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COUNTEREXAMPLES TO THE COMPLEX VERSION OF

EHRESMANN’S FIBRATION THEOREM

George-Ionuţ Ioniţă1

In this paper we give a counterexample to the following problem: if π : M → N
is a holomorphic map between complex manifolds such that M is Stein and the fibers

are biholomorphic to each other, then π is a locally trivial fibration.
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1. Introduction

One fundamental result in differential topology is Ehresmann’s Fibration Theorem [1]
which states that a smooth proper submersion between diffe-rentiable manifolds is a locally
trivial fibration.

Unfortunately, Ehresmann’s Theorem has no analytic analogue and counterexamples
were first constructed by Kodaira and Spencer [6]. They gave a necessary and sufficient
condition for a holomorphic family with compact fibers to be locally trivial. Other coun-
terexamples can be found in [4].

Another necessary and sufficient condition for a holomorphic family with compact
fibers to be locally trivial is the following: a holomorphic family (M,π,N) such that π is
proper is locally trivial if and only if the fibers π−1(y) for every y ∈ N are biholomorphic
to each other. The direct implication was conjectured by Stein and proved by Grauert [4]
and the converse is due to Fischer and Grauert [2]. The key element of the previous result
is that the fibers are compact.

In the following we will present an example dealing with the case of non-compact
fibers.

2. Preliminaries

Definition 2.1. Let π : M → N be a smooth map between differentiable manifolds. We
say that π is a submersion if π is surjective and for every x ∈ M the differential map
dxπ : TxM → Tπ(x)N is surjective.

It is obvious that the projection π : Rn+k → Rn onto the first n coordinates is a
submersion.

Definition 2.2. Let X and Y locally compact topological spaces. A continuous mapping
f : X → Y is called proper if for every compact set K in Y the preimage f−1(K) is compact.

In order to make things simpler and write more concise we give the following definition.

Definition 2.3. Let π : M → N be a holomorphic map between complex ma-nifolds. If π
is a submersion, we say that the triple (M,π,N) is a holomorphic family.
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Definition 2.4. We say that a holomorphic family (M,π,N) is locally trivial (or that π is
a locally trivial fibration) if for every y ∈ N there exists an open neighbourhood U of y and
a biholomorphic map f : π−1(U) → U × π−1(y) such that the diagram

π−1(U)

π
##F

FF
FF
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FF

f
// U × π−1(y)

p

zztt
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ttt

tt
t

U

is commutative, where p is the projection of the Cartesian product on the first factor.

Let Ω be an open subset of Cn and f : Ω → R a smooth function (for simplicity,
“smooth” will stand for C∞).

Definition 2.5. If z0 ∈ Ω, then the Levi form of f at z0, denoted by L(f, z0), is the
quadratic form determined by (

∂2f

∂zi∂z̄j
(z0)

)
i,j

.

A function f is called strictly plurisubharmonic if its Levi form is positive definite at any
point of Ω.

Consider now Ω to be a smoothly bounded domain in Cn. Let x ∈ ∂Ω and let U be
an open neighborhood of x in Cn.

A smooth real-valued function ϕ on U is called a defining function on U for Ω if the
following conditions hold:

(1) Ω ∩ U = {ϕ < 0};
(2) dϕ ̸= 0 on ∂Ω ∩ U .

Definition 2.6. If the restriction of the Levi form L(ϕ, z) to the tangent space Tp(∂Ω) is
positive definite, then Ω is said to be strictly pseudoconvex at p. Finally, Ω is said to be
strictly pseudoconvex if it is strictly pseudoconvex at each boundary point.

The next observation will turn out to be a key argument in the construction of the
counterexample to Ehresmann’s Fibration Theorem.

Remark 2.1 ([3], pp. 65-66). The definition of a Ω being strictly pseudoconvex at a point
p does not depend on the choice of the boundary function and the fact that the Levi form of
the defining function should be positive definite is invariant under biholomorphic transfor-
mations.

Definition 2.7. A domain Ω ⊂ Cn is called circular if eiθz ∈ Ω for every z ∈ Ω and θ ∈ R.

Circular domains are particular cases of the so called Reinhardt domains (for the
precise definition check [7]). One important remark is that the domains of convergence of
power series are Reinhardt domains.

Definition 2.8. A domain Ω ⊂ Cn is called homogenous if, for each pair of points z, w ∈ Cn,
there exists f ∈ Aut(Ω) such that f(z) = w.

The classical Riemann Mapping Theorem says that every proper, simply connected
open subset of C is biholomorphic to the disc, or any two simply connected domains in C,
which are not all of C, are biholomorphic to each other. There is no analogue of this result
for domains in Cn, n > 1.

Historically, the first result that supports the previous statement was proved by
Poincaré: the unit ball and the unit polydisc in Cn, n > 1 are not biholomorphic. Var-
ious proofs can be found in the literature, but the one which is important for our further
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purposes is the one in [5] (pp. 9-10). This relies on the Schwarz Lemma (the one-dimensional
version) and the Chain Rule. We are also interested in the following result.

