U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 2, 2025 ISSN 2286-3540

ANALYSIS OF VERSION CONTROL IN CONTINUOUS
INTEGRATION AND DELIVERY

Oana-Anastasia MINCIUY", Beatrice-Nicoleta CHIRIAC?, Florin Daniel
ANTONS?, Anca Daniela IONITA*

The adoption of version control has been essential to software development
dynamics, which are shifting considerably towards increasing delivery quality and
speed. Continuous integration and continuous deployment / delivery require further
improvements in this regard. This aim of this paper is to analyse the characteristics
of version control and continuous practices, and to identify the key elements of
interaction in the process of code integration and delivery. Considering commits,
branches, artefacts, triggers, pipeline and other automations, the connecting points
were extracted to portray differences between practices and their intricate
collaboration and dependency with version control.

Keywords: software configuration management, version control, continuous
integration, continuous deployment/delivery

1. Introduction

Software artefacts are subject to a multitude of changes during
development, and programmers end up having multiple versions of the same file
because of constant changes. Saving intermediate versions of a file with different
names, or in different paths, is repetitive work and a very poor way of managing
intermediate versions relying mostly on human memory. Thus, this versioning
strategy is error prone and, moreover, only addresses individual work management.
Naturally, for managing work originating from multiple people who contribute to
the same files, has led to the creation of better and objective strategies, which take
user memory and self-defined logic out of the equation to obtain structured and
strictly defined mechanisms known as version control systems. A typical approach
is to have a central server embodying a single source of truth of file versions, which

! Corresponding author

1 PhD student, Automation and Industrial Informatics Department, National University of Science
and Technology POLITEHNICA Bucharest, Romania, e-mail: oana.anastasia.minciu@gmail.com

2 PhD student, Automation and Industrial Informatics Department, National University of Science
and Technology POLITEHNICA Bucharest, Romania, e-mail: chiriacheatrice96@gmail.com

3 Reader, Automation and Industrial Informatics Department, National University of Science and
Technology POLITEHNICA Bucharest, Romania, e-mail: florin.anton@upb.ro

4 Prof., Automation and Industrial Informatics Department, National University of Science and
Technology POLITEHNICA Bucharest, Romania, e-mail: anca.ionita@upb.ro

mailto:anca.ionita@upb.ro

74 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca lonita

resulted in central version control systems. Another approach is to have multiple
sites with copies in a peer-to-peer setup which encompass distributed version
control systems. Central and distributed version control systems are compared to
show that central ones are suited for projects which allow contributions from few
users from a single site, while distributed ones can accommodate multiple users
from small or big teams, located in multiple sites [1].

Version control as part of Software Configuration Management (SCM) has
been treated as a development support discipline [2] with the role to help in
coordinating software product changes. Conradi and Westfechtel provide an
overview of how version models were implemented in the 90° [3] and mention that
many existing systems were file-based, like ClearCase, a versioning system with a
long history, which still uses file-based versioning. Version control systems are
essential over the lifetime of any software project for allowing tracking of
simultaneous work from multiple developers, therefore they have become a
necessity in software development with their applications and use cases increasing.
The purpose of this paper is to analyse how version control expands beyond regular
source code management. The first generation of version control systems was
focused on allowing collaboration with separate tracking, only for one developer at
once, whereas the next generation has used the concept of a central repository with
remote access, where multiple developers could contribute at the same time [4].
Moreover, the present generation is focused on a central repository and multiple
local copies owned by developers. Due to the necessity to accelerate the software
development life cycle, Continuous Integration (CI) and Continuous Delivery /
Deployment (CD) have become more and more used [5]. Using CI tools accelerates
the software release process and helps avoiding introduction of faulty code helping
with detection and prevention [6].

This paper is divided in five sections. After this introduction, the second
section describes background information regarding version control. The third
section exposes the aspects of security control and different types of version control
regarding both code and artefacts. Then, it presents the interdependency between
continuous practices and version control with a comparative analysis. The fourth
section starts from the four criteria identified in the previous analysis, which show
differences between Cl and CD, and it presents a practical demonstration of them.
The experiments follow a GitLab pipeline developed by installing and configuring
a GitLab server and runner, defining the requirements for a project, and then
designing and writing the implementation. Afterwards, the process was executed in
multiple scenarios meant to showcase and discuss the results for the chosen criteria.
The fifth section contains the conclusions.

