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PHOTOVOLTAIC POWER PREDICTION BASED ON
IMPROVED PYRAFORMER

Guodong LI, Wenhao CAI ?*

The stochastic and high volatility of PV power generation poses a great
challenge to the operational management of the electrical grid, while precise
anticipation of PV power yield can reduce the impact of its uncertainty. Hence, a
photovoltaic prediction model called PDGformer, based on an improved Pyraformer
model, is proposed. The encoder of the PDGformer model employs a unique dual-
branch structure, wherein the local branch captures the local information of the
photovoltaic power sequence, enabling the simultaneous capture of temporal and
dimensional dependencies of the photovoltaic data. Conversely, the global branch
captures the global information of the photovoltaic power sequence. The model's
decoder incorporates an Attention mechanism to effectively integrate both local and
global information and generate the final prediction results. Additionally, an MSE
reweighting framework is introduced to alleviate the interference caused by abrupt
changes in predictions. This framework reduces the loss caused by mutations while
increasing the loss for normal states. Employing actual photovoltaic data from a
specific location for illustrative analysis, the experiments demonstrate the superior
performance of the proposed model compared to others, such as Pyraformer, in
effectively predicting photovoltaic output power.
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1. Introduction

Solar energy has assumed an increasingly pivotal role in global power
systems in recent years [1]. Among the diverse applications of solar energy,
converting it into electricity through photovoltaic installations stands out as the
most widely recognized method for harnessing solar power [2]. Not only does it
offer the world a source of clean energy and diminish reliance on fossil fuels for
societal advancement, but it also boasts a remarkably economical operation and
maintenance cost, resulting in substantial economic benefits [3]. Despite these
benefits, PV power generation faces challenges due to its stochastic nature and high
volatility [4]. The increasing share of installed capacity amplifies uncertainty,
leading to scheduling and operational challenges. Accurate prediction of PV power
output is crucial for mitigating this impact, holding significance in grid scheduling,
power generation technology advancement, and economic optimization of power
plants [5].

Presently, PV power prediction methods are categorized into three groups:
physical [6], statistical [7], and artificial intelligence [8] techniques. Physical
methods use PV system design and NWP for forecasting without historical data.
Statistical methods extract features from input data for future outcome prediction.
Artificial intelligence methods, including machine learning and deep learning, have
gained prominence. Machine learning techniques like neural networks [9], random
forests [10], and support vector machines [11] outperform traditional statistics, but
recent research focuses on advanced deep learning due to overfitting and
generalization challenges [12]. The literature [13] proposes a CNN-LSTM model
that effectively uses weather variables to predict photovoltaic power plant output
with superior accuracy compared to various ML and DL models.

In 2017, Google introduced the Transformer model, leveraging the attention
mechanism [14]. Unlike RNNs, Transformers excel at capturing long-range
dependencies, making them prevalent in time series forecasting, including
photovoltaic power forecasting [15]. A novel Transformer-based model is proposed
for one-hour-ahead photovoltaic power prediction [16]. Despite its effectiveness,
the Transformer faces challenges of quadratic time complexity and memory usage,
leading to the emergence of variants like Informer with lower complexity [17].
Pyraformer is another approach, a low-complexity pyramidal attention model for
time series forecasting [18]. It primarily focuses on temporal dependencies but
overlooks inter-variable connections. Incorporating related dimensions can enhance
predictions in a specific dimension. Literature [19] underscores solar radiation,
temperature, and other factors' significant impact on photovoltaic energy
generation, aiding effective output prediction.

The Long-Range Arena (LRA) benchmark [20] systematically evaluates
sequential models across extensive contexts, spanning from 1K to 16K tokens.
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Notably, Transformer-based models have found limited success in LRA, leading to
the emergence of global convolutional networks. Particularly, the S4 model [21]
draws from state-space models, akin to a global convolutional kernel. SGconv [22]
re-evaluates global convolution and underscores its importance in modeling
extended sequences. It emphasizes two design principles for global convolutional
kernels: a sublinear (logarithmic) relationship between learnable parameters and
input length, and a weight decay structure for the global kernel.

