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A SERIES METHOD APPLIED TO ENGINEERING 
CALCULATIONS IN STRUCTURAL DYNAMICS 

Auxiliadora Reyes1, José Antonio Reyes2, Mónica Cortés-Molina2, Fernando 
García-Alonso2* 

This paper shows an application of the Φ-functions series method to 
calculate the response of structures in face of an earthquake, modelled by a 2DOF. 

The Φ-functions series method is an adaptation of the ideas of Scheifele to 
integrate forced and damped oscillators. This algorithm presents the advantage of 
integrating precisely the perturbed problem with only two Φ-functions. Method 
coefficients are calculated by simple algebraic recurrences in which the 
perturbation function is involved. 

Results show the good precision compared to those obtained by other well-
known integrators implemented in MAPLE. Results are also contrasted with classic 
methods of Structural Engineering. 
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1. Introduction 

 Modern computational techniques, in particular those including 
sophisticated matrix structural analysis methods and numerical analysis can be 
applied, in a practical and efficient manner, to calculations relating to the theory 
of structural dynamics, such as building and civil engineering. Particularly, it is 
very interesting to know the response of a structure under the effect of an 
earthquake. This motivates the research in the design of computer algorithms.  
 A resistant structure that is resting and is subjected to an external force 
undergoes oscillations. These oscillations can be modeled by matrices through a 
system of equations with n degrees of freedom, MDOF:  

( ) ( ) ( ) ( ), (0) (0)M t C t K t M t+ + = − = = = =0 00, 0,x x x a x x x x           (1) 
where M, C and K are the mass, damping and stiffness matrices, respectively. The 
column vector ( )ta  contains the acceleration values. 

In most cases, only horizontal translation of the earthquake ground motion 
is considered by structural engineers. 
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 There are different numerical algorithms specially adapted for the 
integration of this type of  PVI’s, highlighting among them the Scheifele’s method 
[1,2] , which presents the good property  of integrating,  without truncation error 
and accurately, the non-perturbed problem.  
 Refinements of Scheifele`s method for the integration of this type of 
oscillators have been designed following different ideas and motivations [3-8]. 
 Based on the Scheifele`s method, the authors have obtained an algorithm 
for integration damped and forced systems [9-12], which maintains the accuracy 
and the good properties of previous method.  
 The basic idea of this code is remove the function of perturbation, 
integrating exactly the non-perturbed problem. To achieve this the differential 
operator D+B is applied to the system (1), where B  is an element of real matrices 
of order m, obtaining a system of second-order unperturbed with the same 
solution.     
 The method consists of defining a sequence of {Φj}j∈N matrices which 

serves as a basis for constructing the solution as a linear combination thereof. Said 
solution shall be used for obtaining a numerical integration method, the Φ-
functions series method [12].  
 This has an advantage over the Scheifele`s method in that it exactly 
integrates the perturbed problem with only the two first terms of the series of Φ-
functions. The coefficients of this series are obtained through recurrence relations 
involving the perturbation function. 
 In this paper is shown an application of the Φ-functions series method to 
calculate the response of structures modelled as 2DOF system to an earthquake. 
 The precision and efficiency of the Φ-function series method is contrasted 
with the results obtained by other well-known integrators.  

2. Notation and preliminary ideas 

In this section it focus the attention to numerical integration of equations 
of the form:  

[ ]0( ( ), ), (0) , , ,A t t t a b Iε′ + = = ∈ =x x f x x x                     (2) 

where, : m→x R R , ( ),A m∈ RM , ε  being a small parameter of perturbation 

and : m m× →f R R R . The components of the vector perturbation field 
( ( ), )t tf x  are ( ( ), )if t tx  with 1i …m=  and the field is continuous, with continuous 

derivatives until a certain order that satisfies the conditions for existence and 
uniqueness of solution. This type of system is called a perturbed linear system.  
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Assuming that ( ) ( ( ), )t t tg = f x  is analytical in I with regard to t, where it 
is sufficient that f is analytical in its arguments. In terms of the linear operator 
derivation D , with respect to the variable t , (2) can be written as follows: 

[ ]0( ) ( ), (0) , 0, ,D A t t T Iε+ = = ∈ =x g x x                            (3) 
for which it is supposed that ( )tx  will be the only solution, in I, which can be 
developed in a power series. 