Analysis of version control in continuous integration and delivery 75

2. Background

In comparison with traditional software development, a faster integration,
realized through DevOps introduces a series of challenges, which also concern
versioning [7]. One must maintain control over various elements, from projects,
tests and integration code to documentation and build artefacts. Whereas version
control is sometimes interchanged with source code management, DevOps
practices have accelerated the extension of version control beyond just code.
Continuous practices have introduced the importance of managing build artefacts,
but moreover, version control actions have become triggers for these practices.
Paez also covers the importance of defining versioning strategies for all artefacts
used in DevOps [8], whether they are configuration text files, or source code files.
Practices like infrastructure as code and continuous delivery lead to creating new
artefacts that are to be versioned, therefore artefact versioning has become an
essential part of managing DevOps practices and will continue to do so.

2.1. Version control in source code management

Source code versioning is the traditional use case in development, mainly
to address coordinating user changes and multiple versions. Currently, most open-
source projects adopt distributed versioning systems, because central ones come
with the risk that, if the server is unavailable, developers cannot fetch the history
and work on the correct code versions [1]. Nevertheless, both types of systems are
in use, with central systems like Concurrent Versions System (CVS), Perforce,
Subversion, or ClearCase, and distributed ones like Git, Mercurial, or Bazaar.
Regardless of their type, they organize code in databases named repositories and
portray version trees where individual nodes are distinct versions, which represent
the submitted changes to the repository at one point in time. Each commit is a
version, but versions meant for release are usually marked with a tag. Version trees
can have multiple branches for separated lines of development, but at least one
central branch is meant to always store stable code, and it is usually the target of CI
practices, and subject to additional protections. All branches must be subject to the
integration process, but the final goal is to keep stable code in the same state,
therefore protected branches can have further restrictions.

2.2. Artefact version control

During software development, one project produces a large variety of
artefacts beyond source code. In [8], Paez mentions that within the development
process there are both source code artefacts and documentation artefacts, the former
refers to application or infrastructure code, scripts, configuration files, binaries,
while the latter is represented by requirements or diagrams. In CI/CD an artefact is
any file generated during the process with some being intermediary with a short
lifespan and others meant for long-term storage. For the first category, no version

76 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca lonita

control is needed, as the data can simply be discarded afterwards, but for the second
one, some kind of version control is required. A few examples of files meant for
storage in version control are metadata, version specific identifier elements,
container images, executables.

Code in its essence is merely text, regardless of language specific syntax,
while other elements like metadata can also refer to text files, but most artefacts do
not share the same format. Jones et al. emphasize the difference in complexity
between text-based code files and other types, like for example CAD (Computer
Aided Design) files, containing commands trees for three-dimensional models [9].
Thus, tracking artefact changes is different than tracking code changes; for code,
small text changes known as deltas can be monitored, while for artefacts, any
change results in an entirely new instance. Version control meant for code can
handle binary files as well, but they are rather handled as singular units. Thus, two
important challenges of artefact versioning are that binaries can be significantly
bigger than code and that some kinds of artefacts can require different types of
storing regarding structure. Regardless of size, any modifications in a binary lead
to that file being completely replaced, as opposed to just a few lines of code.

Considering version control systems work with code snapshots, whenever a
new change is transferred, the bigger the files are, the slower the data transfer will
be between users and servers. For example, the JFrog product Artifactory, a tool for
artefact storage, uses a file store and database system to pair each binary with its
identifying checksum along with generic metadata like artefact names, size,
creation dates, but also with specific package metadata [10]. This is because each
type of artefact has different elements, generic files are single units, but other
packages may be collections of different types of files, while container images are
stored in layers. Consequently, although version control systems are great options
for storing code, configuration, small files, more complex artefacts such as binaries
should be stored separately, using tools tailored for larger artefacts with essential
extensions that allow classifying and storing accordingly based on type.

3. Analysis of specific aspects in version control
3.1. Security for version control

While control version systems save change history of different information
entities, the security component is indispensable for this process. Thus,
cybersecurity models should be applied over the stored information, for
maintaining the integrity, confidentiality and the availability of the data. These
security measures are taken based on the specific of the versioning tool as well as
based on the importance of the information kept inside the repository. Complex
repositories face with multiple users and different methods of authentication based
on the type of the version tool [11].

