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NMOPSO: AN IMPROVED MULTIOBJECTIVE PSO 

ALGORITHM FOR PERMANENT MAGNET MOTOR 

DESIGN 

Lassaad ZAARAOUI1, Ali MANSOURI2, Nadia SMAIRI3 

This work deals with the investigation of a new multiobjective particle swarm 

optimization (PSO) algorithm and the use of this algorithm for the optimization of 

the geometry of an in-wheel motor. The proposed algorithm introduces a new 

strategy to avoid the fall into local optima. This strategy proposes new parameters 

and adjusts the relationship between certain other parameters to increase the use of 

particle information and the convergence precision. Through a multiobjective 

optimization problem formulated from the analytical model of the studied motor, the 

proposed algorithm has been compared with two other multiobjective PSO 

algorithms and validated using the finite element analysis. 

 

Keywords: multiobjective optimization, particle swarm optimization, permanent 

magnet motor, finite element analysis 

1. Introduction 

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm 

for nonlinear problems developed by Eberhart and Kennedy in 1995 [1]. It is 

based on a set of particles modeled as vectors and originally arranged randomly. 

These particles move in the search space to find a global optimal solution. Each 

particle constitutes a potential solution, and it has a position vector inside the 

search space and a velocity vector which will be used to calculate the next 

position. Within the swarm, a neighborhood is determined for each particle as the 

subset of particles that can communicate. Moreover, each particle has a memory 

which contains the best position found by itself (personal leader), and the best 

position reached by the particles belonging to the neighborhood (global leader) 

[2]. The displacement of a particle is affected by three tendencies. Indeed, the 

particle tends either to follow its own path, or to return to its best position already 

found, or to follow the best position found by the neighborhood. Based on the 
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memory information, the displacement of the particle is a compromise between 

these three tendencies [3]. 

In a D-dimensional search space, we assume that N particles iterate T 

times. At each time step t, the i-th particle is determined in the d-dimensional 

position with xid, the velocity is recorded by vid, the best visited position of the 

particle (personal leader) is expressed by pid, and the best solution found by its 

neighborhood (global leader) is recorded with gd [2]. The general displacement of 

the particles is done by the following two equations [4]: 

( ) ( ) ( ) ( )1 1 2 21id id id id d idv t v t c r p x c r g x+ = + − + −         (1)
 

( ) ( ) ( )1 1id id idx t x t v t+ = + +
        

(2) 

where ω is the inertia factor which allows to control the displacement of 

the particle between the exploitation and the exploration in the search space, c1 

and c2 are learning factors, r1 and r2 are random numbers which follow a 

probabilistic law on [0..1]. 

The PSO algorithm is the most widely used in the optimization of electric 

machines. In [5] the PSO algorithm was used to determine the optimal values of 

the design variables of a reluctance machine. The optimization process was 

carried out according to two criteria, which are: the minimization of the torque 

ripple and the maximization of the output power. It has been shown that the 

algorithm makes it possible to find a compromise between the two conflicting 

objectives, and to obtain the optimal variables that meet the design requirements. 

The optimization of a surface permanent magnet synchronous machine 

was performed in [6] using the PSO algorithm. The aim of this study was to 

optimize the parameters of the winding structure to decrease the copper losses and 

reduce the operating temperature. The authors were illustrated that the 

optimization results reduced the copper losses from 0.719 W to 0.468 W, thereby 

solving the problem of motor heating. 

In [7], a detailed study of a permanent magnets machine for an in-wheel 

motor has been presented. Two multiobjective PSO algorithms were used to 

determine the optimal geometry that maximize the efficiency and minimize the 

mass of the machine. It has been shown that the two algorithms provide optimal 

and achievable solutions in a short execution time. With the final aim of 

confirming the efficiency of the used algorithms, the optimization results were 

validated by the finite element method. 

In [8], the Optimizer Multiobjective PSO (OMOPSO) [9] and the Speed-

constrained Multiobjective PSO (SMPSO) [10] algorithms were used to find the 

optimal design of an in-wheel permanent magnet motor for an electric vehicle. 