Considering the pros and cons of the mentioned prediction methods, we
introduce PDGformer, an innovative photovoltaic power prediction model. It's built
upon an enhanced Pyraformer design, featuring a dual-branch encoder structure:
local and global branches. The local branch captures local photovoltaic generation
information. It employs the Cross-Variable Module (CVM) to learn variable
dependencies and Pyraformer for temporal dependencies, effectively encompassing
both dimensions. The global branch uses the Global Convolution Module (Gconv)
to capture the global information of photovoltaic generation data. The decoder
integrates both local and global information for prediction. Prior to input, we
normalize photovoltaic generation using Dish-TS [23] and denormalize after
predictions. Additionally, we propose an MSE reweighting framework to reduce
mutation-induced loss while enhancing normal state loss.

2. Pyraformer-based photovoltaic power forecasting

The Pyraformer model is a neural network that utilizes a multi-resolution
pyramid attention mechanism, which effectively captures dependencies in time
series forecasting. It achieves linear time and space complexity, making it an
efficient solution. Fig. 1 illustrates the model structure of Pyraformer.
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Fig. 1. Structure diagram of Pyraformer
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2.1 Pyramid Attention Module (PAM)

PAM serves as the fundamental module within the Pyraformer model. The
module employs pyramid diagrams to depict temporal interdependencies within
historical sequences with a multi-resolution approach, classifying connections into
two types: connections within the same scale, connections between different scales.
Connections between different scales lead to a C-fork tree summarizing diverse
resolution features, while intra-scale adjacency connections capture diverse ranges
of temporal dependencies. In the pyramid graph structure, lower nodes represent
time points in the original sequence, and upper-layer nodes extract features to
effectively represent characteristics at lower resolutions. By establishing
connections between nodes within each layer, meaningful relationships among the
nodes can be established.

2.2 Coarse-Scale Construction Module (CSCM)

The CSCM module's primary objective resides in the initialization of
coarse-scale nodes within the pyramid graph, enabling efficient information
exchange between these nodes in the subsequent PAM module. Specifically, in the
temporal dimension, a series of convolutional layers is sequentially applied to the
embedded sequence. These convolutional layers have a C-sized kernel and employ
a C-sized step. This sequential convolutional operation results in coarse-grained
sequences with a scale of s and a length of L/Cs. Before feeding these sequences
into the stacked convolutional layers, the dimension of each node undergoes
reduction via a fully connected layer, which is subsequently restored after the
completion of all convolutional operations. Prior to entering the PAM module,
these sequences, spanning from fine to coarse granularity, are interconnected. This
meticulously crafted architecture significantly diminishes the parameter count
within the module, thereby mitigating the risk of overfitting.

3. PDGformer-based PV power prediction

When predicting photovoltaic (PV) power, apart from historical power
generation data, certain meteorological variables like historical wind speed,
temperature, and others also contribute to the prediction. The Pyraformer model
effectively captures temporal dependencies, yet it falls short in fully utilizing the
interrelationships among the variables, thereby limiting its predictive capacity.
Additionally, recent research [22] has highlighted the remarkable capability of
global convolution kernels in capturing long-range dependencies.

To address the aforementioned limitations of the Pyraformer model and
improve the capture of long-range dependencies in PV power generation data, this
paper proposes the PDGformer model. This model adeptly captures both inter-
temporal and cross-dimensional dependencies while effectively incorporating both
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global and local information, maximizing their synergistic effects. Moreover, this
paper introduces the Re-MSE, a mean squared error (MSE) reweighting framework,
and employs it as the loss function during model training.

The model's configuration, as expounded upon herein, is illustrated in Fig.
2. The encoder adopts a unique two-branch design, with each branch dedicated to
capturing and extracting specific types of information: local and global information,
respectively. Subsequently, the model decoder integrates these two types of
information to generate accurate prediction results. Since the generalized neural
paradigm Dish-TS proves to be effective in removing and recovering non-stationary
information from time series [23] we add Dish-TS layers before and after the
proposed model.
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Fig. 2. PDGformer Model

3.1 Encoder

The model's encoder has two parallel branches. The global branch focuses
on extracting global informationz,,, , representing long-term dependencies in the
PV generation sequence. This branch utilizes a global convolution kernel (Gconv)
to process the entire input sequence X e RV . Notably, the complexity of the global
convolution kernel is sublinear (logarithmic) in relation to the length of the
sequence.

