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A SERIES METHOD APPLIED TO ENGINEERING
CALCULATIONS IN STRUCTURAL DYNAMICS

Auxiliadora Reyes', José¢ Antonio Reyes®, Monica Cortés-Molina®, Fernando
, ES
Garcia-Alonso”

This paper shows an application of the @-functions series method to
calculate the response of structures in face of an earthquake, modelled by a 2DOF.

The @-functions series method is an adaptation of the ideas of Scheifele to
integrate forced and damped oscillators. This algorithm presents the advantage of
integrating precisely the perturbed problem with only two @-functions. Method
coefficients are calculated by simple algebraic recurrences in which the
perturbation function is involved.

Results show the good precision compared to those obtained by other well-
known integrators implemented in MAPLE. Results are also contrasted with classic
methods of Structural Engineering.

Keywords: Numerical solutions, series methods, structural dynamics, earthquake
response.

1. Introduction

Modern computational techniques, in particular those including
sophisticated matrix structural analysis methods and numerical analysis can be
applied, in a practical and efficient manner, to calculations relating to the theory
of structural dynamics, such as building and civil engineering. Particularly, it is
very interesting to know the response of a structure under the effect of an
earthquake. This motivates the research in the design of computer algorithms.

A resistant structure that is resting and is subjected to an external force
undergoes oscillations. These oscillations can be modeled by matrices through a
system of equations with n degrees of freedom, MDOF:

MX(t) + Cx(t) + Kx(t) =-Ma(t), x(0)=x,=0, Xx(0)=x,=0, (1)
where M, C and K are the mass, damping and stiffness matrices, respectively. The
column vector a(t) contains the acceleration values.

In most cases, only horizontal translation of the earthquake ground motion
is considered by structural engineers.
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There are different numerical algorithms specially adapted for the
integration of this type of PVI’s, highlighting among them the Scheifele’s method
[1,2] , which presents the good property of integrating, without truncation error
and accurately, the non-perturbed problem.

Refinements of Scheifele's method for the integration of this type of
oscillators have been designed following different ideas and motivations [3-8].

Based on the Scheifele’s method, the authors have obtained an algorithm
for integration damped and forced systems [9-12], which maintains the accuracy
and the good properties of previous method.

The basic idea of this code is remove the function of perturbation,
integrating exactly the non-perturbed problem. To achieve this the differential
operator D+B is applied to the system (1), where B is an element of real matrices
of order m, obtaining a system of second-order unperturbed with the same
solution.

The method consists of defining a sequence of {®;}jc, matrices which

serves as a basis for constructing the solution as a linear combination thereof. Said
solution shall be used for obtaining a numerical integration method, the ®-
functions series method [12].

This has an advantage over the Scheifele’'s method in that it exactly
integrates the perturbed problem with only the two first terms of the series of ®-
functions. The coefficients of this series are obtained through recurrence relations
involving the perturbation function.

In this paper is shown an application of the ®-functions series method to
calculate the response of structures modelled as 2DOF system to an earthquake.

The precision and efficiency of the ®-function series method is contrasted
with the results obtained by other well-known integrators.

2. Notation and preliminary ideas

In this section it focus the attention to numerical integration of equations
of the form:
X'+ Ax = e f(X(1),1), x(0) = x,, te[a,b] = I, ()

where, x:R—>R™, Ae A/ (m,R) , € being a small parameter of perturbation
and f:R™xR—>RM™. The components of the vector perturbation field

f(x(t),t) are f,(x(t),t) with i =1...m and the field is continuous, with continuous

derivatives until a certain order that satisfies the conditions for existence and
uniqueness of solution. This type of system is called a perturbed linear system.
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Assuming that g(t) = f(x(t),t) is analytical in | with regard to t, where it
is sufficient that f is analytical in its arguments. In terms of the linear operator
derivation D, with respect to the variable t, (2) can be written as follows:

(D+A)x =¢£g(t), x(0) = X,,t [0, T] =1, (3)
for which it is supposed that X(t) will be the only solution, in |, which can be
developed in a power series.