Proposition 2.1 ([5], pp. 16-17). If f : G → H is a biholomorphic mapping between
bounded circular domains, and if 0 ∈ G and f(0) = 0, then f is linear.

3. The Example

In the following we will give an example of a holomorphic family (M,π,N) such that
M is Stein and the fibers are biholomorphic to each other, but π is not a locally trivial
fibration. Also it will turn out that this essentially happens because π is not proper.

Example 3.1. Consider

M = {(z, w) ∈ C2 : |z|2 + |w|2 < 1} ⊂ C2

and

N = {z ∈ C : |z|2 < 1} ⊂ C.
Let π :M → N be the projection on the first coordinate: π(z, w) = z.

Proof. It is obvious that M is the unit ball in C2 and N is the unit disc in C. Also it is
clear that M is Stein and that (M,π,N) is a holomorphic family.

Now we are interested in determining the fibers. If z ∈ N , then π−1(z) = {z} ×Dz,
whereDz is the disc centered at the origin with radius 1−|z|2. So the fibers are biholomorphic
to a disc.

Next we show that π is not a locally trivial fibration. Assume the contrary. Consider
z ∈ N ; then there exists U an open neighbourhood of z and a biholomorphic map f :
π−1(U) → U × π−1(z) such that the diagram in Definition 2.4 is commutative. We take
z = 0, and we have that there exists a biholomorphism

F : D(0, r)×D → π−1(U),

where D(0, r) is the disc centered at 0 with radius r < 1 and D is the unit disc (both in C).
We note that the domain of F is a polydisc

P = {(z, w) ∈ C2 : |z| < r, |w| < 1},

and the codomain is

π−1(U) = {(z, w) ∈ C2 : |z|2 + |w|2 < 1, |z| < r}.

It is obvious that both the domain and the codomain of F are bounded circular
domains. Since P is a homogenous domain (see [5], pp. 9-10), using a well chosen automor-
phism of P , we may assume that F (0) = 0. This implies, by Proposition 2.1, that F is a
linear biholomorphism. Thus F can be extended across the boundary of P and we get that
F (∂P ) = ∂(π−1(U)), which is equivalent to ∂P = F−1(∂(π−1(U))).

Now we are trying to involve the boundaries of P and π−1(U). We have that

∂P ={(z, w) ∈ C2 : |z| < r, |w| = 1}
∪ {(z, w) ∈ C2 : |z| = r, |w| < 1}
∪ {(z, w) ∈ C2 : |z| = r, |w| = 1}

and

∂(π−1(U)) ={(z, w) ∈ C2 : |z|2 + |w|2 < 1, |z| = r}
∪ {(z, w) ∈ C2 : |z|2 + |w|2 = 1, |z| < r}
∪ {(z, w) ∈ C2 : |z|2 + |w|2 = 1, |z| = r}.
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Let p ∈ ∂(π−1(U)) such that p ∈ {|z|2 + |w|2 = 1, |z| < r}. Then there exists a
sufficiently small open ball V centered in p so that V ∩∂(π−1(U)) ⊂ {|z|2+|w|2 = 1, |z| < r}.

We define φ : V → R by φ(z, w) = |z|2 + |w|2 − 1.
We have that φ is a defining function on V for π−1(U) and its Levi form is positive

definite on the tangent space of π−1(U) at p (the eigenvalue is 1). We obtain that φ ◦ F :
F−1(V ) → R is a strictly plurisubharmonic, defining function on F−1(V ) for P . Since
F−1(p) ∈ ∂P , we deduce that P is strictly pseudoconvex at F−1(p). But F−1(p) is a
point on the smooth boundary of P and, without loss of generality, we can assume that
F−1(p) ∈ D(0, r)× ∂D. Define ψ : F−1(V ) → R by

ψ(z, w) = |w|2 − 1.

We hava that F−1(V ) is a neighborhood of F−1(p). Thus ψ is a defining function on
F−1(V ) for P , but its Levi form is not positive definite on the restriction to the tangent
space TF−1(p)(∂P ) (the eigenvalue is 0).

So we have obtained two defining functions for P at F−1(p) such that the Levi form
of one of them, namely φ ◦F , is positive definite on the tangent space TF−1(p)(∂P ) and the
Levi form of the other, namely ψ, is not. This contradicts Remark 2.1 and the proof is done.

�
As mentioned before, it is easy to observe that π is not proper.

4. Conclusions

Ehresmann’s Fibration Theorem has no analytic analogue and the fact that the fibers
need to be biholomorphic to each other is a necessary condition in both cases of compact
and non-compact fibers. In the case of non-compact fibers this is not a sufficient condition.
Having in mind the ideas that are used in one of the proofs of Poincaré’s Theorem (the
unit ball and the unit polydisc are not biholomorphic for n > 1) we are able to construct a
counterexample that supports our previous assertion.
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