

FILTERS THEORY OF SMARANDACHE RESIDUATED LATTICE

A. Ahadpanah¹, L. Torkzadeh², A. Borumand Saeid³

Residuated lattices play an important role in the study of fuzzy logic and filters are basic concepts in residuated lattices and other algebraic structures. The aim of this paper is to introduce a Smarandache B_L -residuated lattice. Then we define the notions of B_L -Smarandache deductive systems and B_L -Smarandache filters and investigate the relations among them. It is proved that every B_L -Smarandache filter is a B_L -Smarandache deductive system, but the converse may not be true, while filters and deductive systems are equivalent in the most of algebraic structures. Finally we introduce the concept of B_L -Smarandache implicative, positive implicative and fantastic filters and obtain some relationships between them.

Keywords: BL -algebra, residuated lattice, Smarandache B_L -residuated lattice, B_L -Smarandache deductive system, B_L -Smarandache (implicative, positive implicative, fantastic) filter.

MSC2010: 03B47, 03G10, 03B50, 03G25, 06F35.

1. Introduction and Preliminaries

It is well known that certain information processing, especially inferences based on certain information, is based on the classical logic (classical two-valued logic). Naturally, it is necessary to establish some rational logic systems as the logical foundation for uncertain information processing. For this reason, various kinds of non-classical logic systems have been extensively proposed and researched. In fact, non-classical logic has become a formal and useful tool for computer science to deal with uncertain information and fuzzy information. On the other hand, various logical algebras have been proposed as the semantical systems of non-classical logic systems, for example, residuated lattices, MV -algebras, BL -algebras, lattice implication algebras, MTL -algebras and NM -algebras, etc. Among these logical algebras, residuated lattices are basic and important algebraic structures because the other logical algebras are all particular cases of residuated lattices. Residuated lattices, are introduced by Ward and Dilworth in [7].

A Smarandache structure on a set A means a weak structure W on A such that there exists a proper subset B of A which is embedded with a strong structure S . In [6], Vasantha Kandasamy studied the concept of Smarandache groupoids, subgroupoids, ideal of groupoids and strong Bol groupoids and obtained many interesting results about them. It will be very interesting to study the Smarandache structure in

¹ Department of Mathematics, Science and Research Branch, Islamic Azad University, Kerman, Iran, e-mail: a_ahadpanah24@yahoo.com

²Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran

³Department of Mathematics, Shahid Bahonar university of Kerman, Kerman, Iran

these algebraic structures. A. Borumand Saeid and et.al. defined the Smarandache structure in BL -algebras in [1].

It is clear that any BL -algebra is a residuated lattice. A BL -algebra is a weaker structure than residuated lattice, then we can consider in any residuated lattice a weaker structure as BL -algebra [2].

In the following, some preliminary theorems and definitions are stated from [3]. In sections 2, we introduce the notions of Smarandache B_L -residuated lattices, B_L -Smarandache filters and B_L -Smarandache deductive systems. By an example We show that B_L -Smarandache filters and B_L -Smarandache deductive systems are not equivalent. In sections 3, we define B_L -Smarandache implicative filters and B_L -Smarandache positive implicative filters. Then we determine relationships between these filters. In section 4 we introduce B_L -Smarandache fantastic filters and obtain some related results.

Definition 1.1. [3] *A residuated lattice is an algebra $L=(L, \wedge, \vee, \odot, \rightarrow, 0, 1)$ of type $(2, 2, 2, 2, 0, 0)$ equipped with an order \leq satisfying the following:*

(LR_1) $(A, \wedge, \vee, 0, 1)$ is a bounded lattice,

(LR_2) $(A, \odot, 1)$ is a commutative ordered monoid,

(LR_3) \odot and \rightarrow form an adjoint pair, i.e. $c \leq a \rightarrow b \Leftrightarrow a \odot c \leq b$, for all $a, b, c \in A$. We denote $a^* = a \rightarrow 0$, for all $a \in A$.

A BL -algebra is a residuated lattice L satisfying the following identity, for all $a, b \in L$:

(BL_1) $(a \rightarrow b) \vee (b \rightarrow a) = 1$,

(BL_2) $a \wedge b = a \odot (a \rightarrow b)$.

