
U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 2, 2023 ISSN 2286-3540

SCALABLE CONCOLIC EXECUTION OF COTS BINARIES
WITH THE RIVER FRAMEWORK

Eduard Stăniloiu1, Rareş Ştefan Epure2, Răzvan Deaconescu3, Răzvan Niţu4

, Răzvan Rughiniş5

Software systems increase in complexity as the time passes and new
business requirements arise. Coupled with the fast pace and increasing de-
mand of software development, this makes room for bugs and leads to a big-
ger attack surface. Fuzz testing and symbolic execution have proven to be
successful methods to uncover untested paths and vulnerabilities, and have
been adopted by teams across the globe. Software products regularly use
3rd party pre-compiled libraries and components. Those custom of-the-shelf
(COTS) binaries make symbolic execution difficult as the fuzzer cannot in-
sert the instrumentation code during compilation, thus having to resort to
dynamic binary instrumentation. We present River, a concolic execution
fuzzer for COTS binaries. We emulate the system-under-test (SUT) with
Triton, a dynamic binary analysis library, and we delegate system and li-
brary calls to GDB. By doing so, we avoid path explosion and the need to
manually implement system and library calls in the fuzzing framework, two
problems that KLEE and angr have. We compare our solution with KLEE
by testing on the libraries from Google FuzzBench. After running libarchive
under the two for 30 minutes, River has a branch coverage of 4.56%, while
KLEE has a 1.78% coverage; after 1h30 minutes, River has reached 6.06%
compared to the 2.07% reached by KLEE.

Keywords: concolic execution, symbolic execution, COTS binaries, binary
analysis, dynamic binary instrumentation

1. Introduction

Software security is essential to nowadays systems. The world has wit-
nessed the rise of cybersecurity attacks in recent years, as depicted in Figure 1.

1PhD candidate, Faculty of Automatic Control and Computer Science, University PO-
LITEHNICA of Bucharest, Romania, e-mail: eduard.staniloiu@upb.ro

2Student, Faculty of Automatic Control and Computer Science, University PO-
LITEHNICA of Bucharest, Romania, e-mail: raresstefan.epure@stud.acs.upb.ro

3Lecturer, Faculty of Automatic Control and Computer Science, University PO-
LITEHNICA of Bucharest, Romania, e-mail: razvan.deaconescu@cs.pub.ro

4PhD candidate, Faculty of Automatic Control and Computer Science, University PO-
LITEHNICA of Bucharest, Romania, e-mail: razvan.nitu1305@upb.ro

5Professor, Faculty of Automatic Control and Computer Science, University PO-
LITEHNICA of Bucharest, Romania, e-mail: razvan.rughinis@cs.pub.ro

79

80 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

Exploits of in the wild vulnerabilities have cost companies billions [3], having
researchers at the IBM System Science Institute estimate that fixing a vulner-
ability costs 100 times more than the development costs[8].

In fields such as IoT and automotive, auditing software security is chal-
lenging because the user receives a piece of hardware with a custom off-the-shelf
(COTS) binary that runs on it. The user is forced to place his trust in the 3rd
party, as he is not able to validate the software, since he does not have access
to the source code.

Fuzz testing can help teams automate the testing procedure, and discover
untested paths and vulnerabilities in their products and 3rd party components.
If the source code is available, the fuzzing framework will add instrumentation
code to the generated binary, which allows the framework to monitor the sys-
tem under test (SUT) during runtime and improve the input generation phase
of the fuzzer; this is known as white-box fuzzing. When there is no source code
available, the fuzzer generates input (either from scratch or from an initial
corpus) and checks the output (end state) of the SUT to determine if a crash
has occured; this is known as black-box fuzzing. In-between the two methods is
gray-box fuzzing : even though the source code is not available, the fuzzer will
instrument the binary instructions in order to monitor system during runtime
and guide the fuzzing process.