Applying the operator (D+B) to (3), whereB e 47(m,R), and noting

L, = D? +(A+B)D+ BA , the new IVP is obtained:
L, (X) =(D + B)eg(t), X(0) = X, X'(0) =—AXq + £9(0) = X, 4)
whose exact solution X(t) is the same as that of (2) and (3).

The idea that leads us to consider this “enlarged” IVP, is that of cancelling
the perturbation with the operator (D +B).

Given that g(t) is analytical in its arguments, we can write:

) 0
a(t) = F(x(t),t) = Zgn @ n Z%cn, 5)
DT 2
with:

00 1:n , ,
Ly(x)= gzﬁ (Cny1+Bcp ), X(0) = Xg, X'(0) = —AXq + £9(0) = Xg. (6)
n=1"""

The solution of the IVP (4) is obtained by adding a specific unperturbed
IVP solution with null initial conditions to the general solution of the perturbed
IVP with given initial conditions. The former can be obtained by resolving the
following specific IVPs:

j
X +(A+B)X] +BAXJ—t Im » Xj(0)=0, Xj(0)=0,j=0, (7
J!
where X is a real function with values in the ring A7 (m,]R) of the squared

matrices of order m, with I and O being, respectively, the unit and neutral
elements of said ring.
The solutions of (7) are the so-called ®-functions [12].

2.1 The @-functions

Definition 1
Dj ()= X ) withj>0,j e N. (8)
Proposition 1 (Law of derivation) The ®-functions verify:
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@4 (1) =@ (1) withj>3,j e N (9)

Proposition 2 (Law of recurrence) The ®-functions verify the following
recurrence law:
ti-2 o
D (1)+(A+B)Dj_i(t)+ BAD|(1) =m I withj>4,j e N. (10)
In order to complete the construction of the ®-functions, given in (8), are
defined @ (t) and @ (1).

Definition 2

@y(1) and @(t), are respectively, the solutions of the following IVP:
X"(t)+(A+B)X'(t)+ BAX(t)=0,X(0)= I, X'(0)=0, (11)
X")+(A+B)X'(t)+ BAX(t)=0,X(0)=0, X'(0) =l y. (12)

The law of derivation presented in Proposition 1, is completed by the
proposition below.
Proposition 3
Dy () =P (V). (13)
Theorem 1
The solution of the IVP L, (x) =0, X(0) = Xy, X'(0) =—AXy +£9(0) = X
is

Do (D)X + Py (X0 - (14)
Theorem 2
The solution of the IVP (4), in terms of @ -functions, is given by:
o0
X(t) = Dy(t)Xg+Py(H)X) +& Y, Pp(t)(cq_y +Becyy). (15)
n=2

2.2 ®-functions Series Method

It is assumed that the IVP (2) the perturbation function g(t)= f(x(t).t)
admits an absolutely convergent power series expansion in [0,T]:
0 tk 0 tk
g(t)= z a Ck - The solution can be expressed as X(t) = z a ay -

k=0 "" =0

By substituting these developments in (2), recurrent formulae are
established between the coefficients ax and the coefficient Cy, based on the initial
condition. We assume that we have calculated an approximation to the solution
and to its derivative at a point t=nh, which are noted as X, and X, the

approximation to the solution [12] ata point t =(n+1)h is:
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m-2
Xn+1 = Po(Mby + @ (by + D" @y, (Wb (16)
n=0
where:
ag = Xp,ax4) + Ay =&y, withk >0,

17
bo =ap, by =a;,bx =ay +(A+B)ay_; +BAay_», withk>2, {17

which is the numerical integration method, based on ®-functions series, for linear
perturbed systems.
Proposition 4 (Truncation error)
Carrying out a truncation of m+1 @-functions, with m=>2
m-2
Xm(t) = @y(t)Xg + D ()X +& D, Ppya(t)(Cpyy+ Bep), the truncation
n=0
error corresponding to X, (t), shall be given by:
o0 tn
En)=¢ >, m(c:n+1+Bcn). (18)
n=m-1""
As a result the truncation error is small with ¢. If £=0, that is, if the
perturbation disappear in an arbitrary instant of the independent variable t, the ®-
functions integrates without discretisation error (4) [12].

