., 61 (2005), 261-280.

[9] S. Mirzadeh and H. Mohebi, Increasing co-radiant and quasi-concave functions with

applications in mathematical economic, J. Optim. Theory Appl., 169 (2016), No. 2,

443-472.

[10] H. Mohebi, Downward sets and their best simultaneous approximation properties with

applications, Numer. Funct. Anal. Optim., 25 (2004), Nos. 7 & 8, 685-705.

[11] H. Mohebi and H. Sadeghi, Monotonic analysis over ordered topological vector spaces:

I, Optim., 56 (2007), 305-321.

[12] H. Mohebi and H. Sadeghi, Monotonic analysis over ordered topological vector spaces:

II, Optim., 58 (2009), 241-249.

[13] A.M. Rubinov and B.M. Glover, Increasing convex-along-rays functions with applica-

tion to global optimization, J. Optim. Theory Appl., 102 (1999), 615-642.



66 S. Bahrami, H. Mohebi

[14] A.M. Rubinov, Abstract convexity and global optimization, Kluwer Academic Publish-

ers, Dordrecht-Boston- London, 2000.

[15] I. Singer, Abstract convex analysis, Wiley-Interscience, New York, 1997.