Theorem 1.1. [3] *Let L be a residuated lattice. Then the following properties hold for all $x, y, z \in L$*

(lr_1) $x \rightarrow x = 1, 1 \rightarrow x = x$,

(lr_2) $x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y)$,

(lr_3) $x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z)$,

(lr_4) $x \leq y \Leftrightarrow x \rightarrow y = 1$,

(lr_5) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) = (x \odot y) \rightarrow z$,

(lr_6) $x \odot (x \rightarrow y) \leq y, x \leq (y \rightarrow (x \odot y))$ and $y \leq (y \rightarrow x) \rightarrow x$,

(lr_7) If $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$ and $z \rightarrow x \leq z \rightarrow y$.

The following example shows a residuated lattice that is not a BL -algebra

Example 1.1. Let $L = \{0, a, b, c, d, 1\}$ with $0 < a, b < c < d < 1$, but a, b are incomparable. Then L becomes a residuated lattice relative to the following operations:

\odot	0	a	b	c	d	1	\rightarrow	0	a	b	c	d	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1
a	0	0	0	0	a	a	a	d	1	d	1	1	1
b	0	0	0	0	b	b	b	d	d	1	1	1	1
c	0	0	0	0	c	c	c	d	d	d	1	1	1
d	0	0	0	0	d	d	d	0	a	b	c	1	1
1	0	a	b	c	d	1	1	0	a	b	c	d	1

It is easy to check that L is not a BL -algebra, because $(a \rightarrow b) \vee (b \rightarrow a) = d \neq 1$.

2. Smarandache B_L -residuated lattices

Definition 2.1. A Smarandache B_L -residuated lattice is a residuated lattice L in which there exists a proper subset B of L such that:

- (SB_1) $0, 1 \in B$ and $|B| > 2$,
- (SB_2) B is a BL -algebra under the operations of L .

Example 2.1. Let $L = \{0, a, b, c, 1\}$ with $0 < a, b < c < 1$, but a, b are incomparable. Then L becomes a residuated lattice relative to the following operations:

\odot	0	a	b	c	1	\rightarrow	0	a	b	c	1
0	0	0	0	0	0	0	1	1	1	1	1
a	0	a	0	a	a	a	b	1	b	1	1
b	0	0	b	b	b	b	a	a	1	1	1
c	0	a	b	c	c	c	0	a	b	1	1
1	0	a	b	c	1	1	0	a	b	c	1

We can see that $B = \{0, c, 1\}$ is a BL -algebra which is properly contained in L , then L is a Smarandache B_L -residuated lattice.

Example 2.2. Let $L = \{0, a, b, c, d, e, f, 1\}$ with $0 < d < c < b < a < 1$, $0 < d < e < f < a < 1$ but b, f and c, e are incomparable. Then L becomes a residuated lattice relative to the following operations:

\odot	0	a	b	c	d	e	f	1
0	0	0	0	0	0	0	0	0
a	0	c	c	c	0	d	d	a
b	0	c	c	c	0	0	d	b
c	0	c	c	c	0	0	0	c
d	0	0	0	0	0	0	0	d
e	0	d	0	0	0	d	d	e
f	0	d	d	0	0	d	d	f
1	0	a	b	c	d	e	f	1

\rightarrow	0	a	b	c	d	e	f	1
0	1	1	1	1	1	1	1	1
a	d	1	a	a	f	f	f	1
b	e	1	1	a	f	f	f	1
c	f	1	1	1	f	f	f	1
d	a	1	1	1	1	1	1	1
e	b	1	a	a	a	1	1	1
f	c	1	a	a	a	a	1	1
1	0	a	b	c	d	e	f	1

We can see that $B = \{0, 1\}$ is the only BL -algebra which is properly contained in L , then L is not a Smarandache B_L -residuated lattice.

From now on $L_B = (L, \wedge, \vee, \odot, \rightarrow, 0, 1)$ is a Smarandache B_L -residuated lattice and $B = (B, \wedge, \vee, \odot, \rightarrow, 0, 1)$ is a BL -algebra unless otherwise specified.

Definition 2.2. A nonempty subset F of L_B is called a Smarandache deductive system of L_B related to B (or briefly B_L -Smarandache deductive system of L_B) if it satisfies:

(DB_1) $1 \in F$,
 (DB_2) if $x \in F$, $y \in B$ and $x \rightarrow y \in F$, then $y \in F$.

Example 2.3. In Example 2.2, $F_1 = \{c, 1\}$, $F_2 = \{a, c, 1\}$, $F_3 = \{b, c, 1\}$, $F_4 = \{0, c, 1\}$, $F_5 = \{0, b, c, 1\}$, $F_6 = \{0, a, c, 1\}$, $F_7 = \{0, a, b, c, 1\}$ and $F_8 = \{1\}$ are all B_L -Smarandache deductive system of L_B .

