U.P.B. Sci. Bull,, Series C, Vol. 84, Iss. 4, 2022 ISSN 2286-3540

IMPROVING MODEBI: MULTI-OBJECTIVE OPTIMIZATION
BASED ON DIFFERENTIAL EVOLUTION AND BAYESIAN
INFERENCE

Catalin Visan', Octavian Pascu?, Marius Stanescu®, Horia Cucu?,
Cristian Diaconu®, Andi Buzo®, and Georg Pelz”

Since the semiconductors’ industry is very competitive, and Artifi-
cial Intelligence (AI) can be used to design automated solutions, we aim
to speed up the development of the products using Al-based circuit sizing
techniques. Automating repetitive tasks is instrumental to reduce the time-
to-market of the products while increasing the productivity of the human
resource by letting the designers focus on creative tasks. This paper ana-
lyzes one of the state-of-the-art circuit sizing algorithms. MODEBI com-
bines a Differential Evolution engine with Gaussian Processes to efficiently
find good circuit configurations. However, some internal processes of the
algorithm can become computationally expensive. Thus, we are proposing
two improved mechanisms that drastically reduces the time budget needed
by the algorithm, while maintaining its high performance. This gives more
freedom to the circuit designer when defining the problem, and it reduces
the overall design time. In addition, we examine the impact of various hy-
perparameters on overall algorithm performance, and we propose suitable
values for them.

Keywords: Multi-objective Optimization, Evolutionary Algorithms, Dif-
ferential Evolution, Gaussian Processes, Circuit Design

1. Introduction

The status-quo in analog circuit design is that highly skilled engineers
are using CAD tools to speed up the design process. These tools are in contin-
uous development and manage to significantly ease the tasks of the designers.
However, the engineers still require a vast experience in the domain to be able
to properly take advantage of the modern tools. While some of their tasks
involve a high degree of creativity and ingenuity that require a skilled human
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operator, others are solely dependent on the experience of the engineer. To
reduce the R&D costs of semiconductors products, the human resource has to
be used efficiently. So, the creative tasks, such as topology selection and chip
architecture, should be the focus of the designers, while trial-and-error tasks
such as circuit sizing can be handled with the help of Artificial Intelligence
empowered optimizers.

The effort of automating circuit sizing was divided into two directions.
First is a qualitative approach, using the prior knowledge of the circuit and
its equations, one can build a golden model which can be used afterwards
to find the best circuit configuration. The problem of this approach is the
deviation of the real circuit from the golden model. In some cases this drawback
makes this approach unfeasible. The second one is a quantitative approach
based on circuit simulations. In this case, the search is based on particular
configurations of the real circuit, so there is no deviation from the ”ground
truth”. Basically, any hyperspace sampling technique can be used to search
the optimal configuration of the circuit. Some examples in this regard are
Simulated Annealing [1] [2], Particle Swarm Intelligence (PSO) [3] or Bayesian
Optimization (BO) [4] [5]. Also, most of the state-of-the-art evolutionary
algorithms (EAs) can be used.

In previous work, we compared the most promising 5 evolutionary algo-
rithms [6] [7] resulting in GDE3 [8] being the best for this class of applica-
tions. Moreover, an evolutionary algorithm can use surrogate models to speed
up the search by reducing the number of simulations [9] [10]. Gaussian Pro-
cesses (GPs) are the most commonly used surrogate model in circuit sizing
automation, not only in combination with EAs but also as support for BO
[4]. We proposed Multi-objective Optimization based on Differential Evolu-
tion and Bayesian Inference (MODEBI) [11]. It uses a Differential Evolution
(DE) engine, just like GDE3, and GPs as surrogate model. Even though
its performances are very good, its candidate selection strategy can be quite
time-consuming. Thus, in this paper we propose some trade-offs to drastically
reduce the time budget needed for each epoch of optimization of MODEBI. In
addition, we are tuning two of the hyperparameters of MODEBI, to maximize
its performance.

