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INERTIAL HYBRID PROJECTION METHODS WITH SELECTION

TECHNIQUES FOR SPLIT COMMON FIXED POINT PROBLEMS IN

HILBERT SPACES

Thanasak Mouktonglang1, Raweerote Suparatulatorn2

In this work, we propose a new hybrid projection method based on inertial effects
and selection techniques to solve the split common fixed point problem of demicontractive

operators in real Hilbert spaces. The strong convergence of the method is proved by

assuming standard assumptions. Additionally, application is given to the multiple-sets
split feasibility problem.
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1. Introduction

Throughout this article, let H1 and H2 be two real Hilbert spaces equipped with their
own inner product 〈·, ·〉 and norm ‖ · ‖. Let A : H1 → H2 be a bounded linear operator with
its adjoint operator A∗. Define I1 = {1, 2, 3, . . . , s} and I2 = {1, 2, 3, . . . , t}, where s and t
are positive integers.

The split common fixed point problem (SCFPP) requires to seek an element x ∈ H1

satisfying

x ∈
⋂
i∈I1

Fix(Si) such that Ax ∈
⋂
j∈I2

Fix(Tj), (1)

where Fix(Si) and Fix(Tj) denote the fixed point sets of two classes of nonlinear operators
Si : H1 → H1 and Tj : H2 → H2.

Recently, Yao et al. [26] presented two iterative methods with selection techniques
for finite families of firmly nonexpansive mappings of the SCFPP (1) and obtain weak
and strong convergence theorems. The case s = t = 1 was firstly introduced by Censor
and Segal [1] and was further studied and extended by many researchers in, for instance,
[6, 11, 15, 20, 21, 22, 23, 24, 25, 27].

In optimization theory, to speed up the convergence rate, Polyak [9] firstly introduced
the so-called heavy ball method for solving smooth convex minimization problem. In order
to improve the convergence rate, Nesterov [8] proposed a modified heavy ball method as
follows:

yn = xn + θn(xn − xn−1),

xn+1 = yn − λn∇f(yn), n ∈ N, (2)
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where θn ∈ [0, 1) is an extrapolation factor and λn is a step-size parameter (sufficiently
small) and ∇f is the gradient of a smooth convex function f . Let us recall that the term
θn(xn − xn−1) in (2) is known as the inertial step and it plays very important role in
improving the performance of the method and has a nice convergence properties, see also
[3, 4, 13, 14].

In 2003, Nakajo and Takahashi [7] established strong convergence of the hybrid pro-
jection method for nonexpansive mappings in Hilbert spaces. Several authors have presented
different methods to solve problems related to fixed point problems; see [2, 10, 12, 16, 18,
19, 28].

Motivated by above research works, we construct inertial hybrid projection method
with selection techniques for solving the SCFPP (1) and prove strong convergence theorem
of the proposed method under some weakened assumptions.

2. Preliminaries

In this section, we give some mathematical preliminaries which will be used in the
sequel. Let H be a real Hilbert space. We know that the metric projection PC from H onto
a nonempty, closed and convex subset C ⊆ H is defined by

PCx := arg min
y∈C
‖x− y‖, x ∈ H.

Next, we have the following equality:

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 (3)

for all x, y ∈ H.

Definition 2.1. An operator T : C → C is said to be demicontractive (or k-demicontractive)
if there exists a constant k ∈ [0, 1) such that

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + k‖x− Tx‖2,
or equivalently,

〈x− Tx, x− x∗〉 ≥ 1− k
2
‖x− Tx‖2, (4)

for all (x, x∗) ∈ C × Fix(T ).

We use ⇀ for weak convergence and → for strong convergence. For a sequence {xn}
in H, the weak ω-limit set of {xn} is denoted by ωw(xn). Next, we give some important
tools for proving our main results.

Definition 2.2. Let T : C → H be an operator. Then T is said to be demiclosed at y ∈ H

if, for any sequence {xn} in C such that xn ⇀ x ∈ C and Txn → y imply Tx = y.

Lemma 2.1. [17] Given x ∈ H and z ∈ C. Then z = PCx if and only if there holds the
relation:

〈x− z, y − z〉 ≤ 0,

for all y ∈ C.
Lemma 2.2. [5] Given that x, y, z ∈ H and a ∈ R. The set

D := {v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a}
is convex and closed.