Theorem 2.1. Let F be a nonempty subset of L_B and $0 \in F$. Then F is a B_L -Smarandache deductive system of L_B if and only if $B \subseteq F$.

Proof. Let $a \in B$. We have $0 \rightarrow a = 1 \in F$, then by hypothesis we obtain $a \in F$. Hence $B \subseteq F$.

Conversely, since $1 \in B \subseteq F$, then $1 \in F$. Now let $x, x \rightarrow y \in F$ and $y \in B$, since $B \subseteq F$, then $y \in F$. \square

Definition 2.3. A nonempty subset F of L_B is called a Smarandache filter of L_B related to B (or briefly B_L -Smarandache filter of L_B) if it satisfies:

(FB_1) if $x, y \in F$, then $x \odot y \in F$,
 (FB_2) if $x \in F$, $y \in B$ and $x \leq y$, then $y \in F$.

We can see that F_1-F_8 in Example 2.5 are B_L -Smarandache filters of L .

Theorem 2.2. Let F be a B_L -Smarandache filter of L_B , then F is a B_L -Smarandache deductive system of L_B .

Note that if F is a B_L -Smarandache deductive system of L_B , then F satisfies in (FB_2).

By the following example we show that if F is a B_L -Smarandache deductive system of L_B , then (FB_1) may not hold.

Example 2.4. Let $L = \{0, a, b, c, d, 1\}$ with $0 < b < a < 1$, $0 < d < c < a < 1$ and c and d are incomparable with b . Then L becomes a residuated lattice relative to the following operations:

\odot	0	a	b	c	d	1	\rightarrow	0	a	b	c	d	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1
a	0	a	b	d	d	a	a	0	1	b	c	c	1
b	c	b	b	0	0	b	b	c	1	1	c	c	1
c	b	d	0	d	d	c	c	b	1	b	1	a	1
d	b	d	0	d	d	d	d	b	1	b	1	1	1
1	0	a	b	c	d	1	1	0	a	b	c	d	1

We can check that $B = \{0, a, 1\}$ is a BL -algebra, which is properly contained in L , hence L is a Smarandache B_L -residuated lattice. Also $F = \{c, a, 1\}$ is a B_L -Smarandache deductive system of L_B , while it does not satisfy (FB_1), since for $c, a \in F$, $c \odot a = d \notin F$.

Theorem 2.3. Let F be a B_L -Smarandache deductive system of L_B . If $F \subseteq B$, then F is a B_L -Smarandache filter of L_B .

In Example 2.2, $F = \{a, c, 1\}$ is both a B_L -Smarandache deductive system and a B_L -Smarandache filter, while $F \not\subseteq B$. So the converse of the above theorem may not be true.

By the Definition 2.4, we have the following theorem.

Theorem 2.4. *Let $F = \{a, 1\}$ be a subset of L_B , where $B = \{0, a, 1\}$. Then*

- (1) *If $a \neq a^*$, then F is a B_L -Smarandache deductive system of L_B .*
- (2) *If $a = a^*$, then F is not a B_L -Smarandache deductive system of L_B .*

3. B_L -Smarandache (positive) implicative filters

Definition 3.1. *A nonempty subset F of L_B is called a Smarandache implicative filter of L_B related to B (or briefly B_L -Smarandache implicative filter of L_B) if it satisfies:*

(FB_1) $1 \in F$,

(FB_3) *if $z \in F$, $x, y \in B$ and $z \rightarrow ((x \rightarrow y) \rightarrow x) \in F$, then $x \in F$.*

$F_1 - F_7$ in Example 2.5 are B_L -Smarandache implicative filters of L , while F_8 is not a B_L -Smarandache implicative filter

Theorem 3.1. *If F is a B_L -Smarandache implicative filter of L_B , then F is a B_L -Smarandache deductive system of L_B .*

Proof. Let F be a B_L -Smarandache implicative filter of L_B , $y \in B$ and $x, x \rightarrow y \in F$. Since $x \rightarrow ((y \rightarrow 1) \rightarrow y) = x \rightarrow y \in F$, then $x \rightarrow ((y \rightarrow 1) \rightarrow y) \in F$, so by $x \in F$, $1, y \in B$, we get that $y \in F$. Therefore F is a B_L -Smarandache deductive system of L_B . \square

By the following example we show that the converse of the above theorem may not hold.