The paper is organized as follows. In Section 2 we describe the concepts
used in the rest of the paper, and we explain the selection strategy of MODEBI.
In Section 3 we explain several possible issues and how we address them.
Then, in Section 4 we present the results of the experiments and discuss the
implications. Finally, in Section 5 we draw the conclusions and discuss future
plans.

2. Background

The circuit sizing task involves a set of design parameters (DPs) that
define the circuit configuration, and a set of circuit responses that define the
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performance of the circuit. Usually, the responses have to satisfy certain spec-
ifications, but some of them have to be further optimized to maximize the
circuit’s performance. Thus, this formulation corresponds to classical con-
strained Multi-objective Optimization problem (MOOP) with the DPs being
the input vector and the responses having associated constraints. Some re-
sponses are also optimization objectives that have to be optimized after the
constraints are met.

2.1. Differential Evolution

The most widely used methods for solving MOOPs are based on evolu-
tionary algorithms (EAs). In previous work we have analyzed the performances
[6] of State-of-the-art EAs, with a focus on versatility and maintaining popula-
tion’s diversity [7]. Overall, we concluded that GDE3 [8] is the most promising
algorithm for circuit sizing tasks. Based on its intrinsic characteristics it pro-
duces a steady evolution keeping a high degree of diversity in its population.
GDE3 uses a Differential Evolution engine that generates a new offspring so-
lution starting from a parent solution and altering one or more components of
its input vector. The algorithm decides based on a stochastic method if each
of the components will be altered or not. The alteration is based on other 3
randomly selected solutions from the population. The component of the first
one is used as the base term, while the components of the other two are used
for the differential term (Equation 1).

Cnew(t) = C1(0) + F x (C(i) — Cs(3)), (1)

where F is a tuning parameter balancing the importance of the differential
term.

2.2. Metrics

When it comes to evaluating the generated solutions, it is important
to understand if we are comparing feasible solutions (that are meeting the
specifications) or unfeasible ones. It is clear that a feasible solution is better
than an unfeasible one, but in MOOPs it is not trivial to compare solutions
having the same feasibility level. To compare unfeasible solutions, an aggregate
metric called Constraint Violation (CV) can be used. It represents the distance
between the responses of the solution and the specification as a weighted sum
of the distance of each response (Equation 2).

V)= 3 pen T .

where N. is the number of constraints, cv;(x) is the violation component of
the response i of solution z and PO is the initial population.

For feasible solutions, the non-dominance criterion can be used. A so-
lution is dominating another, if all its objectives values are better. However,
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there is the case when two solutions are mutually non-dominated and ad-
ditional metrics can be used. A computationally cheap metric is Crowding
Distance (CD). It can be used to eliminate the solutions that are negatively
impacting the diversity of a group of mutually non-dominating solutions. How-
ever, the only indicator that guarantees a fair comparison is the Hypervolume
(HV). It represents the area in the hyperspace dominated by a set of solutions
and bounded by a Nadir point. Formally, the Hypervolume of a set S C R? is
defined [12] in Equation 3.

H(S)=A({qeR'|FpeS:p<qand ¢ <n}) (3)

where n € R? is the nadir point, A() is the Lebesgue measure and d is the
number of objectives. An example for a two-dimensional objectives space is
presented in Figure 1. The HV can be computed for a single solution (Figure
1a) or for a set of solutions (Figure 1b). A larger value of the indicator repre-
sents a better set of solutions. The main drawback of HV is the computational
cost [12].
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FI1GURE 1. Hypervolume indicator for 2 objectives

Apart from performance, the diversity of a group of solutions is important
for the overall performance of an algorithm. For unfeasible solutions, the CV
measures only the performance of a certain solution. For the feasible ones, both
CD and HV take into account the diversity, but just for the non-dominated
solutions. Thus, we need a metric to compute the diversity of the entire
population no matter the nature of the solutions. Distribution Metric (DM)
[13] measures both spread and uniformity of the population giving results that
correspond to the judgement of a human actor. It uses the projections of the
solutions on the axis to compute statistical parameters such as mean, standard
deviation, nadir and ideal points, and it computes an aggregate on the entire
population. In addition, it is not computationally expensive O(N?), since it
uses just the projections and not the solutions in the hyperspace.
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2.3. GDE3

To maintain diversity, GDE3 is always comparing each offspring with
its parent. That means that a solution is usually replaced by its offspring.
So, if the initial (often randomly selected) population is diverse enough, the
populations in the following epochs of optimization are also going to maintain
some degree of diversity.