Applying the operator ( )D B+  to (3), where ( ),B m∈ RM , and noting 
2

2 ( )L D A B D BA= + + +  , the new IVP is obtained: 

2 0 0 0( ) ( ) ( ), (0) , (0) (0) ,L D B t Aε ε′ ′= + = = − + =x g x x x x g x            (4) 
whose exact solution ( )tx  is the same as that of (2) and (3). 

The idea that leads us to consider this “enlarged” IVP, is that of cancelling 
the perturbation with the operator ( )D B+ . 

Given that ( )tg  is analytical in its arguments, we can write: 
)

0 0

(0)( ) ( ( ), )  
! !

n n
n

n
n n

tt t t t
n n

∞ ∞

= =
= = =∑ ∑gg f x c ,                    (5) 

with: 

( )2 1 0 0 0
1

( )  , (0) , (0) (0) .
!

n
n n

n

tL B A
n

ε ε
∞

+
=

′ ′= + = = − + =∑x c c x x x x g x  (6) 

The solution of the IVP (4) is obtained by adding a specific unperturbed 
IVP solution with null initial conditions to the general solution of the perturbed 
IVP with given initial conditions. The former can be obtained by resolving the 
following specific IVPs: 

( )  , (0) 0, (0) 0, 0,
!

j
j j j m j j

tX A B X BAX I X X j
j

′′ ′ ′+ + = = = ≥+           (7) 

where jX  is a real function with values in the  ring ( ),m RM  of the squared 
matrices of order m, with Im and 0 being, respectively, the unit and neutral 
elements of said ring. 

The solutions of (7) are the so-called Φ-functions [12]. 
 
2.1 The Φ-functions 
 
Definition 1  

2( ) ( )j jt X tΦ + =  with j ≥ 0, j ∈ .                            (8) 

Proposition 1 (Law of derivation) The Φ-functions verify:  
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1( ) ( )j jt tΦ Φ −′ =  with j ≥ 3, j ∈                              (9) 

Proposition 2 (Law of  recurrence) The Φ-functions verify the following 
recurrence law: 

2
2 1( ) ( ) ( ) ( )

( 2)!

j
j j j m

tt A B t BA t I
j

Φ Φ Φ
−

− −+ + =
−

+   with j ≥ 4, j ∈ .  (10) 

In order to complete the construction of the Φ-functions, given in (8), are 
defined 0( )tΦ  and 1( )tΦ . 

Definition 2  
0( )tΦ  and 1( )tΦ , are respectively, the solutions of the following IVP: 

( ) ( ) ( ) ( ) 0, (0) , (0) 0mX t A B X t BAX t X I X′′ ′ ′+ + = = =+ ,          (11) 
( ) ( ) ( ) ( ) 0, (0) 0, (0) .mX t A B X t BAX t X X I′′ ′ ′+ + = = =+            (12) 

The law of derivation presented in Proposition 1, is completed by the 
proposition below. 

Proposition 3 
 2 1( ) ( )t tΦ Φ′ = .                                                (13) 

Theorem 1  
The solution of the IVP 2 0 0 0( ) 0, (0) , (0) (0)L A ε′ ′= = = − + =x x x x x g x  

is 
 0 0 1 0( ) ( )t tΦ Φ ′+x x .                                            (14) 

Theorem 2  
The solution of the IVP (4), in terms of Φ -functions, is given by: 

( )0 0 1 0 1 2
2

( )  ( ) ( ) ( )n n n
n

t t t t BΦ Φ ε Φ
∞

− −
=

′= + + +∑x x x c c .           (15) 

2.2 Φ-functions Series Method 
 
It is assumed that the IVP (2) the perturbation function ( ( ), )( ) t tt = f xg  

admits an absolutely convergent power series expansion in [ ]0,T : 

0
( )  

!

k
k

k

tt
k

∞

=
= ∑g c . The solution can be expressed as 

0
( )  

!

k
k

k

tt
k

∞

=
= ∑x a . 