The optimization process has been carried out according to three objectives: The 

first is the efficiency maximization, the second is the mass minimization, and the 

third is the torque ripple minimization. After several executions, it has been 
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shown that the two PSO algorithms can find a multitude of achievable solutions. 

However, the OMOPSO algorithm can generate a well-diversified Pareto front 

that contains more solutions than the SMPSO algorithm. Moreover, a comparison 

using the covariance metric showed that there are more solutions of the OMOPSO 

algorithm that dominate the SMPSO solutions. The same comparison was made in 

[11] using only the first two objective functions. The comparison showed that the 

OMOPSO algorithm is somewhat better than the SMPSO algorithm, according to 

the covariance metric.  

Compared to the previous works [7] [8] [11] [12] [13] [14], the novelty of 

this work is to propose a new multiobjective particle swarm optimization 

algorithm. It is based on the OMOPSO algorithm. The ultimate goal is to improve 

the diversity and the convergence accuracy of the OMOPSO algorithm. The new 

algorithm will also be applied for the optimal design of an in-wheel motor. 

Indeed, this work also presents the analytical model of a new topology of the in-

wheel motors intended for electric vehicles. This topology adopts the unequal 

stator teeth and the concentrated windings single layer to improve the motor 

performance. 

The remainder of this paper is structured as follows: The OMOPSO 

algorithm is reviewed in section 2. In section 3, we present our new algorithm. 

The analytical model of the in-wheel motor and the optimization problem are 

described in the section 4. The optimization results of the new algorithm and two 

other multiobjective PSO algorithms are presented in section 5. The comparison 

of the algorithms and the results discussion are respectively presented in sections 

6 and 7. Finally, we finish by the conclusion. 

2. Multiobjective Particle Swarm Optimization (OMOPSO) 

Based on Pareto dominance, crowding distance and two different mutation 

operators, the OMOPSO algorithm [9] was invented in 2005 by Sierra and Coello. 

This algorithm works as follows: first, after the initialization of the positions and 

velocities of the particles in the search space, the approach consists of storing the 

non-dominated particles in an external archive as leaders. Then, the crowding 

distance of each leader is calculated. After that, at each iteration and for each 

particle, the approach consists of randomly selecting a global leader from the 

archive, changing the particle position using equations (1) and (2), and applying a 

mutation operator that corresponds to this particle. Indeed, the OMOPSO 

algorithm subdivides the swarm into three sub-parts of equal size. The particles of 

the first part will have no mutation at all, and the particles of the second and third 

sub-parts will have a uniform mutation, and a non-uniform mutation, respectively. 

This mutation technique makes it possible to adjust the exploitation and 

exploration of the research space and to preserve the diversity. The process 
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continues by evaluating the particle and replacing the best visited solution if it is 

dominated by the new particle. After updating all the particles, all the global 

leaders are also updated. The storage of leaders in the external archive depends on 

the crowding distance. This criterion is used to avoid the explosion of the external 

archive when its maximum size is exceeded. Finally, after repeating these steps 

for a given number of generations, the final archive is returned as the search 

result. 

3. Improvement of OMOPSO algorithm 

3.1 Limits of OMOPSO algorithm 

In the OMOPSO algorithm [9], the particle displacement is updated with 

the same iterative formula using the inertia factor ()
 
and the factors 1 = r1.c1 

and 2 = r2.c2 to control the behavior of the particles. However, the evolution of 

the particle velocity with the same formula minimizes the difference between the 

particles, thereby minimizing the exploration capacity of the search space. 

Moreover, in some execution points, the velocity values of a particle change from 

a high value to a low value. Therefore, the particles come very close to their 

extreme values. These irregular movements affect the search performance of the 

algorithm because it is easy to get trapped in local optima. To remedy this 

problem, the OMOPSO algorithm uses a mutation technique to avoid the swarm 

stagnation in local solutions. Indeed, the general idea is to move the swarm away 

from a crowded location by the mutation of a set of particles according to a certain 

probability. If one of these mutated particles becomes the new best global guide 

gd, it is therefore possible to escape the traps of local optima and the stagnation of 

the swarm. On the other hand, the authors of the SMPSO algorithm have been 

proposed a restriction coefficient to regulate the velocity of particles in OMOPSO 

and to achieve the high search performance of the algorithm [10]. However, the 

SMPSO algorithm does not allow to generate a very rich front of solutions [8]. 