For unfeasible solutions GDE3 uses CV. For feasible solutions it uses the
non-dominance criterion, so the selection is more complex. If the solutions are
mutually not-dominating, both the parent and the offspring are kept in the
population. Due to this mechanism, the population tends to increase. Thus,
at the end of the optimization epoch, a pruning process is required. Here,
the Pareto dominance is used. The solutions are assigned a rank based on
their respective front. Solutions from front 0 are not dominated, the ones from
front 1 are dominated only by solutions from front 0 and so on. The solutions
from numerically higher fronts are discarded until the population is back to
the original size. If a certain front cannot be entirely discarded, CD is used
to eliminate the solutions that are negatively impacting the diversity of the
certain front.

2.4. MODEBI

To improve the performance of GDE3, we proposed Multi-objective Op-
timization based on Differential Evolution and Bayesian Inference (MODEBI)
[11]. The block diagram of MODEBI algorithm is presented in Figure 2.
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Train GP N y
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og wi simulator (N DP configs)

) 4 |
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T

Evaluate the Select the most Evaluate the N/4 Select new New population
10xN offspring promising N4 offspring —» population from N inpdivpiduals]
using the GP offspring wi simulator the N+N/4 configs

Candidate Population
selection survival

Yes

Sim budget
available?

FIGURE 2. Multi-objective Optimization based on Differential
Evolution and Bayesian Inference [11]

MODEBI uses a Gaussian Process (GP) trained on simulation data to
create a surrogate model for the simulator. The GP is further used to predict
circuit responses faster than using the simulator and it is retrained periodically
(i.e. when new simulation data is available). MODEBI is generating 10 times
more candidates than the population size, which are first evaluated using the
GPs in order to select the ones that will be sent to the simulator.
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Based on the results provided by the GPs, a number of offspring equal to
25% of the population size are going to be selected and evaluated on the real
simulator. This ensures a high optimization speed, while maintaining a large
population to maintain diversity.

There are two selection strategies. The first one is called Hereditary
Selection (HSel) and it takes into account the idea behind GDE3 that the
offspring should be compared only with the direct parent. Thus, it selects the
best offspring amongst the ones of a certain parent. Then, 25% of the selected
offspring that have the highest chance to have better performance than their
direct parents are evaluated on the real simulator.

The second selection strategy is called Pool Selection (PSel) and it doesn’t
use the information about the parents of the offspring. It selects a number of
offspring equal to 25% of the population size based solely on their performance.
When comparing feasible solution, HV is used. In the case of unfeasible solu-
tions, PSel uses a metric based on CV and DM. They are treated as ”virtual”
objectives of the optimization, and their HV is used as the performance metric
of unfeasible offspring. To balance the importance of CV and DM, a hyperpa-
rameter called Distribution Metric Reduction Factor (DM-RF) is used.

After the offspring are selected and evaluated, they will go through a
survival process together with the solutions in the current population. Since
there are 4 times fewer offspring than parents, a minimum of 75% of the
population will remain the same. MODEBI proposes two survival mechanisms.
The first one is called Pareto Survival (PSv) and it is similar to the GDE3
approach. Each offspring is compared to its parent and the best one is kept.
The second mechanism is called Improved Survival (ISv) and it concatenates
the list of offspring with the population resulting an ”extended” population.
The next population is then built based on HV. If the solutions are unfeasible,
the HV is computed on CV and DM, and if the solutions are feasible, the HV
is computed on the optimization objectives.