By substituting these developments in (2), recurrent formulae are 
established between the coefficients ak and the coefficient ck, based on the initial 
condition. We assume that we have calculated an approximation to the solution 
and to its derivative at a point t nh= , which are noted as nx  and n′x , the 
approximation to the solution [12]  at a point ( 1)t n h= +  is: 
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2
1 0 0 1 1 22

0
( ) ( ) ( )  

m
n n n

n
h h hΦ Φ Φ

−

+ ++
=

= + + ∑x b b b ,                        (16) 

where: 

 
( )

0 1

0 0 1 1 1 2

, , with 0,
, , , with 2,

n k k k

k k k k

A k
A B BA k

ε+

− −

= + = ≥

= = = + + + ≥

a x a a c
b a b a b a a a

         (17) 

which is the numerical integration method, based on Φ-functions series, for linear 
perturbed systems. 

Proposition 4 (Truncation error)  
Carrying out a truncation of 1m +  Φ -functions, with 2m ≥  

( )
2

0 0 1 0 2 1
0

( )  ( ) ( ) ( )
m

m n n n
n

t t t t BΦ Φ ε Φ
−

+ +
=

′= + + +∑x x x c c , the truncation 

error corresponding to ( )m tx , shall be given by: 

 ( )1
1

( )  
!

n
m n n

n m

tE t B
n

ε
∞

+
= −

= +∑ c c .                               (18) 

As a result the truncation error is small with ε . If 0ε = , that is, if the 
perturbation disappear in an arbitrary instant of the independent variable t , the Φ-
functions integrates without discretisation error  (4) [12]. 

3. Resolution of 2DOF by Φ-functions series method 

The 2DOF system is represented in Fig. 1 and it is used to study the 
dynamic forces acting on this system. Four types of forces act on each floor mass, 
the stiffness force, the damping force, the external force and inertial force [13]. 

 

 
Fig. 1 Two Degrees of Freedom System (2DOF) 

 
The dynamic equilibrium equations of motion are: 
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1 1 1 2 2 1 1 2 2 1 1

2 2 2 2 2 2 2 2 2

0 ( )
0 ( )

m x c c c x k k k x F t
m x c c x k k x F t

+ − + −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

,  (19) 

defining: 1

2

0
0

m
M

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 1 2 2

2 2

c c c
C

c c
+ −⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 1 2 2

2 2

k k k
K

k k
+ −⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 

1

2

( )
( )

( )
x t

t
x t

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

x  and 1

2

( )
( )

( )
F t

F t
F t

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, when the symmetrical and positive definite 

matrices M, C and K, are the mass, damping and stiffness matrix, respectively; the 
system (19) can be expressed by: ( ) ( ) ( ) ( )M t C t K t F t+ + =x x x . 

Considering that the structure is subjected to an earthquake ground 
motion, where only horizontal translation of the earthquake ground motion is 
considered. Applying the Newton´s second law and given that the external force is 
zero, are: 

( ) ( ) ( ) ( )
( ) ( )

1 1 2 1 2 1 1 2 1 2 1 1

2 2 2 2 1 2 2 1

0,

0,
g gm y c y y c y u k y y k y u

m y c y y k y y

+ − + − + − + − =

+ − + − =
        (20) 

where  gu  and gu  are the absolute ground displacement and the absolute ground 
velocity, respectively and, y1,  y2 are the absolute displacements of the masses 
respectively. 

 We define 1 1( ) ( ) ( )gx t y t u t= −  and 2 2( ) ( ) ( )gx t y t u t= − , as relative 
displacement between the mass and the ground. In this manner the equations (20) 
are: 

1 1 1 2 2 1 1 2 2 1 1

2 2 2 2 2 2 2 2 2

0 0 1
.

0 0 1 g
m x c c c x k k k x m

u
m x c c x k k x m

+ − + −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

(21) 

If  1

2

0 1
0 1 g

m
u

m
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is a harmonic matrix forcing function the equation (21) is: 

      0 01 1 1 2 2 1 1 2 2 1

0 02 2 2 2 2 2 2 2

sin( )0
sin( )0

F tm x c c c x k k k x
F tm x c c x k k x

ω
ω

+ − + − ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

,    (22) 

at the moment that the earthquake occurs, it is very reasonable to assume that the 
structure is at rest.  