Static binary rewriting means being able to modify a compiled binary
such that it remains executable after the changes. Static binary instrumenta-
tion would provide the best performance for a fuzzer, but binary rewriting is a
hard, active research problem[32][10] [23][30][31] that has yet to have a sound,
cross-architecture solution. Dynamic binary instrumentation (DBI) modifies
the binary execution during runtime. This is a lot easier to achieve, as it does
not depend on complex static analysis and it enables the user to leverage run-
time information[19][6][5][28][11]. The drawback of using DBI is the runtime
overhead that it incurs, which can range between 1.2x to 5x. When fuzzing,
one desires the smallest instrumentation overhead, as that will allow the fuzzer
to try more inputs in the same amount of time. We plan to compensate the
overhead incurred by DBI by using symbolic execution.

We want to be able to perform efficient gray-box fuzzing on COTS bi-
naries. The problem with black-box fuzzing is that you don’t know anything
about your target: as such, just testing against random input will not get one
very far. Thus, we want to enhance the River fuzzer in order to perform sym-
bolic execution on binaries through DBI: 1) trace the binary execution, 2) each
time we encounter a branching condition, we save the encountered condition in
the form of relations between symbolic variables, 3) the symbolic variables rep-
resent our path constraints and will build an algebraic equation of the current
execution path, 4) so we can provide the equation to a satisfiability modulo
theories (SMT) [9][4] solver, such as Z3[21], to discover if there are any input

Scalable Concolic Execution of COTS Binaries with the River Framework 81

Figure 1. Rise of Global Weekly Cyber Attacks per Organization[1]

values that satisfy the constraints of a given program path. By using sym-
bolic execution, one can quickly discover the ”interesting” input values that
improve the code coverage of a SUT and trigger vulnerabilities; this is because
the constraints equation mathematically represents the different states that a
regular fuzzer might discover by running multiple inputs.

Library and system function calls represent the biggest challenges of per-
forming symbolic execution on binaries. Figure 2 presents a regular appli-
cation flow, with all the transitions starting from user space and ending in
kernel space. Starting with the program entry point instruction, we will iter-
ate through the binary instructions until we reach a function call, eventually
translated into a system or library function call.

Library function calls lead to a huge complicated constraints equation,
known in the literature as path explosion[2]. The equation could undoubtedly
become exponential as a consequence of the number of branches, which greatly
increases the time required by the SMT solver to find equation solutions, to the
point that it takes too long to be usable or it can not find a solution anymore.
Even if we would have an ideal SMT solver that is not affected by the path
explosion problem, system calls pose a new challenge: the implementation of
the call resides in kernel space so the fuzzer cannot instrument those instruc-
tions as it does not have access to them. The solution is to either reimplement
or emulate such calls.

Other symbolic execution fuzzers and frameworks, such as angr[29] and
KLEE[7], reimplement common library functions (eg. strlen, printf etc.)
and system calls (eg. open, read, write etc.) in order to circumvent the
issues briefed above. There are two problems with this approach: 1) this does

82 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

Figure 2. Application Flow: from User Space to Kernel Space

not scale as one cannot know all the functions that will be used by a user in his
codebase, thus it requires extensive analysis to implement the missing stubs so
one could fuzz the binary target and 2) the custom implementation might not
behave exactly the same as the original library or system call, thus unwilling
modifying the behaviour of the system under test.

Our proposed solution will use River to dynamically instrument only the
instructions that are part of the analysed binary (no libraries or system calls).
We integrate River with GDB so we can delegate the execution of library and
system calls to it. Thus, River will only trace and symbolically execute the
binary instructions of interest.

There are a series of aspects that we have to consider after the GDB
executes the system or library calls:

• must maintain the consistency between memories of every process. The
process from River has to have the same information even after the exe-
cution of GDB.