Example 3.1. *Consider $L = \{0, a, b, c, 1\}$ with $0 < c < a < b < 1$ and the following operations:*

\odot	0	a	b	c	1	\rightarrow	0	a	b	c	1
0	0	0	0	0	0	0	1	1	1	1	1
a	0	0	a	0	a	a	a	1	1	a	1
b	0	a	b	c	b	b	0	a	1	c	1
c	0	0	c	0	c	c	a	1	1	1	1
1	0	a	b	c	1	1	0	a	b	c	1

Then $L = \{0, a, b, c, 1\}$ is a residuated lattice, $B = \{0, b, 1\}$ is a BL -algebra which is properly contained in L , hence L is a Smarandache BL -residuated lattice. Also $F = \{1\}$ is a B_L -Smarandache deductive system of L while it is not a B_L -Smarandache implicative filter of L , since $1 \rightarrow ((b \rightarrow 0) \rightarrow b) = 1 \in F$, $1 \in F$ and $b, 0 \in B$ while $b \notin F$.

Theorem 3.2. *Let F be a nonempty subset of L_B and $0 \in F$. Then F is a B_L -Smarandache implicative filter of L_B if and only if $B \subseteq F$.*

Proof. Let $a \in B$. We have $0 \rightarrow ((a \rightarrow 1) \rightarrow a) = 1 \in F$, thus by hypothesis $a \in F$. Therefore $B \subseteq F$.

Conversely, since $1 \in B \subseteq F$, then $1 \in F$. Now let $y, y \rightarrow ((x \rightarrow z) \rightarrow x) \in F$ and $x, z \in B$. By $B \subseteq F$ we get that $x \in F$. \square

Theorem 3.3. *Let F be a BL -Smarandache deductive system of L_B . Then F is a BL -Smarandache implicative filter if and only if $(x \rightarrow y) \rightarrow x \in F$ implies $x \in F$, for all $x, y \in B$.*

Theorem 3.4. *Let F be a BL -Smarandache implicative filter of L_B . Then $(x \rightarrow y) \rightarrow y \in F$ implies $(y \rightarrow x) \rightarrow x \in F$, for all $x, y \in B$.*

Proof. Let F be a BL -Smarandache implicative filter and $(x \rightarrow y) \rightarrow y \in F$. From $x \leq (y \rightarrow x) \rightarrow x$ and Theorem 1.2 we can conclude that $((y \rightarrow x) \rightarrow x) \rightarrow y \leq x \rightarrow y$. so we have

$$\begin{aligned} (x \rightarrow y) \rightarrow y &\leq (y \rightarrow x) \rightarrow ((x \rightarrow y) \rightarrow x) \\ &= (x \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) \\ &\leq (((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) \end{aligned}$$

Thus by hypothesis we get that $(((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) \in F$ and so by Theorem 3.5 $(y \rightarrow x) \rightarrow x \in F$. \square

By the following example we show that the converse of the above theorem may not hold.

Example 3.2. *Consider the residuated lattice in Example 3.3. $B = \{0, a, 1\}$ is a BL -algebra, which is properly contained in L , hence L is a Smarandache BL -residuated lattice. We can see that $F = \{1\}$ is not a BL -Smarandache implicative filter of L_B , since $1 \rightarrow ((a \rightarrow 0) \rightarrow a) = 1 \in F$, $1 \in F$ and $a, 0 \in B$ but $a \notin F$. Also $(x \rightarrow y) \rightarrow y \in F$ implies $(y \rightarrow x) \rightarrow x \in F$, for $x, y \in B$.*

Similar to Theorem 3.15[5], we can see the following theorem. The proof is similar to this theorem and omitted.

Theorem 3.5. *If F is a BL -Smarandache implicative filter of L_B , then every BL -Smarandache deductive system G containing F is also a BL -Smarandache implicative filter.*

In the following example we show that the converse of Theorem 3.8 is not true in general.

Example 3.3. *In Example 3.3, $\{1\} \subseteq \{b, 1\}$. $\{b, 1\}$ is a BL -Smarandache implicative filter of L while $\{1\}$ is not a BL -Smarandache implicative filter of L .*

Corollary 3.1. *In any Smarandache BL -residuated lattice L_B , the following conditions are equivalent:*

- (a) $\{1\}$ is a BL -Smarandache implicative filter,
- (b) Any BL -Smarandache deductive system of L_B is a BL -Smarandache implicative filter.