Therefore or normalized form, the IVP is: 

     
( )

( ) ( )

1 1 0 0 0 0
1 2

1 2

0 0

sin( ) sin( )( ) ( ) ( ) ( ) ( ) ,

(0) 0 0 , (0) 0 0 .

t
t

t t

F t F tt M C t M K t F t F t
m m
ω ω− − ⎛ ⎞

+ + =− =−⎜ ⎟
⎝ ⎠

= = = =

x x x

x x x x

        (23) 
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In order to apply the Φ -function series method, is effected the change of 
variable: 1 1x u= , 1 3x u= , 1 3x u=  and 2 2x u= , 2 4x u= , 2 4x u= .  

The IVP (23) can be expressed as: 
1 1 1

2 2 2 2 2 2 2 22 2 2
1 1 0 0 13 3 32 2 2 2

0 0 24 4 4

0
0

sin( ) /
sin( ) /

u u u
O O O Iu u u

F t mu u uO M C M K O
F t mu u u

ω
ω

× × × ×
− −

× ×

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      (24) 

with ( ) ( )1 2 3 4(0) (0) (0) (0) 0 0 0 0t tu u u u = .  
Consequently 

1 1
2 2 2 22 2

1 1 0 0 13 3

0 0 24 4

0 0
0 0

, with (0)  
sin( ) / 0
sin( ) / 0

u u
O Iu u

F t mu uM K M C
F t mu u

ω
ω

× ×
− −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ = − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

u .     (25) 

The variable is introduced in order to make easier the elimination the 
disturbance’s function of the IVP (25), following the Steffensen´s techniques 
[14,15]. 

0
5 0

1
sin( )Fu t

m
ω= − , obtaining a new IVP. 

1 1
2 2 2 2 2 12 2

1 1
0 0 13 32 1

0 0 24 41 2 1 2 1 1

5 5 0 0 0 1

0( ) ( )
0( ) ( )

sin( )/( ) ( ) ,wi
sin( )/( ) ( )

( ) ( ) cos( )/

u t u t
O I Ou t u t

F t mu t u tM K M C O
F t mu t u tO O O

u t u t F t m

ω
ω

ω ω

× × ×
− −

×

× × ×

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟+ =−⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0
0

th (0)
0
0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

u .  (26) 

To invalidate the function of disturbance, the differential operator ( )D B+  
is applied to (26), where B is the following matrix 

( )
2 2 2 2 2 1

2
2 2 2 2 2 1 2 1 1 2 01

21 2 1 2 1 1

1
with  and 0

O O O
B O O m

mO O
Ω Ω Ω ω

Ω

× × ×

× × × × ×

× × ×

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

,     (27) 

obtaining the extended IVP  
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1 1
2 2 2 2 2 12 2 2 2 2 2 2 1

1 1
3 32 1 2 2 2 2 2 1

1 14 41 2 1 2 1 1 1 2 1 2 1 1
5 5

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

u t u t
O I Ou t u t O O O

u t u tM K M C O O O
u t u tO O M K M C O
u t u t

× × × × × ×
− −

× × × ×
− −× × × × × ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ Ω +⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜⎜ ⎟Ω⎜ ⎟ ⎜ ⎟ Ω Ω⎝ ⎠⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( )

1

2

3

4

5

0
0

1

( ) 0
( ) 0
( ) ,0
( ) 0
( ) 0

(0) 0 0 0 0 0 , (0) 0 0 0 0 ,
t

t

u t
u t
u t
u t
u t

F
m
ω

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎟
⎜ ⎟ ⎜ ⎟⎟⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
u u

   (28) 

which is integrated exactly using the Φ -functions’ series algorithm described in 
(16). 
 

3.1 Numerical results 
 In this section the Φ-functions series method is applied to calculate the 
solution of  2DOF.  
 The good behavior of the method is shown compared with other known 
codes, implemented in the DSOLVE NUMERIC package in the MAPLE 
program, such as ROSENBROCK, GEAR, and TAYLORSERIES. Moreover, it 
has been programmed other codes like NEWMARK β-METHOD and WILSON 
θ-METHOD to compare them with the Φ-functions series method.    

Consider the two-story frame subjected to an earthquake ground motion 
[13], Fig. 2.  

 
Fig. 2 Two-Story Frame 

The dynamic equilibrium equation of motion is: 
1 1 1

2 2 2

2 0 3 4 2 2 0 1
( )

0 2 2 3 0 1 g
x x xm c c k k m

u t
x x xm c c k k m

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  (29) 
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If 
2 0 1

( )
0 1 g
m

u t
m

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is a harmonic matrix forcing function, i.e. 