• must restore the function context after the execution of GDB.
• must keep the consistent symbolic state before and after a system or
library function call.
The significant advantage that we have through our approach is that we

emulate system and library function calls. Thus, the developer does not have
the overhead associated with the implementation of every system call, nor does
he have to do anything else in order to perform concolic execution. We claim
that our implementation is scalable as it does not require the developer to
debug the fuzzing tool and implement any missing utilities.

The remainder of this paper is organized as follows: Section 2 presents
the background, Section ?? highlights the design of our collections and the
problems encountered, Section 4 discusses the implementation and Section 5
presents the evaluation. We conclude with Section 6.

Scalable Concolic Execution of COTS Binaries with the River Framework 83

2. Background

2.1. The Architecture of The River Fuzzer

Figure 3. River Architecture

River is a cross-platform fuzzer that can run on all common operating
systems and supports the following architectures: X64, X86, ARM32 and
ARM64. The fundamental components in its architecture are built using the
following libraries:

• LIEF[17] serves at loading binary files. Using this tool, we can modify the
executable file, access offsets, sections and the entry point, functionalities
used in restoring the memory, and help to determine the position for
necessary instructions.

• Triton[27] used in dynamic symbolic execution. Moreover, its usage in
the River is to create an AST and make a dynamic taint analysis that
verifies the security implications based on the flow generated by the user
input. We can access functions from memory with this in River. This
component has two substantial functionalities: the taint analysis function
and the symbolic execution engine. Moreover, we can modify regions of
memory and set symbolic expressions at different memory addresses.

• Capstone[26] is a component in the LIEF library because we can disas-
semble executable files through it. This is a high-performance framework,
designed to provide the semantics of the disassembled instructions. More-
over, it is a thread-safe tool.

84 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

• z3-solver[21] is a theorem solver. Its usage is in the River and the Triton
library to solve different constraints gathered from the branch instructions.
The result after evaluating such expressions is a valid input that feeds the
fuzzer in order to detect flaws in the system.

• GDB[13] is a tool through which we emulate the library and system calls
and restore the context. We can inspect the memory at different moments
from execution, using its capabilities of dynamic analysis. We can analyze
the content of registers and acquire information about memory sections.
This framework supports three fuzzing methods, as you can see in Fig-

ure 3: concolic execution based on Generation Search strategy[14, 24], Genetic
Guided fuzzing, and concolic execution using Reinforcement Learning[25, 24].
The similarity is that all of these methods generate paths based on the in-
structions from the executable files. Differences come from the way fuzzers
choose paths. Genetic-guided fuzzing calculates traces based on a genetic al-
gorithm, whereas the concolic execution using RL relies on an algorithm of
Reinforcement Learning.

3. Methodology

Figure 4. Control Flow

In Figure 4, we present how the system’s components interact. We illus-
trate in the previous scheme the integration of GDB, which steps over system
calls to reduce the number of states. Consequently, the size of the paths di-
minishes since the fuzzer omits to create the symbolic expression based on the
branch instructions related to the system calls. The central point that we want
to prove through this architectural scheme is the behavior of the fuzzer before
and after a system or library function call.

Scalable Concolic Execution of COTS Binaries with the River Framework 85

The emulation method implies two processes, the River process, which
builds the paths based on the instructions from binary files, and the GDB
process, whose purpose is to emulate the entire functionality. Both start with
loading the same binary file and mapping at the same addresses to ease the
function of restoring the context. The system and library function calls have
the implementation in kernel-space, and the River process cannot access it
because this one runs in user-space. Therefore, GDB is the one that goes
through instructions from these classes of calls.

The GDB process is the one that drives the execution of the River pro-
cess, determining the flow, the latter updating its memory and context based
on the information of the former after the GDB finished executing the sys-
tem or library call. The dashed lines from Figure 4 are categorized based on
colors, and each color illustrates that the actions from GDB and River are
interconnected (performed simultaneously).

The first step after mapping the binary files into memory is to synchronize
the program counter from River with the one from GDB. The executable files,
compiled under some parameters, can go to such situations. The problem is
that River always starts the execution from the tag of the entry point function,
whereas GDB steps over the instructions correlated with the preamble of the
entry point function in some cases.