Definition 3.2. *A nonempty subset F of L_B is called a Smarandache positive implicative filter of L_B related to B (or briefly BL -Smarandache positive implicative filter of L_B) if it satisfies:*

(FB₁) $1 \in F$,

(FB₄) if $x, y, z \in B$, $z \rightarrow (x \rightarrow y) \in F$ and $z \rightarrow x \in F$, then $z \rightarrow y \in F$.

Example 3.4. In Example 2.2, $F_1 = \{c, 1\}$, $F_2 = \{a, c, 1\}$, $F_3 = \{b, c, 1\}$, $F_4 = \{0, c, 1\}$, $F_5 = \{0, b, c, 1\}$, $F_6 = \{0, a, c, 1\}$, $F_7 = \{0, a, b, c, 1\}$, $F_8 = \{a, 1\}$, $F_9 = \{b, 1\}$ and $F_{10} = \{a, b, 1\}$ are B_L -Smarandache positive implicative filters of L .

Theorem 3.6. If F is a B_L -Smarandache implicative filter of L_B , then F is a B_L -Smarandache positive implicative filter of L_B .

Proof. Let for $x, y, z \in B$, $x \rightarrow (y \rightarrow z) \in F$ and $x \rightarrow y \in F$. Then by Theorem 1.2 we have:

$$x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) \leq (x \rightarrow y) \rightarrow (x \rightarrow (x \rightarrow z)).$$

Hence by hypothesis we have

$$(x \rightarrow y) \rightarrow (x \rightarrow (x \rightarrow z)) \in F \Rightarrow (x \rightarrow (x \rightarrow z)) \in F$$

Now by Theorem 1.2 we get

$$(x \rightarrow (x \rightarrow z)) \leq ((x \rightarrow z) \rightarrow z) \rightarrow (x \rightarrow z).$$

Then $((x \rightarrow z) \rightarrow z) \rightarrow (x \rightarrow z) \in F$. Therefore by hypothesis we get that $x \rightarrow z \in F$. \square

By the following example, we show that the converse of Theorem 3.13 is not true in general.

Example 3.5. In Example 2.2, $F = \{b, 1\}$ is a B_L -Smarandache positive implicative filter of L_B while it is not a B_L -Smarandache implicative filter of L_B , since $1 \rightarrow ((c \rightarrow 0) \rightarrow c) = 1 \in F$, $1 \in F$ and $c, 0 \in B$ but $c \notin F$.

Theorem 3.7. If F is a B_L -Smarandache positive implicative filter of L_B which is contained in B , then F is a B_L -Smarandache deductive system of L_B .

Proof. Let $x, x \rightarrow y \in F$ and $y \in B$. We have $x \in F \subseteq B$, hence $x \in B$. Since $1 \rightarrow (x \rightarrow y) = x \rightarrow y \in F$ and $1 \rightarrow x = x \in F$, then by hypothesis $1 \rightarrow y = y \in F$. \square

Example 3.6. In Example 2.2, $F = \{b, 1\}$ is a B_L -Smarandache positive implicative filter of L while it is not a B_L -Smarandache deductive system of L , since $b \rightarrow c = 1 \in F$, $b \in F$ and $c \in B$ but $c \notin F$. So the condition $F \subseteq B$, in the above theorem is necessary.

In the following example we show that the converse of Theorem 3.15 is not true in general.

Example 3.7. Consider $B = \{0, a, 1\}$ in Example 3.7. We can see that $F = \{1\}$ is a B_L -Smarandache deductive system of L_B while it is not a B_L -Smarandache positive implicative filter of L_B , since $a \rightarrow (a \rightarrow 0) = 1 \in F$ and $a \rightarrow a = 1 \in F$, but $a \rightarrow 0 = a \notin F$.

Theorem 3.8. Let F be a B_L -Smarandache deductive system of L_B . Then F is a B_L -Smarandache positive implicative filter if and only if for any $a \in B$, $A_a = \{x \in B \mid a \rightarrow x \in F\}$ is a B_L -Smarandache deductive system of L_B .

Proof. Let F be a B_L -Smarandache positive implicative filter, and $a \in B$. Since $a \rightarrow 1 = 1 \in F$, then $1 \in A_a$. If $x, x \rightarrow y \in A_a$, then $a \rightarrow x, a \rightarrow (x \rightarrow y) \in F$.

Since F is a B_L -Smarandache positive implicative filter, hence $a \rightarrow y \in F$. Then $y \in A_a$. Therefore A_a is a B_L -Smarandache deductive system of L_B .

