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NMOPSO: AN IMPROVED MULTIOBJECTIVE PSO
ALGORITHM FOR PERMANENT MAGNET MOTOR
DESIGN

Lassaad ZAARAOUIY, Ali MANSOURI?, Nadia SMAIRI®

This work deals with the investigation of a new multiobjective particle swarm
optimization (PSO) algorithm and the use of this algorithm for the optimization of
the geometry of an in-wheel motor. The proposed algorithm introduces a new
strategy to avoid the fall into local optima. This strategy proposes new parameters
and adjusts the relationship between certain other parameters to increase the use of
particle information and the convergence precision. Through a multiobjective
optimization problem formulated from the analytical model of the studied motor, the
proposed algorithm has been compared with two other multiobjective PSO
algorithms and validated using the finite element analysis.

Keywords: multiobjective optimization, particle swarm optimization, permanent
magnet motor, finite element analysis

1. Introduction

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm
for nonlinear problems developed by Eberhart and Kennedy in 1995 [1]. It is
based on a set of particles modeled as vectors and originally arranged randomly.
These particles move in the search space to find a global optimal solution. Each
particle constitutes a potential solution, and it has a position vector inside the
search space and a velocity vector which will be used to calculate the next
position. Within the swarm, a neighborhood is determined for each particle as the
subset of particles that can communicate. Moreover, each particle has a memory
which contains the best position found by itself (personal leader), and the best
position reached by the particles belonging to the neighborhood (global leader)
[2]. The displacement of a particle is affected by three tendencies. Indeed, the
particle tends either to follow its own path, or to return to its best position already
found, or to follow the best position found by the neighborhood. Based on the
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memory information, the displacement of the particle is a compromise between
these three tendencies [3].

In a D-dimensional search space, we assume that N particles iterate T
times. At each time step t, the i-th particle is determined in the d-dimensional
position with Xiq, the velocity is recorded by vig, the best visited position of the
particle (personal leader) is expressed by pi¢, and the best solution found by its
neighborhood (global leader) is recorded with gq [2]. The general displacement of
the particles is done by the following two equations [4]:

Vig (t +1): Wiy (t)+clrl(pid —Xig )+C2I’2 (gd _Xid) 1)

Xig (t+1) =X (t)+Vq (t+1) (2)

where o is the inertia factor which allows to control the displacement of

the particle between the exploitation and the exploration in the search space, c1

and cz are learning factors, r1 and r2 are random numbers which follow a
probabilistic law on [0..1].

The PSO algorithm is the most widely used in the optimization of electric
machines. In [5] the PSO algorithm was used to determine the optimal values of
the design variables of a reluctance machine. The optimization process was
carried out according to two criteria, which are: the minimization of the torque
ripple and the maximization of the output power. It has been shown that the
algorithm makes it possible to find a compromise between the two conflicting
objectives, and to obtain the optimal variables that meet the design requirements.

The optimization of a surface permanent magnet synchronous machine
was performed in [6] using the PSO algorithm. The aim of this study was to
optimize the parameters of the winding structure to decrease the copper losses and
reduce the operating temperature. The authors were illustrated that the
optimization results reduced the copper losses from 0.719 W to 0.468 W, thereby
solving the problem of motor heating.

In [7], a detailed study of a permanent magnets machine for an in-wheel
motor has been presented. Two multiobjective PSO algorithms were used to
determine the optimal geometry that maximize the efficiency and minimize the
mass of the machine. It has been shown that the two algorithms provide optimal
and achievable solutions in a short execution time. With the final aim of
confirming the efficiency of the used algorithms, the optimization results were
validated by the finite element method.

In [8], the Optimizer Multiobjective PSO (OMOPSO) [9] and the Speed-
constrained Multiobjective PSO (SMPSO) [10] algorithms were used to find the
optimal design of an in-wheel permanent magnet motor for an electric vehicle.
The optimization process has been carried out according to three objectives: The
first is the efficiency maximization, the second is the mass minimization, and the
third is the torque ripple minimization. After several executions, it has been
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shown that the two PSO algorithms can find a multitude of achievable solutions.
However, the OMOPSO algorithm can generate a well-diversified Pareto front
that contains more solutions than the SMPSO algorithm. Moreover, a comparison
using the covariance metric showed that there are more solutions of the OMOPSO
algorithm that dominate the SMPSO solutions. The same comparison was made in
[11] using only the first two objective functions. The comparison showed that the
OMOPSO algorithm is somewhat better than the SMPSO algorithm, according to
the covariance metric.