Figure 5. River Concolic Execution

The fundamental approach in River for fuzzing is the concolic execu-
tion, which represents a combination between concrete and symbolic execution.
Concrete testing is inefficient in the context of real-world applications, which
have numerous infeasible paths. Thus, the fuzzer uses the symbolic execution
to determine tracks from the control flow graphs, which can cause rare errors.
River implements these concepts in the RiverTracer through two submodules.

86 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

The purpose of the Simple Tracer module is to execute the binary file on
a specified input. The result is a list of basic blocks representing the addresses
of continuous instructions[24] until the execution has reached a jump directive.
River computes a priority for the associated input in the input generation part
based on the list of basic block information. The associated priority determines
the following evaluated input.

The Symbolic Tracer functionality is similar to the Simple Tracer mod-
ule, but the former differentiates from the latter by using the dynamic taint
analysis. The system or the application runs with a symbolized input, which
catches the jump conditions associated with the branch instructions along the
trace, and these instructions bound the basic blocks. The outcome of this
module is a Z3 serialized list of constraints passed to the Z3 solver in the input
generation part in order to create more sets of test data.

4. Implementation

4.1. River Tracer

The initial approach in River was to use the Triton library to emulate
the instructions. Although, there were limitations because of the lack of im-
plementation in Triton of some directives. Moreover, River was not capable
of loading all the libraries linked to the application. The proposed solution
introduces the GDB module to remove the overhead caused by the necessity
of adding these implementations. The purpose would be to solve one of the
significant problems which occur in the current fuzzers. Our strategy is to
emulate the instructions and system calls to remove the dependency between
the fuzzer and them.

In the context of the symbolic execution, the associated control flow
graph of the evaluated application would contain information about system or
library calls in the AST representation. This sort of information is redundant
in this situation because we would like to test just the application code. By
delegating GDB to emulate these system or library calls, we will not add this
kind of information to the control flow graph of the application (specifically
from the internal AST representation from the Triton library). As a result, we
will reduce the path explosion that is a real problem in the current fuzzers. We
will integrate the described solution in a tracer that will make symbolic and
concrete execution, creating a constraint expression based on jump, branch or
call instructions.

4.1.1. River emulation process. Symbolic execution is the technique used by
input generation, which obtains information from the control flow graph’s
traces. However, the performance of the fuzzer can decrease due to the as-
sociated drawback of this approach, named path explosion. The need for em-
ulation comes from this necessity, in the case of the library and system calls,
which could exponentially increase the depth of the graph.

Scalable Concolic Execution of COTS Binaries with the River Framework 87

Figure 6 shows the steps of the symbolic execution, the states represent-
ing the flow of the process. Every state contains a scope with concrete or
symbolic variables and the following line of code of the application. As men-
tioned above, the result is a constraint expression calculated relying on the
jump, branch, and call instructions[2]. At the end of the execution, the fuzzer
evaluates the list of constraints and generates more inputs.

Having a deep insight into the method the fuzzer creates the constraint
path, we can generalize a state of the execution in three components: a state-
ment, a symbolic store and a partial path of constraints. The statement is the
one that must be evaluated, usually associated with an assignment, a jump or
a branch instruction. We can associate the symbolic store with a scope that
contains program variables related to symbolic or concrete expressions. The
evaluation of the statement comprises a series of aspects. In the case of an
assignment, the symbolic engine will associate a variable with a value in the
symbolic store for either symbolic or concrete variables. The branch instruc-
tion will create a constraint, attaching it to the list of constraint paths. The
execution will continue on the appropriate branch based on the input. In the
case of occurring a jump instruction, this will result in moving forward to the
following statement.