Conversely, let $x \rightarrow (y \rightarrow z)$ and $x \rightarrow y \in F$, for $x, y, z \in B$. Then $y \rightarrow z, y \in A_x$ and so $z \in A_x$ that is $x \rightarrow z \in F$. Hence F is a B_L -Smarandache positive implicative filter of L_B . \square

Theorem 3.9. *Let F be a B_L -Smarandache deductive system of L_B . Then the following are equivalent:*

- (a) F is a B_L -Smarandache positive implicative filter,
- (b) $y \rightarrow (y \rightarrow x) \in F$ implies $y \rightarrow x \in F$, for all $x, y \in B$,
- (c) $z \rightarrow (y \rightarrow x) \in F$ implies $(z \rightarrow y) \rightarrow (z \rightarrow x) \in F$, for all $x, y, z \in B$,
- (d) $z \rightarrow (y \rightarrow (y \rightarrow x)) \in F$ and $z \in F$ implies $(y \rightarrow x) \in F$, for all $x, y \in B$.

Proof. (a) \Rightarrow (b): Let F be a B_L -Smarandache positive implicative filter, and $y \rightarrow (y \rightarrow x) \in F$, for $x, y \in B$. Then by $y \rightarrow y = 1 \in F$, we get that $y \rightarrow x \in F$.

(b) \Rightarrow (c): Let $z \rightarrow (y \rightarrow x) \in F$. By Theorem 1.2, we have

$(z \rightarrow (z \rightarrow ((z \rightarrow y) \rightarrow x))) = (z \rightarrow ((z \rightarrow y) \rightarrow (z \rightarrow x))) \geq z \rightarrow (y \rightarrow x)$. Hence $(z \rightarrow (z \rightarrow ((z \rightarrow y) \rightarrow x))) \in F$ and so by (b) we conclude that $(z \rightarrow y) \rightarrow (z \rightarrow x) = z \rightarrow ((z \rightarrow y) \rightarrow x) \in F$, for $x, y, z \in B$.

(c) \Rightarrow (d): Let $z, z \rightarrow (y \rightarrow (y \rightarrow x)) \in F$. Since F is a B_L -Smarandache deductive system, then $y \rightarrow (y \rightarrow x) \in F$. Thus $y \rightarrow x = (y \rightarrow y) \rightarrow (y \rightarrow x) \in F$.

(d) \Rightarrow (a): Let for $x, y, z \in B$, $z \rightarrow (y \rightarrow x) \in F$ and $z \rightarrow y \in F$. By Theorem 1.2, we have

$z \rightarrow (y \rightarrow x) = y \rightarrow (z \rightarrow x) \leq (z \rightarrow y) \rightarrow (z \rightarrow (z \rightarrow x))$, so by hypothesis, $(z \rightarrow y) \rightarrow (z \rightarrow (z \rightarrow x)) \in F$. Therefor by (d) we get that $z \rightarrow x \in F$. \square

Theorem 3.10. *If F is a B_L -Smarandache positive implicative filter of L_B , then every B_L -Smarandache deductive system G containing F is also a B_L -Smarandache positive implicative filter.*

Proof. The proof is similar to the proof of Theorem 3.6[5] \square

In the following example we show that the converse of Theorem 3.20 is not true in general.

Example 3.8. *In Example 3.7, $\{1\} \subseteq \{0, a, b, 1\}$. $\{0, a, b, 1\}$ is a B_L -Smarandache positive implicative filter of L_B while $\{1\}$ is not a B_L -Smarandache positive implicative filter of L .*

4. B_L -Smarandache fantastic filters

Definition 4.1. *A nonempty subset F of L_B is called a Smarandache fantastic filter of L_B related to B (or briefly B_L -Smarandache fantastic filter of L_B) if it satisfies:*

(FB_1) $1 \in F$,

(FB_5) if $x, y \in B$ and $z, z \rightarrow (y \rightarrow x) \in F$, then $((x \rightarrow y) \rightarrow y) \rightarrow x \in F$.

Example 4.1. *In Example 2.5, $F_1 - F_8$ are B_L -Smarandache fantastic filters of L .*

Theorem 4.1. *Every B_L -Smarandache fantastic filter of L_B is a B_L -Smarandache deductive system.*

Proof. Let $z, z \rightarrow x \in F$ and $x \in B$. Since $z \rightarrow x = z \rightarrow (1 \rightarrow x) \in F$, then $x = ((x \rightarrow 1) \rightarrow 1) \rightarrow x \in F$. \square

In the following example we show that the converse of Theorem 4.3 is not true in general.