Conversely, the local branch is dedicated to capturing the immediate
proximate informationz,,,,, i.e., the dependencies between neighboring time steps.
The local branch consists of two modules: CVM and Pyraformer. While CVM is
responsible for capturing cross-dimensional dependencies, Pyraformer handles
cross-time dependencies. To reduce overall complexity without compromising
prediction accuracy, only the tail of the input sequence X.; e R"**(N'<N) is fed

into the local branch. Thus, the encoder can be succinctly represented as follows:
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Zglobal = BranChglobal (X)lzlocal = BranChlocal (Xtail) (l)

3.2 Decoder

In order to augment the exploitation of both global and local information,
the decoder assumes the responsibility of integrating the global information ( z,,

) and the local information ( z,,.,, ), and it outputs the prediction results. The decoder

module primarily consists of the cross-attention module, designed to ensure an
efficient representation of the historical information in the photovoltaic generation
sequence. Initially, the encoder linearly maps the global and local information,
subsequently employing the global information as a query vector (q), while the local
information serves as both key vector (k) and value vector (v). These vectors are
then inputted into the Attention layer, thereby achieving the following
representation:

0 =MLP(Z a1 ), K = MLP(Z,,5 ),V = MLP(Z,,,)) 2)
. ak"

Attention(q, k,v) = softmax \/T v 3)
q

3.3 Cross-Variable Module (CVM)

Cross-time attention typically involves embedding all data points across
different dimensions for a specific time period into a feature vector, with a primary
focus on capturing the interdependencies existing across distinct time periods.
While this approach effectively captures cross-time dependencies, it falls short in
fully leveraging cross-dimensional dependencies, potentially constraining its
predictive capabilities. As a solution to this limitation, the CVM module introduces
cross-variable attention, which facilitates the learning of dependencies between
variables, as illustrated in Fig. 3.

=2 —

a. Cross time attention b. Cross dimensional attention
Fig. 3. Cross-Variable Attention

The CVM module comprises two crucial components: a multi-head
attention (MHA) mechanism and a feed-forward network (FFN). The input
sequence X, representing the PV data, is a two-dimensional tensor characterized by
the shape L x C, where C signifies the number of variables. Prior to processing, the
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sequence X is required to be flipped. The cross-variable attention serves as a pivotal
aspect of the MHA and is precisely defined as follows:

Attention(Q,K,V) = softmax(QKT JV 4
o Jc

In the equation, Q, K, and V are the query, key, and value matrices,
respectively, while C denotes the quantity of variables. Q, K, and V are typically
obtained through a linear transformation of the original input X. Due to the
detrimental effects of additional embedding layers on temporal information and
subsequent performance degradation, the input sequence is directly fed into the
MHA module without any embeddings. Furthermore, as there is no temporal
ordering among different variables, there is no need for positional encoding of the
input sequence.

3.4 Global Convolution Kernel (Gconv)

Previous research has demonstrated the ability of global convolutional
kernels to effectively capture and model long-range dependencies. Specifically,
global convolutional kernels employ elongated filters that extend across the entire
input sequence, thereby enabling the capture of prolonged interdependencies.
Given the input sequence ueR™, the learnable global kernel keR™, and the
output yeR™, the operation of global convolution can be accomplished through

the utilization of the rapid Fourier transform, indicated by F, resulting in a
computational intricacy of O(NlogN). The specific details are expounded below:

y=u*k=F’1(F(u)-F(k)) Q)
Compared to local convolutions with fixed kernel sizes, global convolution
requires kernels of the same size as the input sequence length, denoted as L. When
dealing with long sequences, parametrizing the convolutional kernels in a
straightforward manner, as done in local convolutions, becomes challenging.
Therefore, it is crucial to have an efficient kernel parameterization method. SGConv
[22] addresses this issue by constructing the global convolution kernel through a
composition of sub-kernels, each with increasing sizes. The size of each subsequent
sub-kernel is twice that of the previous sub-kernel. Importantly, all sub-kernels are
upsampled from the same number of parameters, establishing a logarithmic
relationship between the number of parameters and the input length. Additionally,
a weighted combination of sub-kernels with weight decay is utilized, assigning
smaller weights to larger sub-kernels. The global convolution kernel is defined as
follows:

1 _
k= E[ko’ Kpooes kN—l]'ki = QIUpsammezmax[H,o}d (W' ) (6)
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Within the equation, w, e R represents the parameters for the i-th subkernel
k; , While N =[log, (L/d)|+1 represents the number of scales. To create sub-kernels

of different scales, an upsampling operation using linear interpolation is employed.
This operation, denoted as Upsample i 1o (w ), involves upsampling w; to a length

of 2m™19d 7 js a normalization constant that ensures the convolution operation
does not alter the scale of the input, while a is a decay coefficient that governs the
rate of decay.

3.5 Re-MSE

In PV power prediction, unexpected or unknown events (e.g., PV sensor
failures) may lead to drastic changes in PV power data. Despite their infrequent
occurrence in the training set, the losses caused by these mutations can significantly
impact the overall loss, thereby limiting the generalization performance of
prediction models during the testing phase.

To mitigate the influence of mutations, this paper introduces a reweighting
framework that reduces the weight of losses caused by mutations while increasing
the weight of losses caused by normal states. Subsequently, the training is
conducted using the reweighted Re-MSE loss function. Given a photovoltaic power
dataset, it can be partitioned, resulting in sets for training, validation, and testing.
Let D={(X,.Y,)}, indicates the training set, with X, signifying the input sequence
and Y, representing the output sequence. This framework primarily addresses the

issue of loss imbalance, which arises from significant differences between adjacent
input-output pairs (X, and Y,) compared to other input-output pairs ( X,and Y,).
Here, a represents the timestamp associated with a mutation.

To address this issue, the concept of Local Differences (LD) is introduced
to quantify the discrepancy between two adjacent input-output sequences, X,and

Y,. Itis denoted as:

|_D(xt,\(t)=L-=vt (7

2 2 '
sz s¢
+—t+te
| O

Within the equation, X, signifies the input series mean, while Sy denotes

its standard deviation, | signifies the input series length, and O signifies the output
series length.

Drawing inspiration from the work introduced in [24] regarding deep
imbalance regression, the next step involves computing the LD density, which
serves as an indicator of the frequency of temporal changes. This is achieved by
utilizing kernel density estimation with the LD values obtained from the training
samples. The calculation process for determining the LD density is as follows:
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p(V'):= jv k(v,v')p(v)dv (8)

In the equation provided, the term p(v) represents v's frequency of

occurrence within the training data. The function k (v, V') represents a symmetric
kernel function.

After estimating the LD density p(v), weights w,are assigned to each

training sample using the formulaw, =c- p(v,) < p(v,), where c is a constant that acts

as a scaling factor. The primary aim of this reweighting procedure is to mitigate the
impact of mutations while also attending to the challenge of imbalanced loss. The
reweighted mean squared error (Re-MSE) loss function can be defined as follows,
incorporating the assigned weights:

Re-MSEW(Yt,\?t)=%~V\42(Y ) (9)

In this expression, Y, represents the predicted output sequence obtained by
using X, as input, while Y, represents the corresponding ground truth values. O
signifies the length of the output sequence, denoting the predicted extent.

4. Case study
4.1 Experimental dataset and pre-processing

The text utilizes a photovoltaic energy generation dataset obtained from the
Yulara Solar System 1 site, located at the DKASC in Australia. The dataset
encompasses the timeframe spanning from January 1, 2017, to December 31, 2021,
with data recorded at an hourly resolution.

For the accuracy and effectiveness of the predictive model, the raw dataset
undergoes preprocessing. Occasionally, data loss may occur due to maintenance
issues or equipment failures at the solar site. In such cases, missing values are filled
using linear interpolation. Additionally, any negative values in the generated power
are replaced with zero for consistency. For model training, evaluation, and testing,
the dataset is then partitioned into subsets: 70% for training, 20% for validation,
and 10% for testing.