MODEBI offers better results than GDE3, but it is extremely dependent
on the predictions of the surrogate model. Thus, it is essential to have the
best configuration for the GPs, which means hyperparameter tuning can have
an important positive impact. In addition, when using PSel, the performance
of the algorithm depends on the value of DM-RF hyperparameter. This is
especially important since generally PSel has better performance than HSel.
Another important aspect is the time budget. The computational complexity
of HV grows exponentially with the number of objectives and the number of
considered solutions. Consequently, MODEBI can be computationally unfea-
sible for problems with a high number of optimization objectives.
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3. Methodology

In this section, we are presenting the strategy used for parameter tun-
ing as well as the comparison between the original MODEBI mechanisms for
candidate selection and survival, and the trade-offs we propose.

3.1. Parameter Tuning

In terms of candidate selection, MODEBI uses Gaussian Processes (GPs)
as a surrogate model to reduce the number of simulations required. Based on
the performance of the candidates evaluated during the previous epochs of
optimization, the GPs are trained to predict the values of the circuit responses
of the offspring in the current epoch. In addition to the plain prediction, a
GP is also providing its level of uncertainty. The optimization algorithm uses
an acquisition function to compute the considered value of the response from
the prediction and its level of uncertainty. The acquisition function used by
MODESBI is called Lower Confidence Bound (LCB) (Equation 4).

LCB = upred —k x Opred (4)

where fp,eq is the prediction, oyp,.cq is the level of incertitude. Parameter "k” is
weighing the importance of the level of incertitude. Thus, a high value of "k”
means a strong exploratory behavior, the algorithm being optimistic about
the chance of finding good candidates in unexplored areas. A negative value of
”k” means that the algorithm is focus on exploitation rather than exploration.
Finally, £ = 0 means that the algorithm is using the plain prediction as the
considered response value.

In order to find the best value for parameter "k”, we are running multi-
ple experiments using Hereditary Selection (HSel). As stated, Pool Selection
(PSel) has the best performances, but it is also dependent on DM-RF. Tuning
two parameters in the same time means performing a grid search that requires
a high number of experiments. Since the GPs are working the same with both
PSel and HSel, we prefer to isolate this problem by using HSel, because it is
not dependent on the Distribution Metric Reduction Factor (DM-RF).

After finding the best value of "k” using the experiments with HSel,
"k” will be fixed and used in experiments with PSel in order to tune DM-
RF. In the early stages of the optimization, when there are only unfeasible
candidates, the selection is made based on Constraint Violation (CV) and
Distribution Metric (DM). The CV is calculated for all the offspring, then a
few of them are selected solely with this metric. Then, for each of the other
offspring, the DM is calculated based on its position in the design parameter’s
space and the position of the already selected offspring. This process is done
iteratively, the DM being calculated again after each new selected offspring.
To take into account both DM and CV, the two metrics are used as artificial
objectives to compute the Hypervolume (HV). Then the solution with the
best HV is selected. However, to find the best trade-off between exploitation
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and exploration, the impact of CV and DM can be different. Thus, we are
using DM-RF as a weighing mechanism. DM-RF is a positive integer. A high
value means that the impact of DM is low, so the algorithm is focused on
exploitation. A lower value of DM-RF means a stronger exploratory behavior.

3.2. Performance-Timing Trade-off

The new candidate selection and survival policy that were proposed in
MODEBI (i.e. PSel and ISv) use HV to compare solutions. The necessary
time budget for HV computations is exponentially growing with the number
of objectives of the optimization problem, when the algorithm starts finding
feasible candidates. This is an important drawback. Thus, we are measuring
the impact on the time budget, and we propose a cheaper solution that has
similar performance.

When the algorithm starts producing enough feasible candidates, the
most promising offspring are selected based on HV. The original approach of
PSel is to select offspring iteratively, taking into account the feasible candidates
in the current population and the already selected offspring. The problem is
that the number of offspring predicted by the GPs to be feasible is growing
fast, while the number of feasible candidates in the population is also growing.
So, the number of HV computations required becomes important. Moreover,
for problems with a high number of objectives, each HV computation is quite
expensive (Table 1). Therefore, we propose to reduce the complexity of HV
computations by drastically limiting the number of candidates considered from
the current population. The disadvantage is that the selected offspring will be
diverse compared to each other, but each of them can be close to candidates
in the current population. However, this is a negligible performance loss for
achieving a feasible timing budget.