Example 4.2. *In Example 3.3, $F = \{1\}$ is a B_L -Smarandache deductive system of L while it is not a B_L -Smarandache fantastic filter of L . Since $1, 1 \rightarrow (0 \rightarrow b) = 1 \in F$ and $0, b \in B$, while $((b \rightarrow 0) \rightarrow 0) \rightarrow b = b \notin F$.*

Theorem 4.2. *Let F be a B_L -Smarandache deductive system of L_B . Then F is B_L -Smarandache fantastic filter if and only if $y \rightarrow x \in F$ implies $((x \rightarrow y) \rightarrow y) \rightarrow x \in F$, for all $x, y \in B$.*

Theorem 4.3. *If F is a B_L -Smarandache fantastic filter of L_B , then every B_L -Smarandache deductive system G containing F is also a B_L -Smarandache fantastic filter.*

Proof. The proof is similar to the proof of Theorem 4.4[5] □

In the following example we show that the converse of Theorem 4.6 is not true in general.

Example 4.3. *In Example 3.3, $\{1\} \subseteq \{b, 1\}$. $\{b, 1\}$ is a B_L -Smarandache fantastic filter of L_B while $\{1\}$ is not a B_L -Smarandache fantastic filter of L .*

Theorem 4.4. *Every B_L -Smarandache implicative filter of L is a B_L -Smarandache fantastic filter.*

Proof. Let $x, y \in B$ and $y \rightarrow x \in F$. Since $x \leq ((x \rightarrow y) \rightarrow y) \rightarrow x$, then $((x \rightarrow y) \rightarrow y) \rightarrow x \leq x \rightarrow y$

and also we have

$$\begin{aligned} & (((x \rightarrow y) \rightarrow y) \rightarrow x) \rightarrow (((x \rightarrow y) \rightarrow y) \rightarrow x) \\ & \geq (x \rightarrow y) \rightarrow (((x \rightarrow y) \rightarrow y) \rightarrow x) \\ & = ((x \rightarrow y) \rightarrow (x \rightarrow y)) \rightarrow x \\ & \geq y \rightarrow x. \end{aligned}$$

By $y \rightarrow x \in F$, we have

$$\begin{aligned} & (((x \rightarrow y) \rightarrow y) \rightarrow x) \rightarrow (((x \rightarrow y) \rightarrow y) \rightarrow x) \in F, \\ & \text{since } F \text{ is a } B_L\text{-Smarandache implicative filter, we conclude that} \\ & (((x \rightarrow y) \rightarrow y) \rightarrow x) \in F. \end{aligned}$$
□

In the following example we show that the converse of Theorem 4.8 is not true in general.

Example 4.4. *Let $L = \{0, a, b, c, d, e, f, g, 1\}$ with $0 < a < b < e < 1$, $0 < c < f < g < 1$, $a < d < g$, $c < d < e$, but $\{a, c\}$, $\{b, d\}$, $\{d, f\}$, $\{b, f\}$ and respective $\{e, g\}$ are incomparable. Then L becomes a residuated lattice relative to the following operations:*

\odot	0	a	b	c	d	e	f	g	1
0	0	0	0	0	0	0	0	0	0
a	0	0	a	0	0	a	0	0	a
b	0	a	b	0	a	b	0	a	b
c	0	0	0	0	0	0	c	c	c
d	0	0	a	0	0	a	c	c	d
e	0	a	b	0	a	b	c	d	e
f	0	0	0	c	c	c	f	f	f
g	0	0	a	c	c	d	f	f	g
1	0	a	b	c	d	e	f	g	1

\rightarrow	0	a	b	c	d	e	f	g	1
0	1	1	1	1	1	1	1	1	1
a	g	1	1	g	1	1	g	1	1
b	f	g	1	f	g	1	f	g	1
c	e	e	e	1	1	1	1	1	1
d	d	e	e	g	1	1	g	1	1
e	c	d	e	f	g	1	f	g	1
f	b	b	b	e	e	e	1	1	1
g	a	b	b	d	e	e	g	1	1
1	0	a	b	c	d	e	f	g	1

It is easy to check that $B = \{0, d, 1\}$ is a BL -algebra which is properly contained in L , hence L is a Smarandache BL -residuated lattice. Also $F = \{g, 1\}$ is a BL -Smarandache fantastic filter of L while it is not a BL -Smarandache implicative filter of L , since $g \rightarrow ((d \rightarrow 0) \rightarrow d) = 1 \in F$, $g \in F$ and $0, d \in B$ but $0 \notin F$.