3. Resolution of 2DOF by ®-functions series method

The 2DOF system is represented in Fig. 1 and it is used to study the
dynamic forces acting on this system. Four types of forces act on each floor mass,
the stiffness force, the damping force, the external force and inertial force [13].

F () — I —x,(0)
k, | k,
2 C 2
Fi(0) m 5
k, = k
3 4 2
Tl b o
Fig. 1 Two Degrees of Freedom System (2DOF)

The dynamic equilibrium equations of motion are:
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Cl+c2 G| 1, kitky —ky)(x) (RO 19)
O m 2 )\ X Kk S x) (R®)
defining: M = [1 O], C:(CI+C2 —Czj’ :(k1+k2 —kzj,
-k Kk

0 my —Cy C

_(Xl(t)j _(H(t)j : iy :

X(t) = and F(t)= , when the symmetrical and positive definite
Xa (1) F ()

matrices M, C and K, are the mass, damping and stiffness matrix, respectively; the

system (19) can be expressed by: MX(t)+Cx(t) + Kx(t) = F(t).

Considering that the structure is subjected to an earthquake ground
motion, where only horizontal translation of the earthquake ground motion is
considered. Applying the Newton's second law and given that the external force is
Zero, are:

My ¥y +Co (Y1 = V2 )+ €1 (%1 =g )+ ko (1 = ¥2) +ki (v1 —ug ) =
My ¥z +C3 (V2 = V1) +Ka (Y2 - 1) =0,

where U, and U, are the absolute ground displacement and the absolute ground

(20)

velocity, respectively and, yi, Y, are the absolute displacements of the masses
respectively.
We define x(t)=y;(1)—ug(t) and X (t)=y,(t)—ug(t), as relative

displacement between the mass and the ground. In this manner the equations (20)
are:

m 0 )X Ci+Cy —C ' ki+ky —k m 01
I .).(1 Lat @ >.<1 R A R W B L lig.(21)
0 my J\ Xo —Cy Cy X2 —k2 k2 Xy 0 my 1
m 0 )1}, . . . . . . .
If | tg is a harmonic matrix forcing function the equation (21) is:
m 0 -).(1 4 C+C —C )-(1 L kl + k2 —k2 X __ FO sm(a)ot) , (22)
0 My J\ X —C Cy Xy —k2 k2 X FO sm(a)ot)
at the moment that the earthquake occurs, it is very reasonable to assume that the

structure 1s at rest.
Therefore or normalized form, the IVP is:

m m, (23)

x(0)=x%,=(0 0),%0)=%=(0 0).

K(0)+MCX(t) + M Kx(t) = — ( psin(at) Ky Sm(“")t)] ~(F) F),
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In order to apply the ® -function series method, is effected the change of
variable: Xp =Uy, Xl =Usz, )'('1 =U3 and Xy =Uy, Xz =Uy, Xz =l]4.
The IVP (23) can be expressed as:

l]l U U 0

u u | u 0

2, 022 Olez 2|, Olez 22 ll|_| 24)
U3 | Oy MTIC)W| (IMTIK Oy, )| Us Fo sin(apt)/ my

l.]4 Ug Uy FO s1n(a)0t)/ m,

with (4(0) UL (0) ;(0) () =(0 0 0 0).
Consequently

ul Uj 0 0

Uy | ([ Oaxa  lax2 || Uy 0 0
- . = _ ,with u(0) = (25)
Us MK M~'CJ|us Fo sin(apt) / my 0

Uy Uy FO sin(a)ot)/ my 0

The wvariable is introduced in order to make easier the elimination the
disturbance’s function of the IVP (25), following the Steffensen’s techniques
[14,15].