The Improved Survival (ISv) mechanism starts from an extended pop-
ulation consisting of the previous population and the selected and simulated
offspring. Its goal is to select a number of solutions equal to the population
size. If the number of feasible solutions exceeds the population size, it uses
an iteratively constructive approach based on the HV computed using the
already selected candidates (Algorithm 1). Since the complexity of the HV
computation grows with the number of solutions considered, after a number
of candidates are selected, each HV computation becomes computationally
expensive. To overcome this issue we propose a hybrid mechanism partially
inspired by the pruning mechanism of GDE3. A number of the solutions will
be selected based on expensive HV computations, ensuring that the best so-
lutions in terms of HV are always selected. Then, when it comes to selecting
the best solutions amongst the low performing ones, instead of using expensive
HV computations, we use the cheap Crowdin Distance (CD) based pruning.
Thus, the timing budget is drastically reduced, while the negative impact on
solutions’ quality is negligible.
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Algorithm 1: Improved Survival (for feasible solutions)

Input: Extended population ExXPOP of size N+N /4
Input: Number of solutions by expensive computations Nsec
Output: Next population NextPOP of size N
NextPOP = ||
for : =0; i < Nsec; i ++ do
for sol in ExPOP do
| computeHV(sol + NextPOP)
end for
best_sol = selectBestHV(ExPOP)
NextPOP .append(best_sol)
ExPOP .delete(best_sol)
end for
if NextPOP.len < N then
best_sols = pruneCD(ExPOP, N - NextPOP.len)
NextPOP .extend(best_sols)
end if
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4. Results

In this section we present the results obtained during parameter tuning
and the findings related to the performance-timing trade-off when MODEBI is
searching the feasible solutions’ area. The parameter tuning was performed on
two voltage regulator topologies, further referenced as Circuit 1 and Circuit
2. Circuit 1 has 27 Design Parameters (DP) and 11 circuit responses with
associated constraints, 3 responses being also optimization objectives. For
Circuit 1 the optimization process is performed in 8 Operating Corners (OC).
Circuit 2 has 8 Design Parameters and 6 circuit responses with associated
constraints, all 6 responses being also optimization objectives. For Circuit 2
the optimization process is performed in 10 Operating Corners.

4.1. Parameter Tuning

For parameter tuning we use the following procedure: First, we want to
find the best value for parameter "k” using Hereditary Selection (HSel). Then,
using the best "k”, we want to find the best Distribution Metric Reduction
Factor (DM-RF) using Pool Selection (PSel). As stated, PSel showed better
results in [11] than HSel, so it is the main target the tuning procedure. How-
ever, to isolate the impact of "k” from the impact of DM-RF, we are searching
for the best ”k” using HSel, since this it is not using DM-RF.

Figure 3, Figure 4, Figure 5 and Figure 6 display the Constraint Viola-
tion (CV) of the best individual (solid line) in each epoch of evolution. The
CV is calculated based on an aggregated individual having the worst responses
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amongst the OCs’ simulations. The vertical dotted line represents the moment
when the first feasible solution is found. Then, the Hypervolume (HV) is com-
puted over all the feasible solutions in the current population. The Nadir point
used for HV computations is the actual set of constraints, since it represents
the worst possible feasible solution. If the dotted lines are missing, it means
the optimization run did not find any feasible solution.