In the following example we show that any BL -Smarandache fantastic filter of L_B may not be a BL -Smarandache positive implicative filter of L_B .

Example 4.5. In Example 3.17, $F = \{1\}$ is a BL -Smarandache fantastic filter of L , while it is not a BL -Smarandache positive implicative filter of L .

In the following example we show that any BL -Smarandache positive implicative filter of L_B may not be a BL -Smarandache fantastic filter of L_B .

Example 4.6. In Example 2.2, $F = \{a, 1\}$ is a BL -Smarandache positive implicative filter of L while it is not a BL -Smarandache fantastic filter of L , since $a \rightarrow (1 \rightarrow c) = 1 \in F$, $a \in F$ and $c, 1 \in B$, while $((c \rightarrow 1) \rightarrow 1) \rightarrow c = c \notin F$.

By the following figure, we determine the relations between the different kinds of filters:

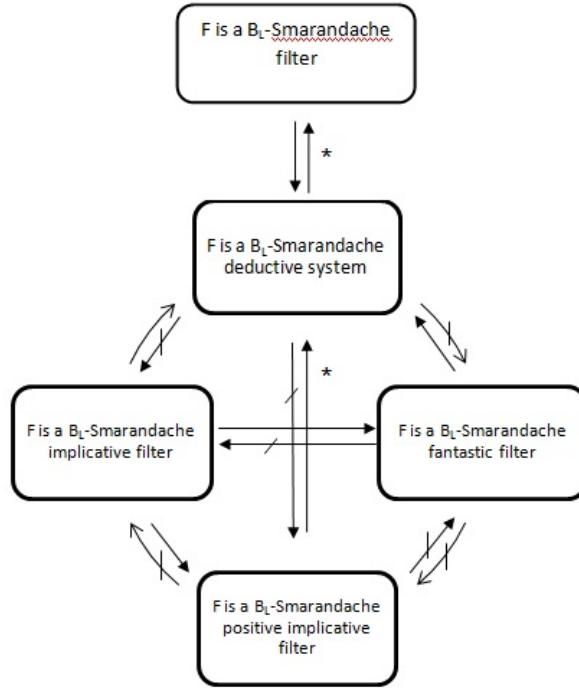


FIGURE 1. *: If F contained in B

5. Conclusion

Smarandache structure occurs as a weak structure in any structure. In the present paper, by using this notion we have introduced the concept of Smarandache B_L -residuated lattice and investigated some of their useful properties. It is well known that the filters with special properties play an important role in the logic system. The aim of this article is to investigate some kinds of filters on the Smarandache structures and we obtain the related properties.

In our opinion, these definitions and main results can be similarly extended to some other algebraic systems such as lattices and Lie algebras etc. It is our hope that this work would other foundations for further study of the theory of residuated lattices, BL -algebras and MV -algebras.

In our future study of the Smarandache structure of these algebraic structures, the following topics might be considered:

- (1) To get more results in Smarandache B_L -residuated lattice and applications;
- (2) To get more connections between residuated lattices and BL -algebras;
- (3) To define some Smarandache structures and some filters on these;
- (4) To define fuzzy structure of Smarandache B_L -residuated lattice.

REF E R E N C E S

- [1] *A. Borumand Saeid, A. Ahadpanah and L. Torkzadeh* , Smarandache BL-algebra , J. Applied logic **8**(2010)253-261.
- [2] *R. Cignoli, I.M.L. D'Ottaviano and D. Mundici*, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic publ, Dordrecht, (2000).
- [3] *N. Galatos, P. Jipsen, T. Kowalski and H. Ono* , Residuated Latticees, An Algebraic Glimpses at Submstructural Logic ,volume151 studies in Logics and the Foundations of Mathematics, Elsevier, (2007).
- [4] *P. Hajek*, Metamathematics of Fuzzy Logic ,kluwer Academic Publishers.
- [5] *M.Haveshki, A.Borumand Saeid and E.Eslami*,Some types of filters in BL-algebra , Softcom-puting, **10**(2006), 657-664.
- [6] *W. B. Vasantha Kandasamy*, Smarandache Groupoids,
<http://WWW.gallup.umn.edu/smarandache/groupoids.pdf>.
- [7] *M. Ward, R. P. Dilworth*, Residuated Latticees, Trans. Am. Math. Soc. **45**(1939)335-354.
- [8] *Y.Zhu, Y.Xu*, On filter theory of residuated latticees , Information Sciences, **180**(2010)3614-3632.