Fo . .
Us = -0 sin(ayt) , obtaining a new IVP.
m

Uy (t) U (t) 0

)| [ O e Oullu 0 0

() [+ MK M7IC Oy || us(t) |=—| Rysin(et)/my |, with u(0) = 8 . (26)
GO | | O Ok O ) us® Fysin(apt)/my 0

Us(t) Us(t) Foa cos(ept)/my

To invalidate the function of disturbance, the differential operator (D + B)
is applied to (26), where B is the following matrix

Oy Ooxa 0oy -1
B=| 0y Oxa 2 |With&2y=| my aﬂd91x2=(wg 0), (27)
O1><2 leZ lel my

obtaining the extended IVP
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Gy (t) Uy (t) u®) (0
) | [ Q2 e OGuunn| [ O Oy O |w®| |0
Uy(®) [+ MK M7IC Oy | G0 [+ O Opa O | i) |=[0],
U® | | G Ao Ox | WO| (MK QuMTC Oy | W®]| [0 (28)
lis (1) Us (1) us®) (0

t
u©)=(0 0 0 0 o)t,u(()):[o 000 —%a{)j,

which is integrated exactly using the @ -functions’ series algorithm described in

(16).

3.1 Numerical results

In this section the ®-functions series method is applied to calculate the
solution of 2DOF.

The good behavior of the method is shown compared with other known
codes, implemented in the DSOLVE NUMERIC package in the MAPLE
program, such as ROSENBROCK, GEAR, and TAYLORSERIES. Moreover, it
has been programmed other codes like NEWMARK B-METHOD and WILSON
0-METHOD to compare them with the ®-functions series method.

Consider the two-story frame subjected to an earthquake ground motion
[13], Fig. 2.

F(0) m — ()
k - k
-
F(0) f = 2m — 30
k 1 k
2.('
¥ s T Fod

TR (5]

Fig. 2 Two-Story Frame
The dynamic equilibrium equation of motion is:

2m 0 % 3c —C\( X 4k =2k X 2m 01} .
o mhs ) Tle 2¢)i ) Tliak 3k e )= Lo mlp)te®: G
2 2 2
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2m 0\(1
If [ m]( jl’jg (t) is a harmonic matrix forcing function, i.e.

0 1
2m  0)(1). Fo sin(ant) ) ,
tg (1) = . then the equation (29) is:
0 m)il Fo sin(aypt)

2m 0 Xl 3c —C Xl 4k -2k X1 FO Sil’l(a)ot)
.|t |t == _ . - (30)
0 m)l¥% —C 2 )\ % =2k 3k )\ % Fo sin(apt)
In notation more compact and normalizing the equation (30), is obtained:
. . t
() +MICx(t) + M IKx(t) = —( Fosin(apt) -~ Fy Sm(“"’t)j (31)

2m m

at the moment that the earthquake occurs, it is very reasonable to assume that the
structure is at rest.
To solve the IVP:

. . t
(1) + M ICx(t) + M ~'Kx(t) = —( Fosin(apt) - Fo Sm(“’ot)j . (32)
2m m
with x(0)=0, x(0)=0, te[O,T], using the methodology of the @ -functions,

the new expression for the [VP

Ul(t) ul(t)
Uy (t) O 12 JJua(® | Fo . Fo . t
uz (t) +[I\/I_IK M_lCJ us (t) __(O 0 ﬂsm(a)ot) Fsm(w()t)j 9
Ug () Uy (t)
with u©0)=(0 0 0 0), M_lK:£(2 _lj and |\/|‘1c=i[3 _lj.
m\ -2 3 2m{-2 4

The wvariable is introduced in order to make easier the elimination the
disturbance’s function of the IVP (33), following the Steffensen’s techniques
[14,15].

Fo . .
Us = —2—0 sin(ayt) , obtaining a new IVP.
m
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Uy (t) Uy (1) 0

Ly [ O lae Oua|uyt R sin(ayt)
Uyt) [+ MK M7IC Oy [ ugt) [=—| 2
00| (O O O JJus®| | Dsintap
Us(t) us(t)

(34)

R
o) t
) ay C S(a)o)

with u©0)=(0 0 0 0 0)".