For parameter "k” there were 4 values considered for tuning (—0.1,0,0.1
and 0.3). It can be seen from Figure 3 that the impact of "k” on Circuit 1 is
limited. All four experiments find individuals with similar performance. Thus,
the value cannot be chosen based on these results.
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FIGURE 3. Parameter "k” tuning with MODEBI (HSel) on Circuit 1

In Figure 4 the "k” parameter tuning on Circuit 2 is presented. One
important aspect for a designer is to find a circuit configuration that meets
the specifications as fast as possible. On the other hand, it is important that
at the end of the optimization the feasible solutions to approximate best the
Pareto front, which means obtaining the biggest HV possible value. In terms

k Parameter Tuning

~
I
=
‘D—'
s}
<
b

°

g 0.06
= k= 01cv °
5 % — k= 03CV % g
5 =]
2 004 O
€ 015 : 5
© H 0.03

H L = o
= k =-0.1_HV e
g H - k= 0HV |onT
© oos ﬂx k= 0.1HV |

- : === k= 0.3 HV

3 3 0.00
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Number of simulations

FIGURE 4. Parameter "k” tuning with MODEBI (HSel) on Circuit 2

of convergence rate it is quite clear that the experiment with k& = 0 obtains
better results than the other 3 values. Since, it is the faster in generating
feasible solutions. In terms of HV, all the experiments have a flat or nearly
flat evolution. After they generate the first feasible solutions, they do not
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manage to significantly increase the HV by generating better ones in terms of
performance or diversity. Thus, it is hard to compare the four optimization
runs in this regard, because the quality of the first feasible solutions generated
is highly impacted by randomness. Considering the faster convergence rate,
we consider the experiment with £ = 0 to be the most promising one. This
means that MODEBI algorithm works best with the prediction from the GP,
without using the uncertainty measure provided. So, "k” was fixed to 0 for
the following experiments concerning DM-RF tuning.

For DM-RF the results are easier to interpret. In Figure 5, 6 experiments
with different DM-RF on Circuit 1 are compared. There might not be a direct
correlation between the value of DM-RF and the performance of MODEBI. For
example the experiment with DM-RF = 4 is able to find feasible solutions faster
than the one with DM-RF = 7. However, this may be just the randomness
impact over the evolution, because there is a clear difference in performance in
the extreme values. The experiment with DM-RF = 10 performs best, while
the experiment with DM-RF = 1 performs worst.

DM-RF Parameter Tuning
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FIGURE 5. Parameter "DM-RF” tuning with MODEBI (PSel)
on Circuit 1

In Figure 6, 4 experiments with different DM-RF on Circuit 2 are com-
pared. Also in this case, the experiment with DM-RF = 10 obtains the best
performances. Moreover, it is the only experiment that produces feasible indi-
viduals. Selecting higher values (10) for DM-RF means a much lower weight
to the Distribution Metric (DM). Prioritizing CV over DM seems to have a
good impact on the convergence of the algorithm.

These experiments show the importance of hyperparameters tuning in
the context of Artificial Intelligence based circuit sizing methods. While a
good value for a hyperparameter can lead to an important speed-up, around
1.6 for "k” and 3.4 for DM-RF in our case. It is important to mention that
sometimes (as in Figure 6) the value of the hyperparameter can make the
difference between obtaining a circuit configuration that meets the specifica-
tions or not. In practice, reducing the design time of the analog blocks lead
to smaller time-to-market of semiconductors products. Also, obtaining circuit
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DM-RF Parameter Tuning
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configurations that meet the specifications from a single optimization run is
essential for achieving a lower design time.

4.2. Performance-Timing Trade-off

During the experiments performed on the two circuits, we have observed
an important difference between the timing budgets. While the candidate
selection and survival mechanisms were negligible in terms of time budget
for the first circuit, they were an important aspect for the second circuit.
We observed this difference during the evolution in the hyperspace of feasible
solutions. Since the metric used in this case is the Hypervolume, we analyzed
its computation time based on the number of individuals involved and the
number of objectives of the target circuit. The results are presented in Table
1.