Figure 6. Symbolic execution graph

In the proposed solution, we load the executable file into memory twice:
once by the River process and once by the GDB process. The latter will drive
the execution. The reason for which these two distinct processes emulate the
same instructions is that the River process builds the constraint path in the
process of symbolic execution, whereas the GDB process emulates system and

88 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

library calls skipped by the River process. Both processes execute the same
instructions only if these are in the mappings of the executable file.

River process loads the executable file and can access only the instruc-
tions inside the binary file, whereas GDB can access the instructions from
libraries, not just from the binary file. In this situation, only the GDB will
have access to the instructions from the library and system calls. Thus, GDB
will have exclusive control of the flow when the River process wants to access a
directive from a library object that the latter does not map. The River process
will copy the memory and the registers from the GDB process address space
into its own address space.

Every time a system or a library call occurs, the River process will update
its memory based on the information from the GDB process. Because the size
of the sections from the binary file can increase after a system or library call,
the River will map into its memory the same size as it is in the memory of the
GDB process. Examples, in this case, could be the heap or the stack because
they could expand their sizes.

4.1.2. Fuzzing loop. River contains two significant components: tracers and an
input generation part. The tracers are the ones that perform either symbolic
or concrete execution. After a symbolic execution trace, the fuzzer obtains
an expression based on the constraints paths, built on jumps or conditional
branches, applied to symbolic variables. Input generation utilizes a seed as
input in order to determine runtime constraints paths, used in generating more
inputs. River works with one symbolic tracer and other simple tracers, which
will execute the binary file to determine possible flaws in the execution. Thus,
it will result in vaster code coverage based on constraints discovered in the
symbolic execution phase.

The fuzzer makes dynamic taint analysis through Triton, which sym-
bolizes the input for symbolic execution, and keeps track of instructions that
interacts with the symbolized addresses or registers. Besides, Triton creates
an AST based on the directives processed during the symbolic trace. After
the first run, the fuzzer will execute the program using the generated input,
trying to determine possible errors in the code. To create this loop in the tar-
get executable file should be defined a dummy array through which GDB and
River will insert the input. In order to maintain consistency, we must place
the data into memory at the same addresses in both processes. The name for
this variable must be inputBuf.

4.1.3. Maintaining consistency between components. Context restoration is a
vital part of the current implementation because River is the one that builds
the symbolic expression. Thus, the fuzzer must be aware of any change in
the application. The GDB is the component that emulates the behavior of
library and system calls, and River waits for updates after the execution of such
calls. The importance of context restoration comes from the desynchronization

Scalable Concolic Execution of COTS Binaries with the River Framework 89

between GDB and River. The memory and the registers from the fuzzer will
be behind the state of the GDB process after a system or library call. So, they
must synchronize because of the need for the fuzzer to create the expression
of constraints and keep its condition up-to-date.

After a library or system call, River updates its registers by copying
the information from the registers of the GDB process. However, the fuzzer
modifies only those that changed their information after such calls. The River
made the restoration in this way since the fuzzer must preserve the symbolic
state. When River overwrites the content of a register after a system or library
call, in this case, the fuzzer removes the symbolic reference to that register.
Triton is the component library that shapes this behavior, as River executes
symbolic execution through it.

The memory update goes on the same logic as the register restoration,
reasoning identical. However, this approach comes with a drawback because
we must iterate through the entire memory segments that contain permissions
of writing to check whether a change occurred. Thus, the memory becomes
the bottleneck of the fuzzer because River will search for modified values at
different memory addresses after the system and library call.

The GDB Python API provides a way of controlling the memory and
the flow of the program through an object called inferior, which is a program
executed under the GDB. River accesses the memory through the Triton API,
called TritonContext. Moreover, we can access information about the pro-
gram during the run, such as memory sections, process id and others.

Using the functionalities provided by GDB Python API, we have the
possibility to read the entire section of memory, which results in a series of
bytes. The fuzzer compares the area from River with the one from GDB to
speed up the execution because, in the case of equality, this one skips the
following operations and moves to the next section. However, it is unlikely
that a system or a library call will change the entire segment. Thus, we slice
the memory in chunks no more than the cache size for an extra speedup. If
the slice has the same values in both processes, the fuzzer will skip it. This
comparison is possible since both tools, River and GDB, provide the memory
content in bytes, making this operation efficient.