4.2 Experimental parameterization and evaluation metrics

The meticulous choice of suitable model parameters greatly impacts the
model's predictive efficacy. In this experiment, the local branch of the PDGformer
model maintains a constant input length of 96, while the global branch adopts an
enlarged window (336) to encompass more information. Prediction lengths are set
at 24, 48, 72, 96, and 192, respectively. A batch size of 32 is specified, with the
epoch set at 10, and a learning rate established at 0.0001. Throughout the training
process, the loss function introduced in this text, namely RE-MSE, is employed.
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Within the PDGformer model's encoder, the local branch comprises two
modules: CVM and Pyraformer. These modules are respectively dedicated to
capturing inter-dimensional dependencies and temporal interdependencies. CVM is
configured with 2 layers, while Pyraformer's pyramid attention consists of 4 layers
and 4 attention heads. In CSCM, the convolutional kernel size C is designated as 4,
with a stride of 4. PAM entails that A, the number of adjacent nodes attended to by
nodes within the same scale, is set to 3. The global branch Gconv within the
PDGformer model's encoder is established as a single layer.

With the intent to evaluate the predictive precision of the model, the study
utilizes four different evaluation metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-Squared (R?).

4.3 Experiment and Analysis

To assess the effectiveness of the suggested model in predicting solar energy
generation, this manuscript compares it with benchmark models, including LSTM,
Transformer, Informer, and Pyraformer. All models are used to forecast with five
different prediction horizons: 24, 48, 72, 96, and 192. The results obtained from
these models are presented in Table 1 for comparison and analysis.

Based on the analysis of Table 1, it is evident that the PDGformer model
surpasses various benchmark models in relation to different assessment criteria
across distinct prediction lengths (24, 48, 72, 96, and 192). (1) Compared to the
traditional Pyraformer model, PDGformer exhibits higher prediction accuracy, with
reductions in MSE of 13.5% (24), 10.9% (48), 21.2% (72), 22.8% (96), and 32.4%
(192). Additionally, MAE is reduced by 10.9% (24), 11.6% (48), 11.5% (72),
17.4% (96), and 20.6% (192). These results underscore the effectiveness of
PDGformer's dual-branch design, Cross-Variable Module (CVM), and MSE
reweighting framework (Re-MSE). (2) Notably, as the prediction length extends,
there is a typical decline in prediction accuracy across all models. However, the
PDGformer model shows a relatively slower decline, maintaining high R? values
even as the length extends from 96 to 192. This observation suggests that the dual-
branch structure allows the PDGformer model to concurrently capture global and
local information, maximizing their complementary strengths and maintaining
competitiveness in long-term forecasting tasks. (3) Moreover, compared to
Informer, Transformer, and LSTM models, PDGformer achieves an average MSE
reduction of 29.6% (24), 27.7% (48), 31.9% (72), 38.0% (96), and 45.5% (192),
indicating superior predictive performance across various prediction lengths.

Fig. 4 illustrates the prediction curves of all models for a prediction length
of 192. It is evident that the PDGformer model excels in capturing and
reconstructing the intricate details of the fluctuations in the photovoltaic power
generation. While transformer-based models (Pyraformer, Informer, and
Transformer) accurately capture overall fluctuation patterns, they fall short in
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predicting certain crucial elements. In contrast, PDGformer demonstrates
exceptional performance, accurately reconstructing subtle variations and turning
points, outperforming other models in capturing finer details of the fluctuations.

Table 1

Evaluation of the accuracy of photovoltaic power prediction

Prediction Metrics PDGformer | Pyraformer Informer Transformer LSTM
Length (h)
MSE 0.134 0.155 0.178 0.175 0.226
24 MAE 0.212 0.238 0.248 0.249 0.313
RMSE 0.366 0.393 0.422 0.418 0.475
R? 0.860 0.838 0.814 0.817 0.749
MSE 0.156 0.175 0.196 0.193 0.276
MAE 0.222 0.251 0.259 0.244 0.335
48 RMSE 0.395 0.419 0.443 0.439 0.525
R? 0.838 0.815 0.793 0.797 0.709
MSE 0.164 0.208 0.219 0.216 0.307
MAE 0.239 0.270 0.273 0.275 0.344
72 RMSE 0.406 0.456 0.468 0.464 0.554
R? 0.826 0.781 0.768 0.772 0.683
MSE 0.173 0.224 0.259 0.257 0.334
MAE 0.242 0.293 0.301 0.294 0.367
96 RMSE 0.416 0.474 0.509 0.507 0.578
R? 0.817 0.762 0.725 0.727 0.646
MSE 0.186 0.275 0.309 0.315 0.419
MAE 0.258 0.325 0.334 0.329 0.401
192 RMSE 0.432 0.524 0.556 0.561 0.647
R? 0.800 0.706 0.670 0.664 0.532
800
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Fig. 4. All models PV power prediction curves