Lemma 2.3. [5] Let {xn} be a sequence in H and u ∈ H. Let z = PCu. If {xn} is such
that ωw(xn) ⊂ C and satisfies the condition

‖xn − u‖ ≤ ‖u− z‖,
for all n ∈ N. Then xn → z.
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3. Main result

In this section, we study the SCFPP (1) under the following hypothesis:
Let Si : H1 → H1 for i ∈ I1 and Tj : H2 → H2 for j ∈ I2 be two finite families of
demicontractive operators with constants βi ∈ [0, 1) and µj ∈ [0, 1), respectively, and both
I − Si and I − Tj are demiclosed at zero. Set β = max

i∈I1
βi and µ = max

j∈I2
µj . Suppose that

Ω :=

x : x ∈
⋂
i∈I1

Fix(Si) and Ax ∈
⋂
j∈I2

Fix(Tj)

 6= ∅.
Next, the following inertial hybrid projection method with selection techniques is constructed
to solve SCFPP (1). We also prove strong convergence of the proposed method under
standard assumptions.

Algorithm 3.1

Initialization: given initial points x0, x1 ∈ H1 be arbitrary, {ηn} ⊂ [0,∞) such that
ηn → 0 as n → ∞, {θn} is a real sequence such that |θn| ≤ θ for some θ, and set
C1 = Q1 = H1 and n = 1.
Iterative Steps: Construct {xn} by using the following steps:
Step 1. Select in ∈ I1 and jn ∈ I2 such that

‖zn − Sinzn‖ = max
i∈I1
‖zn − Sizn‖ and ‖(I − Tjn)Azn‖ = max

j∈I2
‖(I − Tj)Azn‖,

where zn = xn + θn(xn − xn−1).
Step 2. Compute

yn = zn − Sinzn +A∗(I − Tjn)Azn.

If yn = 0, then stop and zn ∈ Ω. Otherwise,
Step 3. Compute

wn = zn − τnyn,

where τn = γ
‖zn−Sinzn‖2+‖(I−Tjn )Azn‖2

‖yn‖2 with γ ∈ (0,min{1 − β, 1 − µ}) is a positive
constant.
Step 4. Compute

xn+1 = PCn∩Qnx1,

where Cn = {v ∈ H1 : ‖wn − v‖ ≤ ‖zn − v‖+ ηn} and
Qn = {v ∈ Qn−1 : 〈x1 − xn, xn − v〉 ≥ 0}.
Replace n by n+ 1 and then repeat Step 1.

Lemma 3.1. zn ∈ Ω if and only if yn = 0 for some n ∈ N.

Proof. The sufficiency is obvious. Next, we only need to prove the necessity. Assume that
yn = 0 for some n ∈ N. Then, for any x∗ ∈ Ω, by (4), we obtain

0 = ‖yn‖‖zn − x∗‖
≥ 〈zn − Sinzn +A∗(I − Tjn)Azn, zn − x∗〉
= 〈zn − Sinzn, zn − x∗〉+ 〈A∗(I − Tjn)Azn, zn − x∗〉
= 〈zn − Sinzn, zn − x∗〉+ 〈(I − Tjn)Azn, Azn −Ax∗〉

≥ 1− βin
2
‖zn − Sinzn‖2 +

1− µjn

2
‖(I − Tjn)Azn‖2.
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According to the definitions of in and jn, it follows from βin , µjn ∈ [0, 1) that

‖zn − Sizn‖ ≤ ‖zn − Sinzn‖ = 0, i ∈ I1 and ‖(I − Tj)Azn‖ ≤ ‖(I − Tjn)Azn‖ = 0, j ∈ I2.

Hence, we deduce zn ∈
⋂
i∈I1

Fix(Si) and Azn ∈
⋂
j∈I2

Fix(Tj). Therefore, it follows that

zn ∈ Ω. �

Theorem 3.1. The sequence {xn} generated by Algorithm 3.1 converges strongly to a so-
lution z̄ of problem (1), where z̄ = PΩx1.