3.2 New Multi-objective Particle Swarm Optimization (NMOPSO) 

To improve the convergence accuracy y, a third coefficient 3 = r3.c3 in the 

velocity update of the single-objective PSO algorithm were introduced in [15]. 

With this coefficient, the particle information can be used more effectively to 

avoid local optima and improve the diversity of particles. The new update 

equation is [15]:  

  

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1 2 2

1 1 2 2
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At each step time, and according to a certain probability, the update of the 

particle velocity is done using a contemporary leader nid. In our new 

multiobjective algorithm, this contemporary leader is initialized by comparing two 

solutions of the external archive according to the crowding distance. The best 

solution between them will be the contemporary leader. After that, the updating of 

this contemporary leader is done by choosing a particle of the whole swarm. If 

this particle dominates the contemporary leader, the update is then performed. 

In the OMOPSO algorithm, the values of , c1 and c2 are independently 

calculated. The inertia factor takes random values in the interval [0.1, 0.5]. 

Moreover, the self-cognition c1 and the social guidance c2 take random values in 

the interval [1.5, 2]. This random guidance can converge the particles towards 

local optima or slow down the convergence. For example, if the learning factors 

are very small, the particle memory information will not be fully used. 

Conversely, if c1 is large, the particles tend to exploit their own range, which 

slows down the search speed. If c2 is large, the particles may fall into local optima 

at an initial stage. 

To overcome these problems, an evolutionary strategy must be used to 

adjust the values of these factors. In the early stages of research, this strategy 

adjusts the self-cognition factor to a great value, and the social guidance to a small 

value, which will encourage the particle to search around itself when the research 

space is very large, thereby improving the particles diversity. At later points of 

research, the self-cognition factor must be adjusted to small value and the social 

guidance to a great value, which will increase the particle displacement when the 

research space is small, thereby improving the precision of the algorithm and the 

convergence towards the global optimal solutions. Moreover, the adaptive inertia 

factor technique is used. The inertia factor  and the learning factors c1, c2 and c3 

are expressed by the following equations [15]: 

( )

( )

( ) ( )( )
( )

( )

max

max min min

min

min

if 

if 

id mean

d id

id mean

mean

x t x

t x t x
x t x

x x



  


 

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We can notice that the new algorithm pays more attention to the particle at 

an early stage. Then, NMOPSO highlights the intelligence of the whole swarm at 

a later stage. The third social orientation factor c3 takes on the same value as the 

self-cognition of the particle. The principle of the new multiobjective PSO 

algorithm (NMOPSO) is presented by the following pseudocode:  

 

Pseudocode of NMPSO Algorithm 

1: Initialize the swarm (particles) 

2: Evaluation (particles) 

3: Initialize the personal leaders of particles 

4: Initialize the global leaders in the external archive 

5: Crowding distance (global leaders) 

6: Initialize the contemporary leaders of particles 

7: Repeat  

8:  For each particle do 

9:  Choose the global leader 

10:  Update the speed and the position (Eqs. 3-7 and Eq. 2) 

11:  Perform the mutation 

12:   Evaluate the particle 

13:   Update the personal leader 

14: End for 

15: Update the contemporary leaders of particles  

16:  Update the global leaders 

17: Send global leaders to the external archive 

18:  Crowding distance (global leaders) 

19: Until (Maximum number of iterations reached) 

20: Return the external archive 

4. Formulation of the optimization problem 

To test the effectiveness of the NMPSO proposed in this paper, this 

algorithm is applied to a multiobjective optimization problem formulated from the 

analytical model of the studied machine. Indeed, the optimization process consists 

to find the optimal geometry of an in-wheel permanent magnets motor intended 

for an electric vehicle. In this section, the dimensions parameters of this machine 

are given as they present the decision variables of our optimization problem. 