Analysis of version control in continuous integration and delivery 77

Centralized version control tool uses a client-server configuration. The
central server hosts the repository and manages the users’ access to it. Files and
their versions that are stored in this central database can be accessed using a user
ID and a set of access rights that are given by an administrator of the system. For
example, IBM Rational ClearCase has a remote repository named Versioned Object
Base (VOB) and each user owns a workspace that is associated with a view. Inside
VOB, each file has its own version tree, and the users can have a dynamic view
which permits them to visualize the modifications made into repository in real-time
or a snapshot view which implies a local copy of the VOB. As a superior level of
security, the VOB and VOB objects are using Access Control Lists (ACL). For
each file hosted on the central server granular rules of access are given by the
administrator depending on each view [12]. These kinds of ACLs contain rules
applying to resources and a relevant example is that every user that owns a view in
a ClearCase repo can visualize the modifications made by other users on their
private views, but they are not able to make changes on another user’s workspace.

On the contrary, distributed systems apply the advantages of the secured
communication protocols like SSH or HTTPS used for the remote connections and
the model of copy-modify-merge for preventing conflicts between multiple users.
All transferred data is encrypted, and the commit process maintains its transactional
characteristic. The control access to the remote repository via SSH is based on the
allocation of private/public key pair to each user for authentication. The public key
is shared and used for handshaking, while the private one is never shared and unique
for each user. If the encryption-decryption algorithm is not working properly, the
connection is stopped [13]. HTTPS approaches this aspect differently by using a
password-based authentication. During HTTPS handshaking the server provides a
list of digital certificates together with the public key to the communication partner.
The client verifies the validity of the certificate and if it is valid, the client
exchanges its key. After this step, the connection is established. For a higher level
of security this kind of traffic can be monitored and analysed using security tools
like firewall, IDS [14].

3.2. Version control in continuous practices

Continuous Integration is a concept part of the DevOps chain of tools and
practices, meant to accelerate code integration between developers, while ensuring
high software quality within several code validation and verification steps.
Software development methodologies focus on the evolvement of procedures
adapting to modern times [15]. Continuous Delivery extends this to ensure rapid
package delivery, either to a central artefact server, or directly to a client. A simple
description of both would be that Continuous Integration consists of the steps
sequence beginning from a published code change of a project and ending with the
deployment of the built artefact to an artefact server, while Continuous Delivery is

78 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca lonita

the same process, but executed on code ready to be officially delivered to clients.
Their implementations vary, but the process is called a pipeline modelled upon
project requirements. New code is submitted through commits to a version control
system, starting continuous integration, which consists of the following steps: build
— to obtain build artefacts such as executables, analysis - static code analysis and
test execution, integration result - gather the analysis results and provide a decision
of whether the code fulfils the requirements to be integrated in a stable branch in
version control.

CI/CD is considered a feedback loop, starting with submitted code changes
and ending with the acceptance or rejection of these changes. Upon acceptance, the
code is successfully integrated into the main branch in development, and
executables are allowed to be uploaded to an artefact server, to be delivered either
to functional testing teams or clients, if the process is for integration or delivery.
The flow of CI/CD flow implies that the version control system is part of the starting
point, the end of continuous integration and a part of continuous delivery. The
commit in version control is the trigger of the process, so the start is associated with
a version control action, while the end of continuous integration is the registration
of the result in version control. For the delivery part, some additional steps are
considered, from introducing release commits back to the version control system to
simply deploying a suite of artefacts to an artefact server. The delivery pipeline
extends the integration one to provide a final report to the code version control
server to notify the process success or failure.

3.3. Comparison of version control in Cl vs. CD

Version control and CI/CD are linked by actions that may be either
automated, or manual operations. Triggers, result publishing and artefact
deployment are automated, but actual merging of code includes manual tasks. This
is completely normal as besides code and test analysis, projects can also have a
manual review in place, after a successful pipeline to assess errors unrelated to code
compilation, execution and testing. A continuous integration process can only do
so much as to assert whether the code is ready to be integrated, but it cannot
establish whether the code respects functionality requirements. Decisions to
perform code merging rely on developers in the end, but CI/CD interacts closely
with version control to ensure the completion of code merging and release.

For this analysis, version control has been split between source code
management also known as Version Control System (VCS) and Artefact
Management (AM). Considering how CI/CD connects with version control, the
following criteria have been chosen to compare them: interaction with VCS
elements, with artefacts, automation in relation to version control. The VCS
elements studied include commits, pull/merge requests, branches and
communication elements for notification. For AM, the relation to both temporary

Analysis of version control in continuous integration and delivery 79

and long-lived artefacts were analysed. Automation was also a subject of interest
as it is at the core of DevOps practices, especially for CI/CD pipelines. Table 1
presents the comparative analysis between Continuous Integration and Continuous
Delivery regarding how they interact directly with but also depend on version
control for code and artefacts. No specific automation server, version control
system or artefact storage solution were considered in building the analysis.