Proof. Claim 1. ‖wn − z‖ ≤ ‖zn − z‖+ ηn for all z ∈ Ω.
Indeed, since z ∈ Ω and by (4), we have

〈yn, zn − z〉 = 〈zn − Sinzn +A∗(I − Tjn)Azn, zn − z〉
= 〈zn − Sinzn, zn − z〉+ 〈(I − Tjn)Azn, Azn −Az〉

≥ 1− β
2
‖zn − Sinzn‖2 +

1− µ
2
‖(I − Tjn)Azn‖2

≥ 1

2
min{1− β, 1− µ}

(
‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

)
. (5)

Using (3) and (5), we derive

‖wn − z‖2 = ‖zn − z − τnyn‖2

= ‖zn − z‖2 − 2τn〈yn, zn − z〉+ τ2
n‖yn‖2

≤ ‖zn − z‖2 − γmin{1− β, 1− µ}
(
‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

)2
‖yn‖2

+ γ2

(
‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

)2
‖yn‖2

= ‖zn − z‖2 − γ (min{1− β, 1− µ} − γ)

(
‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

)2
‖yn‖2

.

Since γ ∈ (0,min{1− β, 1− µ}), we obtain Claim 1.
Claim 2. {xn} is well defined and Ω ⊂ Cn ∩Qn for all n ∈ N.
From the definition of Cn and Qn, and by Lemma 2.2, we get Cn ∩Qn is closed and convex
for all n ∈ N. By Claim 1, we have Ω ⊂ Cn for all n ∈ N. Further, Ω ⊂ C1 ∩ Q1 and
x2 = PC1∩Q1

x1 is well defined. Assume that Ω ⊂ Ck ∩Qk for some k ∈ N. This shows that
xk+1 = PCk∩Qk

x1 is well defined. By Lemma 2.1, we have 〈x1 − xk+1, xk+1 − z〉 ≥ 0 for all
z ∈ Ck ∩Qk. So, 〈x1 − xk+1, xk+1 − z〉 ≥ 0 for all z ∈ Ω. It implies that Ω ⊂ Qk+1 and so
Ω ⊂ Ck+1 ∩Qk+1. Therefore, Claim 2 is obtained.
Claim 3. lim

n→∞
‖xn − zn‖ = 0.

Indeed, since Ω is a nonempty, closed and convex, there exists a unique z̄ ∈ Ω such that
z̄ = PΩx1. From xn+1 = PCn∩Qnx1 and Ω ⊂ Cn ∩Qn, we have

‖xn+1 − x1‖ ≤ ‖z̄ − x1‖ ∀n ∈ N. (6)

This implies that {xn} is bounded. Using Lemma 2.1 together with the definition of Qn, we
have xn = PQn

x1. Since xn+1 ∈ Qn, it implies that

‖xn − x1‖ ≤ ‖xn+1 − x1‖ ∀n ∈ N. (7)

This implies that lim
n→∞

‖xn − x1‖ exists. By Lemma 2.1, it follows that

〈xn − xn+1, xn − x1〉 ≤ 0.
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Applying this to (3), we deduce

‖xn − xn+1‖2 = ‖xn+1 − x1‖2 − ‖xn − x1‖2 + 2〈xn − xn+1, xn − x1〉
≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2.

This implies that

lim
n→∞

‖xn − xn+1‖ = 0. (8)

From {θn} is bounded sequence and by (8), we have

‖xn − zn‖ = |θn|‖xn − xn−1‖ ≤ θ|‖xn − xn−1‖ → 0 as n→∞.

Claim 4. lim
n→∞

‖zn − Sizn‖ = lim
n→∞

‖(I − Tj)Azn‖ = 0 for all i ∈ I1 and j ∈ I2.