Then, the magnetic properties and the copper and iron losses, necessary for the 

optimization process are presented. Finally, the objective functions are defined. 

4.1 Decision variables 

The studied machine of the in-wheel motor is a 3-phase, 18-slots, 16-

poles, surface-mounted permanent magnets machine with an external rotor and 

unequal stator teeth. The sizing parameters of this machine consider the decision 
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variables of our optimization problem. They are given in Table 1 with their 

symbols and ranges of values. The geometric dimensions are shown in Fig. 1. 

Table 1 

Sizing parameters 

Parameters  Symbols Bounds 

The air gap length δ [1 ; 2] 

The rotor inner diameter Drint [225 ; 230] 

The magnet height hm [2 ; 4] 

The wider stator tooth width bts1 [21 ; 27] 

The lower stator tooth width bts2 [15 ; 17] 

The stator slot height hs [30 ; 40] 

The axial machine length  l [70 ; 85] 

The half pole angle α [19 ; 21] 

The stator inner diameter  Dsint [115 ; 122] 

 
Fig. 1. Geometric dimensions of the machine 

4.2 Magnetic proprieties    

In the present section, we describe the major magnetic flux densities in all 

machine parts. Indeed, the analytical calculations of the magnetic proprieties are 

expressed as follows: 

The amplitude of the fundamental component of the air gap flux density is 

given by [16]: 

( )1
4

sinmB Bd a
p

=
                   (8) 

Where Bm is the mean air gap flux density, and α is the half pole angle. 

The rotor yoke flux density is determined by [12]: 

2
m m

ry
ry j

B
B

h k

t
=

                            (9)                     
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Where m is the slot pitch, hry is the rotor yoke height, and kj is the lamination 

stacking factor. 

The stator yoke flux density is expressed by [17]:

 
2

m m
sy

sy j

B
B

h k

t
=

                                               (10)                                 

Where hsy is the stator yoke height.  

The flux densities in the widest and lowest teeth are respectively given by 

the following equations [18] [19]: 

( )
1

1

2m s
st

ts j

l

l

B
B

b k

dt +
=

                                                              (11)

 

( )
2

2

2m s
st

ts j

l

l

B
B

b k

dt +
=

                                   (12)   

Where s is the slot pitch, l is the axial machine length, δ is the air gap length, bts1 

is the width of the widest stator tooth, and bts2 is the width of the lowest stator 

tooth. 

4.3 Copper and iron losses   

The copper losses in the stator windings are expressed as [20]: 
2

13co phP I R=
                                                                  (13) 

Where I1 is the rms stator current and Rph is the winding resistance of a phase. 

The iron losses in the rotor yoke (Pry), the stator yoke (Psy), the wider 

stator teeth (Pst1), and the lower stator teeth (Pst2) are expressed respectively by the 

following expressions [20]: 

2 2 1.5 1.58.67ry ry exc ry ryryhyst eddyP k B f k B f k B f Vbæ ö÷ç ÷ç ÷ç ÷çè ø
= + +

         (14) 

2 2 1.5 1.58.67sy sy exc sy sysyhyst eddyP k B f k B f k B f Vbæ ö÷ç ÷ç ÷ç ÷çè ø
= + +

  
       (15) 

2 2 1.5 1.5
1 11 1 1

8.67 excst sthyst eddyst st st
P k B f k B f k B f Vbæ ö÷ç ÷ç ÷ç ÷çè ø

= + +
        (16) 

2 2 1.5 1.5
2 22 2 2

8.67 excst sthyst eddyst st st
P k B f k B f k B f Vbæ ö÷ç ÷ç ÷ç ÷çè ø

= + +
         (17)    

Where Where khyst is the hysteresis coefficient, β is the Steintmetz 

constant, f is the electrical frequency, keddy is the eddy current coefficient,
 
kexc is 

the excess eddy current loss coefficient, Vry is the rotor yoke volume, Vsy is the 

stator yoke volume Vst1 is the wider teeth volume and Vst2 is the lower teeth 

volume. 