The problem of maintaining consistency between symbolic and concrete
states has as a starting point the Triton library, which keeps a record of both
states and creates the constraints paths based on this information. When River
updates a memory value after a system or library call, Triton will concretize the
content from that address. Thus, this library removes the symbolic information
related to that address because the input generation part will not have the
probability of influencing the behavior starting with that point of execution.
Furthermore, Triton automatically concretizes areas of memory after River
calls a set function on it. The memory update strategy relies on a dictionary
of memory sections. The fuzzer updates the information from this dictionary

90 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

after every system or library call because some segments can increase their
initial sizes. For instance, after repeated mmap calls, the heap segment can
expand its size. So, to maintain consistency, River regenerates this dictionary
of memory segments based on the information from the GDB process.

5. Evaluation

In order to validate our solution, we evaluated a series of applications
that try to meet real-world requirements. We used a HTTP parser[22] (Figure
7) and an application that tries to parse a JSON object, named Fuzzgoat[12]
(Figure 8). We choose the former because it contain regular system and library
function calls met in every program, and the latter because it is intended to
be used as a testbench for fuzzers. Another reason is that the fuzzer covers a
significant part of the code in a reasonable amount of time despite the overhead
caused by the emulation.

Figure 7. Line cover-
age for http parser test

Figure 8. Line cover-
age for Fuzzgoat test

The HTTP parser has two components: the parser for the request and
one for the URL. The line coverage for this library is that the URL parser
has 21%, whereas the other component has 79%. We choose to test the URL
parser since the input is not highly structured as it is for HTTP request parse.
To support highly structured inputs in a reliable amount of time, River has
to generate the data tests based on grammar. The current approach creates
inputs relying on symbolic execution, which will take much more time to build
suitable inputs.

5.1. Metrics and performances

So far we have evaluated that our functionality requirements are success-
fully met by our solution. Next, we compare our approach with similar ones
from Klee. We used the Libre [16] and Libarchive [18] libraries from Google’s

Scalable Concolic Execution of COTS Binaries with the River Framework 91

Fuzzbench [15, 20]. We also used Fuzzgoat, previously mentioned, in our data
set. The results are shown in the following tables:

TIME RIVER KLEE
30min 49% 65%
1h 49% 73%

1h30min 49% 76%
tableBranch coverage for Fuzzgoat

example.

TIME RIVER KLEE
30min 4.56% 1.78%
1h 6.02% 1.92%

1h30min 6.06% 2.07%
tableBranch coverage for Libarchive

example.

TIME RIVER KLEE
30min 28.9% fail
1h 28.9% fail

1h30min 28.9% fail
Table 1. Line coverage for Libre example.

Our metric to compare both tools is branch coverage because we can get
only the branch and instruction coverage, whereas we have the possibility to
analyze the line and branch coverage in River since the latter tests the coverage
using the gcov tool and the former has an internal mechanism that makes the
measurements. So, the shared metric is the branch coverage.

We can notice from the above results that Klee has a large coverage for
the Fuzzgoat example, which contains regular functions and library calls. The
other two examples are more complex in terms of system and library calls.
Moreover, these applications imply a substantial number of such calls. Klee
fuzzer fails with a SEGFAULT signal for Libre example because of the lack
of implementation for an inline assembly call from the valgrind.cc file. The
error occurs even though the Klee was compiled with support for libc++. A
possible reason is the lack of some implementation for some system or library
function calls. River tries to avoid this issue by emulation such calls through
GDB. We can observe from Table 5.1 that Klee is slower when the application
involves a notable number of system and library function calls. Moreover, the
Libre example implies a significant number of system calls from POSIX. Even
though Klee has support for such calls, their approach implies a substantial
overhead for them.