Objectives\Solutions | 30 60 80 90 100
3 0.0013 | 0.0063 | 0.0103 |0.0121 |0.0143
4 0.0031 | 0.0195 | 0.0312 | 0.0382 | 0.0455
5 0.0173 | 0.1394 | 0.3600 | 0.4600 | 0.5337
6 0.2055 | 2.2422 | 6.9643 | 10.4896 | 13.1571
7 1.0876 | 13.7714 | 55.0963 | 74.7566 | 87.6359

TABLE 1. Hypervolume timing based on the number of objec-
tives and the number of feasible solutions [seconds]

It is quite clear that the computation time of one Hypervolume is grow-
ing fast with both the number of objectives and the number of considered
solutions. As a numeric example, if the population (100 solutions) includes
just feasible solutions, and the GP predicts 500 offspring to be feasible, there
will be about 12500 HV computations (101 to 125 solutions each). This means
that for Circuit 1 (3 objectives), the time budget of selection has to be around
5 minutes, while for the Circuit 2 (6 objectives) it has to be around 2 days.
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This is completely unfeasible, so we proposed two mechanisms to limit the
computation time while keeping the original ideas behind MODEBI candidate
selection and survival procedures.

For the candidate selection procedure, the original approach of MODEBI
was to consider the already selected candidates and the feasible solutions in
the current population to select the next candidates. The proposed trade-off is
to consider the already selected candidates and just the best feasible solutions
from the current population. The number of the best feasible solutions is
variable from 0 to the population size (original approach).

In Table 2 there is the computing time for each solution selected in 3 cases
(0, 5 and 10 best solutions considered) on Circuit 2. For example, to select the
5th solution in case 0 there will be 4 already selected solutions considered and
no solution from the current population, in comparison to 4 already selected
solutions and 100 solutions from the current population (original approach).
Thus, the total computation time is reduced drastically, from around 2 days
to around 15 minutes.

size size

sol # 0 5 10 sol # 0 5 10

1 0.07 0.9 5.22 |14 16.1 42.82 93.97
2 0.1 1.55 | 794 |15 21.29 50.07 101.47
3 0.17 |2.46 |10.93 |16 26.04 70.9 121.64
4 0.32 |3.84 |15.78 |17 33.29 80 152.67
) 0.57 |6.1 18.81 | 18 40.17 99.08 184.52
6 1.24 | 8.19 |24.55|19 49.24 116.79 210.36
7 1.79 |1 10.89 | 25.92 | 20 57.36 135.33 225.36
8 297 | 11.52 | 32.87 | 21 65.05 142.4 233

9 4.26 |13.63 | 35.49 | 22 72.54 151.84 271.54
10 4.49 |20.78 | 42.98 | 23 91.55 182.06 345.48
11 5.55 | 24.37|52.36 | 24 121.68 | 236.73 382.7
12 8.58 | 27.53 | 62.11 | 25 130.5 270.28 427.06
13 11.85 | 35.57 | 86.03 | Total: | 766.77 | 1745.63 | 3170.76

TABLE 2. Solution selection timing (25 out of ~500) depending
on 0, 5 and 10 considered solutions for Circuit 2 [seconds]

The original survival procedure of MODEBI involves constructing the
next population one by one always considering the previously selected can-
didates. This procedure ensures that the population have the maximum HV
possible. However, the time budget needed for Circuit 2 was around 10 hours,
which is unfeasible. The proposed trade-off in this case is to select just a
fraction of the population with the original approach and the rest using the
Crowding Distance (GDE3 approach).
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In Table 3 two cases are analyzed: 10/30 solutions selected with the
MODEBI approach, the rest being selected using GDE3 approach. The com-
putation time is 2 minutes and 10 minutes respectively. HV100 is the HV
obtained with the original MODEBI approach, while HV10/HV30 is the HV
of the first 10/30 solutions. During the 12 epochs considered the best 10 solu-
tions represent more than 92% of the HV obtained with the original MODEBI
approach, while the best 30 solutions represent more than 97%. So, the per-
formance is good enough just taking the fraction of the population with the
original MODEBI approach. In addition, using the GDE3 approach for the
rest produces populations that differ just a little in terms of HV from the pop-
ulation produced with the original MODEBI approach. The error is calculated
as follows error|%] = HVierigmal-pop) _HV(cheap-pop) 1y g]] epochs, the error is

HYV (original_pop)
less than 1%; in 11 out of 12 epochs, the error is less than 0.1%; and in 9 out
of 12 epochs, the error is less than 0.01%.