To invalidate the function of disturbance, the differential operator (D + B)
is applied to (34), where B is the following matrix:
O22 Oz Ona O
B={Oxa O 2 | With 25 =[_2j and €2, =(60(% 0)- (35)
Oz Q2 O
Choosing the following values for the structural variables [13]

2
m=1.5 55 co5%. Ry=15kip, ap=ap =22 24
n

‘ 2 s
The IVP is:
3t x 277 20 ISSmF_’ftj
3 0Y%) |10 (%) 2 X 2
0 I5\%) | = 27| % 27 8l [\ 15sin| 2t
5 s T 8 2

with (x(0) %(0)'=(0 0)', making the change of variable X, =Uy, % =Us, % = Us
and Xy =Uy, XZ =Uy, Xz = U4, the new IVP is:
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0 0 -1 0
Uy (1) 0 0 0 -1
Uy (1) 972 o 97 3z
Us) |+ 2 4 40 40
Ug (V) 972 277> 3z 3x
us®) | 2 4 20 10

0 0 0 0

withu(0)=(0 0 0 0 0).
Applying the operator(D +B) to the system (37) we obtain the extended

IVP:

0 0 1 0
a0 0 0 0 1
I
. 2 4 40 4
y(®)
uo| | 97 77 3
. 2 4 20 10
()

0 0 97—22 0

4

with u(0) = (0

U(®
t(®)
U(®) 1+
W
Us(t)

U (t)
up (1)
uz(t)
Uy ()
us(t)

é“g—‘fpoooo

00 0 o)t,U(0)=[o 000

u®
()
)
W®

S o o O

Us(®)

2 b

(37)

this is integrated exactly by the following algorithm, particularized for this

problem.

a; =

0
97
4
2772

4

0

O
40
3z
20
0

from k = 1 up to n calculates

ap —

—_
w‘gloooo

(39)
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ug = @g(h)ag + dy(h)ay

ap = Uk
0 0 1 0 0 g
0 0 0 1 0
. (37
_97[2 92 97 3x 0 5sin th
ap = 2 4 40 40 Ug — .
9”2 _277[2 3_72. _3_7[ 10sin(7tj
2 4 20 10 157 i
0 0 0 0 0 ——cos| —t
2
next K.

ROSENBROCK

-10 BETA-method and THETA-method

TAYLORSERIES

log|error|
P P

log|error|
i '

=]

p-functions series method

10 2o 30 40 . - . .
t 0 10 20 30 10 50
t

Fig. 3 The .decimal logarithm O_f module of the Fig. 4 The decimal logarithm of module of the
relative error of the solution u(t). relative error of the position X(t).

The Fig. 3 shows the graph of the decimal logarithm of module of the
relative error of the solution u(t), vs. t, calculate using ®-functions series method

with two @ -functions, step size h=0.01 and 50 digits, with the numerical
integration codes LSODE with tol = 1072 , ROSENBROCK with abserr = 107,

GEAR with errorper =107>° and TAYLORSERIES with abserr = 107,
The Fig. 4 shows the logarithm graph for the absolute value of the relative
error of solution Xx(t), vs. t, obtained with 50 digits, calculated by means of (39),
with two ®-functions and step size h=0.001, compared with the numerical
integration codes NEWMARK B-METHOD with 6 =1/2, a=1/4, h=0.001
and WILSON 6-METHOD with 6 =1/2, a¢=1/6, §=1.4, h=0.001.
Analogous results are obtained for velocity X(t).
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4. Conclusions

In this paper we have applied a numerical integration algorithm based on
series of d-functions, which generalises Scheifele’s original method.

The ®-functions series method has an advantage over the Scheifele’s
method in that it exactly integrates the perturbed problem, transforming it into
second-order homogeneous problem which is able to integrate exactly with two
first ®-functions.

An application of the method has been developed for the analysis of an
earthquake modeled by 2DOF. The accuracy in the resolution of a 2DOF through
the @-functions series method could successfully compete with well-known
integrators.
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