Table 1
Comparative Analysis of Version control in Cl vs CD
Criterion Cl CD | Explanation
C1: VCS trigger Yes | Yes | Code commits and merge or pull requests are triggers for the
process.
C2: VCS commit | No | Yes | Cl pipelines cannot push commits or tags to VCS, because this
and tags is not part of their functions.
CD pipelines can push one or more commits during the process
of a release, either release commits or preparation for the next
development version commits.
C3: VCS | Yes | Yes | A build result is returned to the VCS server to alert developers
notification on the success or failure of the process.
C4: VCS branch No | Yes | Cl pipelines do not depend on the type of branch as all branches
specific rely on the same base process for code integration.
operations CD pipelines depend on branch type: release branches produce
official versions; some branches produce intermediate
versions; others cannot deliver any versions.
C5: Temporary | Yes | Yes | Intermediate artefacts are generated, but are meant to be
build artefacts discarded upon the process completion and they include
intermediate analysis results and package dependencies
C6: Deployment | No | Yes | ClI produces artefacts (executables or packaged elements) that
artefacts can be deployed, but it does not upload artefacts to a storage
server because it only deals with code.
CD produces and uploads artefacts to a storage server: both
intermediate versions and official release artefacts.
C7: Test reports | Yes | Yes | Both produce test reports or logs; these artefacts are also
artefacts temporary but have a longer lifespan than temporary build
artefacts. Their contents are displayed in automation servers for
a time, but not uploaded to an artefact server
C8: Complete | No | Yes | The CI pipeline process is automated, but it relies on a final
automation peer review step in SM.
CD is completely automated as it runs on code already
reviewed.

Version control has also expanded beyond usage for software development

code, with terms like GitOps being introduced. The combination between
Infrastructure as Code and Continuous principles lead to the concept of a GitOps
pipeline with Git as the single source of truth for DevOps operations [16]. However,
regardless of the technology name, they all share common or close definitions for

80 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca lonita

elements, like commits, branches, repositories, tags, or merge requests and pull
requests to ensure seamless integration with software development. Thus, CI/CD
pipelines are modelled on these generic elements and only their implementation is
technology specific.

4. Experiments of version control in CI/CD
4.1. Method

A combination of separate free tier git, automation and artefact servers was
considered with GitLab or Bitbucket, and Jenkins plus Nexus, but no combination
offers the seamless integration GitLab provides between the three essential version
control pillars in CI/CD in one server: code, automation and artefact storage. GitLab
has the major advantage of delivering all three and mitigating network traffic delay
and deployment complexity. Thus, the GitLab platform was installed and
configured using a Docker container with the 17.3.6-ee.0 version on a virtual
machine with Ubuntu 22.04 and a similar machine for the GitLab runner. The target
project is a personal Java application using Java 17 and Maven 3.6.3. The pipeline
was developed with five stages to build, test, deploy the code and ensure release
and tag pushing. Conditions are applied to control how and when the stages are
executed based on the project requirements: on the experiment the main and
develop branches are protected and require merge requests for changes, the main
branch is allowed to deploy artefacts, while the develop branch runs only the
integration steps. These actions conclude the environment installation and the
continuous processes implementation.

4.2. Results and discussion

Inside the deployed environment the processes were executed to further
study the differences of behaviours and results between Cl and CD. Thus, from the
previous chapter the following five criteria were explored: C2, C4, C6 and C8. The
integration process includes the build and test stages, while the delivery process
includes the update-versions, push-tag and deploy-jar stages. The delivery is split
between the release and main branches because the project only allows artifact
deployment from branch main and version changes from branch release. The
automated triggers are also implemented by the authors with specific conditions
depending on branches, pipeline parameters and already existing tags.

The release process execution shows how criterion C2 can be observed
within the pipeline behaviour. The release branch is configured to allow upgrading
the project to a stable version inside the project configuration. Also, this change is
committed and tagged in version control only from this branch. Fig. 1 shows the
implemented pipeline execution and the results for the release branch which has the
specific operations of updating the version and committing and pushing the tag to
the repository, while another branch, like develop, has its own set of stages.