 

 



NMOPSO: an improved multiobjective PSO algorithm for permanent magnet motor design   209 

4.4 Objective functions 

The optimization procedure is performed according to three objective 

functions. Indeed, the maximization of the machine efficiency presents the first 

objective function, and the minimization of the mass and the torque ripple are the 

second and third objective functions, respectively. We can formulate the first 

objective to be minimized in order to decrease the complexity of the problem. 

With (η) is the machine efficiency, the minimization of (1-η) is identical to the 

maximization of (η). The three objectives’ functions are determined by the 

following equations: 

( )_ 1 minimize 1objective function h= -
                    (18)  

Where (η) is the machine efficiency. It is determined according to the output 

power, (Pout), and the copper and iron losses as follow:  

 1 2ry sy st st

out

out co P P P

P

P P P
h

+ + +
=

+ +

 

            (19)

 

 

( )_ 2 minimizeobjective function mass=
                    (20) 

( )_ 3 minimize ripobjective function T=
                       (21) 

Where (Trip) is the torque ripple, and given by: 

 

2 2 2 2

57 13 11 19 17 25 23

1

2rip

E E E E E E E E
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E

æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è ø
- - - - - - -

=

) ) ) ) ) ) ) )

)

             (22) 

  Where iE
)

 is the ith harmonic of the induced electromotive force. 

5. Optimization results 

To show the effectiveness of the improved algorithm NMOPSO, it has 

been applied and compared with the OMOPSO and SMPSO algorithms on the 

considered machine sizing problem. For the computation, we have used, as 

environment, the "Eclipse" platform and the "jMetal" framework which is an 

object-oriented Java-based framework for multiobjective optimization. The Pareto 

fronts of these algorithms are shown in Fig. 2, Fig. 3, and Fig. 4. 
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Fig. 2. NMOPSO Pareto front                                  Fig. 3. OMOPSO Pareto front 

 

 
Fig. 4. SMPSO Pareto front 

 

The objective functions used in this optimization procedure are 

contradictory since the increase in the efficiency of the machine also causes the 

increase in its mass and its torque ripple, and vice versa. Despite that, we can 

notice that all the applied algorithms are able to find a compromise between the 

contradictory objectives and thus generate optimal Pareto fronts. Indeed, all the 

produced solutions are feasible since they respect the machine requirements.  

In this regard, the designer must make a compromise between the 

objective functions to determine the solution that meets the design requirements 

of the machine. The difference between these Pareto fronts can be noticed by the 

number of solutions generated by each algorithm. Indeed, by referring to these 

Pareto fronts, we can still report that the NMOPSO algorithm has the richest 

Pareto front since it allows to generate more than 500 solutions, well diversified 

on the research space. The OMOPSO algorithm generates only more than 400 
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solutions and the SMPSO algorithm loses its diversity and generates only 100 

solutions at each execution. We have chosen the best optimal sizing of the studied 

machine among the solutions generated by each algorithm. The results are 

presented in Table 2. 

Table 2 

Optimization results 

 NMOPSO OMOPSO SMPSO 

δ 1 1 1 

Drint 230 227.66 229.85 

hm 2.02 2.45 2.38 

bts1 21.05 21.08 21.01 

bts2 17 15.37 16 

hs 35.75 36.53 36.16 

l 81.92 75.70 77.50 

α 19.0 19.0 19.0 

Dsint 121.75 117.64 118.50 

Efficiency 88.56% 87.31% 88.13% 

Mass (kg) 31.98 32.41 32.63 

Ripple torque 0.384 0.375 0.375 

CPU (s) 4.960 4.424 5.252 

 

The results show that the performance of the NMOPSO algorithm 

outperforms the other algorithms with regard to the efficiency and mass of the 

machine. Moreover, this algorithm has the best convergence accuracy with a fast 

execution time. 

6. Performance Measurement 

To measure the performance of the NMOPSO algorithm, the 

“measurement instruments” must be available. In this paper, we adopted two 

comparison metrics which are the covariance metric and the hypervolume metric. 