From xn+1 ∈ Cn, we obtain

‖wn − zn‖ ≤ ‖wn − xn+1‖+ ‖xn+1 − zn‖
≤ 2‖zn − xn+1‖+ ηn

≤ 2‖zn − xn‖+ 2‖xn − xn+1‖+ ηn → 0 as n→∞,

which implies that

lim
n→∞

‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

‖yn‖
= 0. (9)

However, we observe that(
‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

)2
‖yn‖2

=

(
‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

)2
‖zn − Sinzn +A∗(I − Tjn)Azn‖2

≥
(
‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

)2
2 (‖zn − Sinzn‖2 + ‖A‖2‖(I − Tjn)Azn‖2)

≥ ‖zn − Sinzn‖2 + ‖(I − Tjn)Azn‖2

2 max{1, ‖A‖2}
. (10)

Combining (9) and (10), we immediately obtain

lim
n→∞

‖zn − Sinzn‖ = lim
n→∞

‖(I − Tjn)Azn‖ = 0.

By the definitions of in and jn, we get Claim 4.
Claim 5. xn → z̄, where z̄ = PΩx1. Indeed, from (6) and (7), we get

‖xn − x1‖ ≤ ‖z̄ − x1‖ ∀n ∈ N. (11)

We next show that every weak cluster point of the sequence {xn} belongs to Ω. Let q ∈
ωw(xn), that is, it has a subsequence {xnk

} fulfilling xnk
⇀ q as k →∞. By Claim 3, we

get znk
⇀ q as k → ∞. Since A is bounded linear operator, we obtain that Aznk

⇀ Aq as
k → ∞. By the demiclosedness at zero of I − Si and I − Tj , together with Claim 4, we
have q ∈ Ω. Applying Lemma 2.3 to the inequality (11), we can conclude that the sequence
{xn} converges strongly to z̄ ∈ Ω, where z̄ = PΩx1. �

4. Multiple-sets split feasibility problem

Multiple-sets split feasibility problem (MSSFP) is to find a point x ∈ H1 such that

x ∈
⋂
i∈I1

Ui and Ax ∈
⋂
j∈I2

Vj , (12)
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where {Ui}i∈I1 and {Vj}j∈I2 are two finite families of closed convex subsets of H1 and H2,
respectively. Assume that

Φ :=

x : x ∈
⋂
i∈I1

Ui and Ax ∈
⋂
j∈I2

Vj

 6= ∅.
Next, we present the following algorithm to solve MSSFP (12).

Algorithm 4.1

Initialization: given initial points x0, x1 ∈ H1 be arbitrary, {ηn} ⊂ [0,∞) such that
ηn → 0 as n → ∞, {θn} is a real sequence such that |θn| ≤ θ for some θ, and set
C1 = Q1 = H1 and n = 1.
Iterative Steps: Construct {xn} by using the following steps:
Step 1. Select in ∈ I1 and jn ∈ I2 such that

‖zn − PUin
zn‖ = max

i∈I1
‖zn − PUi

zn‖ and ‖(I − PVjn
)Azn‖ = max

j∈I2
‖(I − PVj

)Azn‖,

where zn = xn + θn(xn − xn−1).
Step 2. Compute

yn = zn − PUin
zn +A∗(I − PVjn

)Azn.

If yn = 0, then stop and zn ∈ Φ. Otherwise,
Step 3. Compute

wn = zn − τnyn,

where τn = γ
‖zn−PUin

zn‖2+‖(I−PVjn
)Azn‖2

‖yn‖2 with γ ∈ (0, 1).

Step 4. Compute

xn+1 = PCn∩Qnx1,

where Cn = {v ∈ H1 : ‖wn − v‖ ≤ ‖zn − v‖+ ηn} and
Qn = {v ∈ Qn−1 : 〈x1 − xn, xn − v〉 ≥ 0}.
Replace n by n+ 1 and then repeat Step 1.

By setting Si = PUi and Tj = PVj , then the following results are consequences of
Lemma 3.1 and Theorem 3.1, respectively.

Lemma 4.1. zn ∈ Φ if and only if yn = 0 for some n ∈ N.

Theorem 4.1. The sequence {xn} generated by Algorithm 4.1 converges strongly to a so-
lution z̄ of problem (12), where z̄ = PΦx1.

5. Conclusions

A new type of hybrid projection method by using inertial effects and selection tech-
niques, Algorithm 3.1, is proven to solve the SCFPP (1). The suggested method’s conver-
gence study shows that the sequence generated by Algorithm 3.1 converges strongly to a
solution of the problem under some basic control conditions.
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