Analysis of version control in continuous integration and delivery 81

Therefore, the criterion C4 can also be observed here, but also in the experiment
from Fig. 2, which shows the pipeline execution for a tag.

For develop

latest €O 2 jobs G) 4 seconds, queued for 3 seconds

Pipeline Needs Jobs 2 Tests 0

build tests

& build-jar s} © run-tests s}

For release

latest €O 4 jobs (¥ 10 seconds, queued for 2 seconds

Pipeline Needs Jobs 4 Tests 0

Group jobs by | Stage = Job dependencies

build tests release tag

@ build-jar s} @ run-tests s} & update-version 5] © push-tag 5]

Fig. 1. Commit actions and branch specific operations in Cl vs CD

For v1.0.2

latest €O 2 jobs (U 4 seconds, queued for 1 seconds

Pipeline Needs Jobs 2 Tests 0

build tests

@ hbuild-jar = © run-tests (9]

Fig. 2. Branch and tag specific operations

For the next evaluation the delivery behaviour was observed when new code
was merged to the main branch, thus triggering the pipeline for that branch, which
is the delivery pipeline responsible for deploying artefacts. Fig. 3 displays the
pipeline execution reports as part of the implementation results, and the difference
between CI and CD is shown in the absence of the deploy stage for the develop
branch compared to the main branch. The develop branch process was executed
earlier as part of the integration process. Thus, Fig. 3 displays the two criteria C4
and C6.

82

Oana Minciu, Beatrice Chiriac, Florin Anton, Anca lonita

Pipeline Needs Jobs 3 Tests 0

build tests deploy

@ hbuild-jar o © run-tests = © deploy-jar <
Status Pipeline Created by Stages
@ Passed Merge branch 'main’ into devilf)p é':::'? ©0
& 00:00:05 #78 ¥ develop - féebOcbs & Ty
B just now latest

Merge branch 'release' into 'main’ ARE

@ Passed g : ! !i;jg 006
& 00:00413 #77 ¥ main -© 31802fff &2 ey
£ 2 minutes ago latest

Fig. 3. Deployment of artifacts in Cl vs CD

The uploaded artefacts belonging to the delivery section are displayed in
Fig. 4. The pipeline generates and uploads automatically a .pom file and a .jar file
for each version, but only from the main branch of the repository as this branch is
meant for the delivery process, thus displaying the observation of criterion C6.

Assets

| Name

Size Created

| ~

maven-metadata.xml

B my-app-1.0.0-20241029.155347-6.pom

® my-app-1.0.0-20241029.155347-6 jar

maven-metadata.xml

[my-app-1.0.0-20241029.154743-5.pom

¥ my-app-1.0.0-20241029.154743-5.jar

773B

21 minutes ago

2.77 KiB 21 minutes ago
2.76 KiB 21 minutes ago
773B 27 minutes ago
2.76 KiB 27 minutes ago
2.76 KiB 27 minutes ago

Fig. 4. Delivered artefacts by the CD pipeline

For the study of criterion C8 the aspect of merge requests and code review
were employed by starting a merge request for a code change meant to be included
in a delivered artefact. All the stable branches of the repository are marked as
protected to prevent the introduction of unverified code. While the delivery process
is shown to be fully automated from the pipeline, the acceptance of code into a

Analysis of version control in continuous integration and delivery 83

stable branch requires a final manual verification before allowing the merge
request.

Overview 0 Commits 1 Pipelines 1 Changes 1 Mark as done

®0 Fo @ Assignee Edit
A U052756
& Pipeline #80 passed (v] N
Reviewer Edit
Pipeline passed for 44Bc4eB4 on feature/update-depe.. 17 minutes ago
-‘{.7?,'1_ Administrator
&~ [Approve | Approval is optional @ v Labels Edit

None

Ready to merge by members who can write to the target branch v
© 4 geby g Milestone Edit

None

Time tracking o +

Activity All activity No estimate or time spent

2 Participant
Prevew B I § 1=<» & = =:=% B & 5] . war clpants
)

o

Fig. 5. Merge request review process developer in CI

Fig. 5 offers an important overview of the manual review process: the
assignee of this change is a user with no permission to merge, while the other user
has permissions to merge to the protected branch. Thus, a manual review is required
since the reviewer will be the one to merge the code and is responsible for it. The
challenges on a real or bigger application are not different, this aspect being proven
by the code review process showing a multi-user project behaviour.