6. Conclusions

We have successfully added support for symbolic execution for COTS
binaries in the River fuzzer. By delegating the execution of syscalls and li-
brary functions to GDB, we significantly reduce the risc of triggering a path
explosion. Moreover, the associated overhead with the reimplementation of
such calls drastically diminishes. Moreover, through this approach, we want
to underline the possibility of emulating the system and library function calls
by keeping the concrete and symbolic states consistent.

92 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

Restoring the symbolic state is a core aspect of the current approach,
since the fuzzer can otherwise miss specific symbolized values after system or
library function calls. To prevent any errors, we have an ”aggressive” approach,
restoring the memory and symbolic contexts after each GDB delegated call.
The restore policy could be relaxed in order to obtain better runtime perfor-
mance.

6.1. Future performance improvements

Our context restoration solution is fully implemented, which is crucial
for our approach. However, the current implementation is very cautious and
copies large sections of memory from GDB into the River process each time a
system or library call is made in order to update the context in the fuzzer. This
causes the memory to become a bottleneck because the performance of the tool
is directly tied to the size and number of memory sections being copied. In
addition to optimizing the use of memory, the testing tool could also benefit
from using the functionalities of GDB and leveraging GDB’s signal handler
to improve the input generation process by filtering inputs based on previous
data tests that have caused errors in the system.

One important factor to consider is how the fuzzer generates its inputs
because if it uses the same path multiple times, it can lead to a decrease
in performance. To improve performance, the fuzzer could avoid generating
redundant data tests by altering its approach for input generation. Optimizing
this component can lead to a reduction in the amount of time needed for
testing. Thus, the fuzzer could achieve a wider code coverage in the same
amount of time by adjusting its input generation process.

6.2. Future emulation improvements

During emulation, the fuzzer aims to guide the concrete execution to
achieve the correct execution. However, as discussed throughout this chapter,
the fuzzer also has an internal representation of the symbolic state, which GDB
is not aware of because its purpose is only to execute the application. In most
cases, the fuzzer does not need to consider the symbolic state when handling
system and library function calls because it does not affect other addresses.
This changes when the library calls in case should operate on symbolic memory,
as it must be taken into account by taint analysis. For example, after a memcpy
call, the destination address should have the same symbolic information as the
source address, but the symbolic state of the destination address will not be
updated by GDB because it cannot interact with symbolized information. In
this regard, the current solution relies on hooks of well known, memory altering,
functions, but this limits support. To improve this, we must design a more
generic approach to handle these calls that require working with the symbolic
state.

Scalable Concolic Execution of COTS Binaries with the River Framework 93

Acknowledgment

This work was supported by a grant from the Romanian Ministry of Re-
search, Innovation and Digitization UEFISCDI no. 401PED/2020, and a grant
from the Romanian Ministry of European Investments and Projects through
the Human Capital Sectoral Operational Program 2014-2020, Contract nr.
62461/03.06.2022, SMIS code 153735.

REFERENCES

[1] Check point research: Cyber attacks increased 50% year over year - check
point software. https://blog.checkpoint.com/2022/01/10/check-point-research-cyber-
attacks-increased-50-year-over-year/. Accessed: 2021-10-20.

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. ACM Computing Surveys (CSUR),
51(3):1–39, 2018.

[3] Adam Bannister. Substandard software costs us economy $2tn through security
flaws, legacy systems, abandoned projects. URL: https://portswigger.net/daily-
swig/substandard-software-costs-us-economy-2tn-through-security-flaws-legacy-systems-
abandoned-projects, 2021.

[4] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of model
checking, pages 305–343. Springer, 2018.

[5] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for
adaptive dynamic optimization. In International Symposium on Code Generation and
Optimization, 2003. CGO 2003., pages 265–275. IEEE, 2003.

[6] Derek Bruening and Qin Zhao. Building dynamic tools with dynamorio on x86 and
arm. 2017.