0 0

0 0

sin( )2 0 1
( )

sin( )0 1 g
F tm

u t
F tm

ω
ω

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 then the equation (29) is: 

0 01 1 1

0 02 2 2

sin( )2 0 3 4 2
sin( )0 2 2 3

F tx x xm c c k k
F tx x xm c c k k

ω
ω

− − ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.     (30) 

In notation more compact and normalizing the equation (30), is obtained: 

1 1 0 0 0 0sin( ) sin( )( ) ( ) ( )
2

tF t F tt M C t M K t
m m
ω ω− − ⎛ ⎞+ + = −⎜ ⎟

⎝ ⎠
x x x           (31) 

at the moment that the earthquake occurs, it is very reasonable to assume that the 
structure is at rest.  

To solve the IVP: 

1 1 0 0 0 0sin( ) sin( )( ) ( ) ( )
2

tF t F tt M C t M K t
m m
ω ω− − ⎛ ⎞+ + = −⎜ ⎟

⎝ ⎠
x x x ,       (32) 

with (0) 0=x , (0) 0=x , [ ]0,t T∈ , using the methodology of the Φ -functions, 
the new expression for the IVP 

1 1
2 2 2 22 2 0 0

0 01 13 3

4 4

( ) ( )
( ) ( )

0 0 sin( ) sin( )
( ) ( ) 2
( ) ( )

t
u t u t

O Iu t u t F Ft t
u t u t m mM K M C
u t u t

ω ω× ×
− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟+ = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (33) 

with ( )(0) 0 0 0 0 t=u ,   1 2 1
2 3

kM K
m

− −⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 and  1 3 1
2 42

cM C
m

− −⎛ ⎞
= ⎜ ⎟−⎝ ⎠

. 

The variable is introduced in order to make easier the elimination the 
disturbance’s function of the IVP (33), following the Steffensen´s techniques 
[14,15]. 

0
5 0sin( )

2
Fu t
m

ω= − , obtaining a new IVP.  



172   Auxiliadora Reyes, José Antonio Reyes, Mónica Cortés-Molina, Fernando García-Alonso 

1 1
2 2 2 2 2 1 02 2 01 1
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0
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( ) ( ) sin( )
2( ) ( )

( ) ( ) sin( )
( ) ( )

cos( )
2

u t u t
O I O Fu t u t t

mu t u tM K M C O
Fu t u tO O O t
m

u t u t F t
m

ω

ω

ω ω

× × ×
− −

×

× × ×

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟+ = −⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜

⎝ ⎠

( )

,

with   (0) 0 0 0 0 0 .t

⎟

=u

           (34) 

 
To invalidate the function of disturbance, the differential operator ( )D B+  

is applied to (34), where B is the following matrix: 

( )
2 2 2 2 2 1

2
2 2 2 2 2 1 2 1 1 2 0

1 2 1 2 1 1

1
with  and 0 .

2

O O O
B O O

O O
Ω Ω Ω ω

Ω

× × ×

× × × × ×

× × ×

⎛ ⎞
−⎛ ⎞⎜ ⎟= = =⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟

⎝ ⎠

    (35) 

Choosing the following values for the structural variables [13] 
2

1.5 
.

k sm
in
⋅

=  , 5%ζ = ,  0 15 F kip= , 0
3  
2n

rad
s

πω ω= = . 

The IVP is: 
2 2

1 1 1
2 22 2 2

33 27 27 15sin
3 0 210 5 2 4
0 1.5 2 327 81 15sin

5 5 24 8

t
x x x
x x x

t

ππ π π π

π π ππ π

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎝ ⎠⎜ ⎟ ⎜ ⎟+ + =−⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠−⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

,   (36) 

with ( ) ( )(0) (0) 0 0t t
1 2x x = , making the change of variable 1 1x u= , 1 3x u= , 1 3x u=  

and 2 2x u= , 2 4x u= , 2 4x u= , the new IVP is: 
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1 1
2 22 2

3 3
2 24 4

5 5

0
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0( ) ( )0 0 0 1 0
3( ) ( ) 5sin9 9 9 3 20( ) ( )2 4 40 40 3( ) ( ) 10sin9 27 3 3 20( ) ( )2 4 20 10 1