5. Conclusions

This paper focused on the link between CI/CD and version control in all its
aspects, from source code to build artefact management. The contributions of the
authors are highlighted by the evaluation of security importance for maintaining
repository integration, by identifying specific points in eight criteria of comparison
and performing a parallel analysis and by the practical experiments to show
different behaviours between CI and CD. The experiments include a pipeline
developed in GitLab consisting of five stages that embody the software lifecycle of
a personal application. The analysis exposed several aspects like individual commit
behaviour, branch specific operations, artefact delivery and code review. The
analysis proved that CI/CD processes are heavily linked to code version control,
addressing not only source code fetching, but also the necessity of process
reproduction at any time. Moreover, the start triggers rely on version control, with
integration starting after a new code change is published, and delivery starting upon
merging code to certain branches.

84 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca lonita

REFERENCES

[1] N.N. Zolkifli, A. Ngah, A. Deraman, Version control system: A review, Procedia Computer
Science, 135, 2018, pp. 408-415.

[2] P. Muller, Configuration Management — A Core Competence for Successful through-life
Systems Engineering and Engineering Services, Procedia CIRP, vol. 11, 2013, pp. 187-192.

[3] R. Conradi, B. Westfechtel, Version Models for Software Configuration Management, ACM
Computing Surveys, vol. 30, no. 2, June 1998.

[4] L. Bulteau, P.Y. David, F. Horn, The Problem of Discovery in Version Control Systems,
Procedia Computer Science, 223, 2023, pp. 209-216.

[5] M. Shahin, M. Ali Babar, L. Zhu, "Continuous Integration, Delivery and Deployment: A
Systematic Review on Approaches, Tools, Challenges and Practices,” in IEEE Access, vol.
5, 2017, pp. 3909-3943.

[6] T.A. Nitescu, A.l Concea-Prisacaru, V. Sgarciu, Test Automation for Continuous Integration in
Software Development, U.P.B. Sci. Bull., Series C, vol. 84, iss. 4, 2022, pp. 95-106.

[7]1 AV. Jha, R. Teri, S. Verma, S. Tarafder, W. Bhowmik, S. Kumar Mishra, B. Appasani, A.
Srinivasulu, N. Philibert, From theory to practice: Understanding DevOps culture and
mindset, Cogent Engineering, 10:1, 2251758, 2023.

[8] N. Paez, Versioning Strategy for DevOps Implementations, 2018 Congreso Argentino de
Ciencias de la Informética y Desarrollos de Investigacion (CACIDI), Buenos Aires,
Argentina, 2018, pp. 1-6, doi: 10.1109/CACIDI.2018.8584362.

[9] D. Jones, A. Nassehi, C. Snider, J. Gopsill, P. Rosso, R. Real, M. Goudswaard, B. Hicks, Towards
integrated version control of virtual and physical artefacts in new product development:
inspirations from software engineering and the digital twin paradigm, 31st CIRP Design
Conference 2021, Procedia CIRP 100 (2021) 283-288.

[10] Y. Chaysinh, Best Practices for Managing Your Artifactory Filestore, Available at
https://jfrog.com/whitepaper/best-practices-for-managing-your-artifactory-filestore-2/, 2023

[11] R. Oberhauser, VR-Git: Git Repository Visualization and Immersion in Virtual Reality,
Proceedings of the the Seventeenth International Conference on Software Engineering
Advances, 2022, pp. 9-14.

[12] M. Girod, T. Shpichko, F. lzquierdo, T. Rydiander. IBM Rational ClearCase 7.0: Master the
Tools that Monitor, Analyze, and Manage Software Configurations Packt Publishing, 2011

[13] P. Spéth, Git and Subversion, Pro Jakarta EE 10: Open Source Enterprise Java-based Cloud-
native Applications Development, Berkeley, CA: Apress, 2023, pp. 27-42.

[14] B.N. Chiriac, F.D. Anton, A.D. lonita, A hybrid IDS Architecture, U.P.B. Sci. Bull., Series C,
vol. 85, iss. 1, 2023, pp. 77-90.

[15] LI. Anghel, R.S. Calin, M.L Nedelea, I.C. Stanica, C. Tudose. C.A Boiangiu, Software
Development Methodologies: A Comparative Analysis, U.P.B. Sci. Bull., Series C, vol. 84,
iss. 3, 2022, pp. 45-58.

[16] F. Beetz, S. Harrer, GitOps: The Evolution of DevOps?, IEEE Software, vol. 39, no. 4, July-
Aug 2022, pp. 70-75, doi: 10.1109/MS.2021.3119106.