[7] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDI, volume 8,
pages 209–224, 2008.

[8] Maurice Dawson, Darrell Norman Burrell, Emad Rahim, and Stephen Brewster. Inte-
grating software assurance into the software development life cycle (sdlc). Journal of
Information Systems Technology and Planning, 3(6):49–53, 2010.

[9] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9):69–77, 2011.

[10] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. Retrowrite: Stati-
cally instrumenting cots binaries for fuzzing and sanitization. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1497–1511. IEEE, 2020.

[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. {AFL++}: Com-
bining incremental steps of fuzzing research. In 14th USENIX Workshop on Offensive
Technologies (WOOT 20), 2020.

[12] fuzzstati0n/fuzzgoat: A vulnerable c program for testing fuzzers.
https://github.com/fuzzstati0n/fuzzgoat. Accessed: 2021-10-20.

[13] Gdb: The gnu project debugger. https://www.sourceware.org/gdb/documentation/.
Accessed: 2021-10-20.

[14] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox fuzzing for
security testing. Communications of the ACM, 55(3):40–44, 2012.

[15] Fuzzbench: Fuzzer benchmarking as a service. https://google.github.io/fuzzbench/. Ac-
cessed: 2021-10-20.

94 Eduard Stăniloiu, Rareş Ştefan Epure, Răzvan Deaconescu, Răzvan Niţu, Răzvan Rughiniş

[16] google/re: Re2 is a fast, safe, thread-friendly alternative to backtracking regular
expression engines like those used in pcre, perl, and python. it is a c++ library.
https://github.com/google/re2. Accessed: 2021-10-20.

[17] Lief : Library to instrument executable formats. https://lief-
project.github.io/doc/latest/intro.html. Accessed: 2021-10-20.

[18] libarchive/libarchive: Multi-format archive and compression library.
https://github.com/libarchive/libarchive. Accessed: 2021-10-20.

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation. Acm sigplan notices,
40(6):190–200, 2005.

[20] Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek
Arya. Fuzzbench: an open fuzzer benchmarking platform and service. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1393–1403, 2021.

[21] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[22] nodejs/http-parser: Http request/response parser for messages written in c.
https://github.com/nodejs/http-parser. Accessed: 2021-10-20.

[23] Pádraig O’sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev Barua,
and Angelos D Keromytis. Retrofitting security in cots software with binary rewriting.
In Ifip International Information Security Conference, pages 154–172. Springer, 2011.

[24] Ciprian Paduraru, Bogdan Ghimis, and Alin Stefanescu. Riverconc: An open-source
concolic execution engine for x86 binaries. In ICSOFT, pages 529–536, 2020.

[25] Ciprian Paduraru, Miruna Paduraru, and Alin Stefanescu. Riverfuzzrl-an open-source
tool to experiment with reinforcement learning for fuzzing. In 2021 14th IEEE Confer-
ence on Software Testing, Verification and Validation (ICST), pages 430–435. IEEE,
2021.

[26] Nguyen Anh Quynh. Capstone: Next-gen disassembly framework. Black Hat USA,
5(2):3–8, 2014.

[27] Florent Saudel and Jonathan Salwan. Triton: Concolic execution framework. In Sympo-
sium sur la sécurité des technologies de l’information et des communications (SSTIC),
2015.

[28] Nathan Voss. afl-unicorn: Fuzzing arbitrary binary code. Hacker Noon, 2017.
[29] Fish Wang and Yan Shoshitaishvili. Angr-the next generation of binary analysis. In

2017 IEEE Cybersecurity Development (SecDev), pages 8–9. IEEE, 2017.
[30] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen,

Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Making reassembly
great again. In NDSS, 2017.

[31] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disassembling. In 24th
USENIX Security Symposium (USENIX Security 15), pages 627–642, 2015.

[32] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl. From hack to
elaborate technique—a survey on binary rewriting. ACM Computing Surveys (CSUR),
52(3):1–37, 2019.