The covariance metric is a relative metric that makes it possible to compare two 

fronts A and B according to the dominance of Pareto. Indeed, the value C (A, B) 

allows to calculate which portion of the front A dominates the front B. the 

calculation of this ratio is carried out according to the following equation: 

{ }( )

( )

;  dominates 
( , )

card y B x A x y
C A B

card B

Î $ Î
=

           (23) 

 Thus, C (A, B) =1 implies that the front B is totally dominated by A. 

Conversely, C (A, B) = 0 implies that none of the points of B is dominated by a 

point of A. Therefore, the more the value of C (A, B) is closer to 1, the more the 

front A is better with respect to B. Since this metric is not symmetrical, it is 

necessary to consider C (A, B) and C (B, A) to obtain a more reliable measure of 

the two compared fronts. Each algorithm has been executed ten times. At each 
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execution, the three algorithms have been compared. The average values of the 

covariance metric are illustrated in Table 3. 

Table 3 

Covariance metric 

C(column, row) NMPSO OMOPSO SMPSO 

NMPSO * 0,2449 0,0804 

OMOPSO 0,3549 * 0,0917 

SMPSO 0,5836 0,5666 * 

 

The results show that NMOPSO is the best algorithm according to the 

Pareto dominance. Indeed, the NMOPSO and OMOPSO algorithms are better 

than the SMPSO algorithm, and there are more portions of NMOPSO that 

dominate the OMOPSO algorithm.  

The second metric is the hypervolume indicator. It measures the 

hypervolume of the portion of the objectives space that is dominated by the found 

Pareto front. It is an indicator to be maximized. The average values of ten 

comparisons are shown in Table 4. 
Table 4 

Hypervolume indicator (HI) 

 NMOPSO OMOPSO SMPSO 

HI 7,75403313495 7,73851478683 7,72883901804 
 

The results show that the NMOPSO algorithm is better than the other two 

algorithms, since it has the highest value of the hypervolume indicator. 

7. Validation of NMOPSO results 

To validate the NMOPSO optimization results, the studied machine has 

been analyzed using the finite element method. The FEA results are presented in 

Fig.5, Fig. 6 and Table 5. 

 
Fig. 5. 2-D Magnetic flux lines                    Fig. 6. Magnetic flux density distribution 

 

By referring to Fig. 5, we clearly notice the flux lines which do not follow the 

intended path and do not cross the air gap. These magnetic flux lines are called the 
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leakage flux. Fig. 6 shows the distribution of the magnetic flux density of the 

studied machine. 
Table 5 

FEA results 

Parameter NMOPSO 

results 

FEA results Error 

The fundamental air gap flux density Bδ,1  0.91 0.96 5% 

The rotor yoke flux density Bry   1.17 1.31 10% 

The stator yoke flux density Bsy   0.95 1.02 10% 

The widest stator tooth flux density Bst1   1.48 1.4 5% 

The lowest stator tooth flux density Bst2   1.84 1.54 16% 

 

We can clearly identify some magnetic saturations in the stator teeth and 

some small areas in the stator yoke. According to Table 5, we can notice that there 

is a good agreement between the FEA and the NMPSO results, which make the 

improved multiobjective algorithm (NMOPSO) a valuable tool for the 

optimization of complex real problems, in particular for the optimal design of 

permanent magnet machines. 

8. Conclusion 

In the present work, a new swarm particle optimization technique 

(NMOPSO) has been proposed. This improved multiobjective PSO algorithm 

introduces new parameters and adjusts the relationship between various 

parameters. The new algorithm has been evaluated using multiobjective 

optimization problem for the design of an in-wheel motor. Then it has been 

compared with the standard OMOPSO and SMPSO algorithms using the 

covariance metric and the hypervolume indicator. The results shown that the 

NMOPSO algorithm overcomes the performance in both comparison metrics. 

Indeed, it has the best convergence accuracy and the richest Pareto front. The 

optimization results of the NMOPSO algorithm have been also compared with the 

FEA results of the studied machine. This comparison shows that the proposed 

NMOPSO is a valuable tool for the design of permanent magnet motors. 
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