Furthermore, the methods proposed in the literature [25] to [28] were
selected for a comprehensive comparative analysis, underscoring the heightened
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performance of the proposed method. Table 2 presents distinct prediction outcomes
for each method when forecasting at a length of 96.

Table 2

Comparison of different prediction methods in the published literature

Prediction method MSE MAE RMSE R?
Ref. 25 0.221 0.278 0.470 0.765
Ref. 26 0.206 0.274 0.454 0.781
Ref. 27 0.194 0.269 0.441 0.795
Ref. 28 0.191 0.256 0.437 0.799
Proposed 0.173 0.242 0.416 0.817

The superior predictive performance of the proposed PDGformer model is
evident when compared with CNN-Informer in reference [25], VMD-CNN-
TransNN in reference [26], CNN-LSTM-Transformer in reference [27], and
RevIN-DLinear in reference [28], as illustrated in Table 2.

4.4 Ablation Experiment

In this section, a ablation study is conducted with a prediction length of 96
to validate the efficacy of various enhancements within the PDGformer model.
Throughout the experimental process, utilizing PDGformer as the foundation,
models are derived by removing specific components: PDGformer-C (removal of
CVM module), PDGformer-G (removal of global convolution kernel), and
PDGformer-R (absence of Re-MSE). A comparative analysis of performance is
conducted between PDGformer and PDGformer-C, PDGformer-G, and
PDGformer-R, with the empirical findings tabulated in Table 3.

Table 3
Outcomes of predicting performance

PDGformer PDGformer-C PDGformer-G PDGformer-R
MSE 0.173 0.182 0.192 0.189
MAE 0.242 0.258 0.267 0.260
RMSE 0.416 0.427 0.438 0.435
R2 0.817 0.805 0.796 0.801

From the provided table, it is evident that removing the global convolutional
module leads to an 11.0% increase in MSE, emphasizing its significant impact on
result prediction accuracy. When using ordinary MSE instead of Re-MSE, the MSE
increases by 9.2%, suggesting that the reweighting framework proposed by Re-
MSE can effectively balance the loss caused by mutations, reducing model loss and
improving prediction accuracy. Moreover, removing the CVM module results in a
5.2% increase in MSE, showcasing its role in capturing cross-dimensional
dependencies and improving prediction accuracy.
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Statistical analysis reveals the PDGformer model, with its performance
enhancement techniques, outperforms others. The global convolutional module
proves most effective in enhancing accuracy, followed by the Re-MSE framework
and the CVM module.

5. Conclusions

This paper presents the PDGformer model, an improved version of the
Pyraformer model, to address photovoltaic power prediction. The PDGformer
model's encoder captures both global and local information of the photovoltaic
power sequence, while the decoder integrates these two types of information to
maximize their complementarity. During model training, a novel MSE loss function
called Re-MSE is introduced. Using actual PV data as an example, the PDGformer
model is compared with other competitive models for photovoltaic power
prediction, yielding the following main conclusions:

(1) The Pyraformer model focuses on capturing temporal dependencies but
overlooks inter-variable dependencies. The introduction of the cross-variable
module (CVM) in the PDGformer model effectively captures the
relationships between variables, leveraging the correlated information from
other dimensions to enhance the precision of photovoltaic power prediction.

(2) The Global convolutional module (Gconv) in the PDGformer model is pivotal
in capturing global dependencies within the input sequence. By utilizing
attention mechanisms, the Geconv module facilitates the integration of global
and local information, leading to a significant improvement in prediction
accuracy.

(3) To balance the loss caused by mutations, this paper introduces Re-MSE, a
novel mean squared error (MSE) loss function. Re-MSE reduces the weight
of losses caused by mutations while increasing the weight of losses caused by
normal states, thereby further enhancing the model's prediction accuracy.
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