Epoch 1 2 3 4 5 6
Considered solutions | 121 118 106 109 117 118
HV10 / HV100 [%] |92.45 |91.97 |92.78 |92.42 |92.42 | 92.86
error [%] (10 sol) 0.0289 | 0.3670 | 0.0003 | 0.0978 | 0.0018 | 0.0031
HV30 / HV100 [%] |97.23 |97.80 |97.79 |97.70 |97.71 |97.71
error [%] (30 sol) 0.0291 | 0.3673 | 0.0003 | 0.0980 | 0.0021 | 0.0027
Epoch 7 8 9 10 11 12
Considered solutions | 117 120 113 119 119 121
HV10 / HV 100 [%] |92.86 |93.39 |93.39 |93.38 |93.38 |93.38

error [%] (10 sol) 0.0018 | 0.0028 | 0.0021 | 0.0054 | 0.0012 | 0.0027
HV30 / HV 100 [%] | 97.71 |97.70 |97.70 |97.70 |97.70 | 97.70
error [%] (30 sol) 0.0010 | 0.0025 | 0.0012 | 0.0081 | 0.0010 | 0.0016

TABLE 3. Cheaper survival (10 and 30 solutions chosen based
on HV, the rest being chosen based on CD) compared to the
original MODEBI survival (100 solutions based on HV)

The two proposed mechanisms extend the usability of MODEBI algo-
rithm, giving the circuit designer more freedom in defining the problem. As
described, in the situations where the number of optimization objectives is
high, the original candidate selection and survival mechanisms of MODEBI
are too computationally expensive. So, the circuit designer has some restric-
tions while defining the problem (e.g. limited number of objectives). Using the
improved versions proposed in this paper, the designer can set the trade-offs
such that it fits his needs.
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5. Conclusions

The focus of this paper is to extensively present the improvements over
the State-of-the-art MODEBI algorithm. It describes the methodology used
for parameters tuning and the corresponding results. Also, it introduces and
motivates an enhancement to MODEBI which shows a big improvement in
computation speed with negligible costs in performance.

The tuning of parameter "k” shows that MODEBI works best with the
direct prediction of its Gaussian Processes (GPs), without taking into account
the level of uncertainty of the prediction. Further research in this area should
analyze the possibility of integrating different acquisition functions for the GPs.
For Distribution Metric Reduction Factor (DM-RF) it seems that MODEBI
needs a high value that promotes an exploiting behavior.

The proposed candidate selection mechanism, that does not take into
consideration the feasible candidates in the current population, significantly
reduces the time budget for each optimization. For sizing tasks with a high
number of optimization objectives this makes MODEBI a feasible option. The
trade-off is that in later stages of the optimization, the offspring can be close
to their parents. The impact of this drawback can be analyzed in future work.
Anyhow, it is a low price for making the algorithm usable.

In terms of survival, it seems that using Crowding Distance (CD) to select
most of the solutions does not impact the performance considerably. Same as
for the candidate selection, the gain in terms of speed-up is tremendous. Thus,
the dimension of the fraction of Hypervolume-based chosen solutions has to
prioritize speed-up, since the performance loss is negligible.

In future work we plan to design a more robust algorithm that is less
dependent on complex solutions’ selection mechanisms. This can also help to
reduce the number of hyperparameters that require tuning, such as DM-RF.
A promising track is to use the surrogate model as a synthetic circuit sim-
ulator and to run ”virtual” epochs of optimization to reduce the number of
real simulations. Consequently, the optimizer can work exactly as the original
version of an evolutionary algorithm, without the need of offspring preselec-
tion. In addition, we plan to explore the multiple Hypervolume computation
algorithms [14] to further reduce the necessary time budget. Specifically, for
current population survival mechanism of MODEBI, it is beneficial to compute
the Hypervolume contributions of the solutions in a set [15] and to find the
least Hypervolume contributor [16].
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