0 0 0 0 0

u t u t
u t u t t
u t u t
u t u t t
u t u t

π
π π π π

π
π π π π

−⎛ ⎞
⎜ ⎟−⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠−⎜ ⎟ ⎜ ⎟+ = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎝ ⎠−⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟
⎝ ⎠

5 3cos
2 2

tπ π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

      (37) 

( )with (0) 0 0 0 0 0 .t=u  

Applying the operator ( )D B+  to the system (37) we obtain the extended 
IVP: 

1 12 2
2 2

3 32 2
4 4

5 52

0 0 1 0 0
0 0 0 1 0 0 0 0 0 0

( ) ( )
0 0 0 0 09 9 9 3( ) ( )1 0 0 0 0 02 4 40 40( ) ( )
09 27 3 3( ) ( )2

2 4 20 10( ) ( )
90 0 0 0
4

u t u t
u t u t
u t u t
u t u t
u t u t

π π π π

π π π π

π

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

3

44 4 3 3
5

( ) 0
( ) 0
( ) , 0

0 0 0 0
( ) 0

81 81 81 27 ( ) 00
8 16 160 160

u t
u t
u t
u t
u tπ π π π

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

(38) 

( ) 15with (0) 0 0 0 0 0 , (0) 0 0 0 0 ,
2

t
t π⎛ ⎞= = −⎜ ⎟

⎝ ⎠
u u  

this is integrated exactly by the following algorithm, particularized for this 
problem. 

( )0 0

2 2

1 0
2 2

0 0 0 0 0

0 0 1 0 0
00 0 0 1 0
0

9 9 9 3 00
2 4 40 40

0
9 27 3 3 150

2 4 20 10 2
0 0 0 0 0

from  = 1 up to   calculates

t

k n

π π π π

π π π π π

= =

⎛ ⎞
⎜ ⎟ ⎛ ⎞

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −= − ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎝ ⎠

a u

a a             (39) 



174   Auxiliadora Reyes, José Antonio Reyes, Mónica Cortés-Molina, Fernando García-Alonso 

 

 

0 0 1 1

0

2 2

1
2 2

( ) ( )

0
0 0 1 0 0

00 0 0 1 0
35sin9 9 9 3 20

2 4 40 40 310sin9 27 3 3 20
2 4 20 10 15 3cos0 0 0 0 0

2 2
next  .

k

k

k

h h

t

t

t

k

π
π π π π

π
π π π π

π π

Φ +Φ
=

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠− − ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠− − ⎜ ⎟
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Fig. 3 The decimal logarithm of module of the 
relative error of the solution ( )tu . 

Fig. 4 The decimal logarithm of module of the 
relative error of the position ( )tx . 

The Fig. 3 shows the graph of the decimal logarithm of module of the 
relative error of the solution ( )tu , vs. t, calculate using Φ-functions series method 
with two Φ -functions, step size 0.01h =  and  50 digits, with the numerical 
integration codes LSODE with 2510tol −= , ROSENBROCK with abserr = 10-30, 
GEAR with 2510errorper −=  and TAYLORSERIES with abserr = 10-25. 

The Fig. 4 shows the logarithm graph for the absolute value of the relative 
error of solution ( )x t , vs.  t, obtained with 50 digits, calculated by means of (39), 
with two Φ-functions and step size 0.001h = , compared with the numerical 
integration codes NEWMARK  β-METHOD with 1/ 2δ = , 1/ 4α = , 0.001h =  
and WILSON  θ-METHOD with 1/ 2δ = , 1/ 6α = , 1.4θ = , 0.001h = . 

Analogous results are obtained for velocity ( )x t . 



A series method applied to engineering calculations in structural dynamics          175 

4. Conclusions 

In this paper we have applied  a numerical integration algorithm based on 
series of Φ-functions, which generalises  Scheifele´s  original method. 

The Φ-functions series method has an advantage over the Scheifele´s 
method in that it exactly integrates the perturbed problem, transforming it into 
second-order homogeneous problem which is able to integrate exactly with two 
first Φ-functions.  

An application of the method has been developed for the analysis  of an 
earthquake modeled by 2DOF. The accuracy in the resolution of a 2DOF through 
the Φ-functions series method  could  successfully compete with well-known 
integrators. 
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