Compared to the previous works [7] [8] [11] [12] [13] [14], the novelty of
this work is to propose a new multiobjective particle swarm optimization
algorithm. It is based on the OMOPSOQO algorithm. The ultimate goal is to improve
the diversity and the convergence accuracy of the OMOPSO algorithm. The new
algorithm will also be applied for the optimal design of an in-wheel motor.
Indeed, this work also presents the analytical model of a new topology of the in-
wheel motors intended for electric vehicles. This topology adopts the unequal
stator teeth and the concentrated windings single layer to improve the motor
performance.

The remainder of this paper is structured as follows: The OMOPSO
algorithm is reviewed in section 2. In section 3, we present our new algorithm.
The analytical model of the in-wheel motor and the optimization problem are
described in the section 4. The optimization results of the new algorithm and two
other multiobjective PSO algorithms are presented in section 5. The comparison
of the algorithms and the results discussion are respectively presented in sections
6 and 7. Finally, we finish by the conclusion.

2. Multiobjective Particle Swarm Optimization (OMOPSO)

Based on Pareto dominance, crowding distance and two different mutation
operators, the OMOPSO algorithm [9] was invented in 2005 by Sierra and Coello.
This algorithm works as follows: first, after the initialization of the positions and
velocities of the particles in the search space, the approach consists of storing the
non-dominated particles in an external archive as leaders. Then, the crowding
distance of each leader is calculated. After that, at each iteration and for each
particle, the approach consists of randomly selecting a global leader from the
archive, changing the particle position using equations (1) and (2), and applying a
mutation operator that corresponds to this particle. Indeed, the OMOPSO
algorithm subdivides the swarm into three sub-parts of equal size. The particles of
the first part will have no mutation at all, and the particles of the second and third
sub-parts will have a uniform mutation, and a non-uniform mutation, respectively.
This mutation technique makes it possible to adjust the exploitation and
exploration of the research space and to preserve the diversity. The process
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continues by evaluating the particle and replacing the best visited solution if it is
dominated by the new particle. After updating all the particles, all the global
leaders are also updated. The storage of leaders in the external archive depends on
the crowding distance. This criterion is used to avoid the explosion of the external
archive when its maximum size is exceeded. Finally, after repeating these steps
for a given number of generations, the final archive is returned as the search
result.

3. Improvement of OMOPSO algorithm
3.1 Limits of OMOPSO algorithm

In the OMOPSO algorithm [9], the particle displacement is updated with
the same iterative formula using the inertia factor (o) and the factors @1 = ri.c:
and @2 = r2.c2 to control the behavior of the particles. However, the evolution of
the particle velocity with the same formula minimizes the difference between the
particles, thereby minimizing the exploration capacity of the search space.
Moreover, in some execution points, the velocity values of a particle change from
a high value to a low value. Therefore, the particles come very close to their
extreme values. These irregular movements affect the search performance of the
algorithm because it is easy to get trapped in local optima. To remedy this
problem, the OMOPSO algorithm uses a mutation technique to avoid the swarm
stagnation in local solutions. Indeed, the general idea is to move the swarm away
from a crowded location by the mutation of a set of particles according to a certain
probability. If one of these mutated particles becomes the new best global guide
ga, it is therefore possible to escape the traps of local optima and the stagnation of
the swarm. On the other hand, the authors of the SMPSO algorithm have been
proposed a restriction coefficient to regulate the velocity of particles in OMOPSO
and to achieve the high search performance of the algorithm [10]. However, the
SMPSO algorithm does not allow to generate a very rich front of solutions [8].

3.2 New Multi-objective Particle Swarm Optimization (NMOPSO)

To improve the convergence accuracy Y, a third coefficient @3 = ra.cz in the
velocity update of the single-objective PSO algorithm were introduced in [15].
With this coefficient, the particle information can be used more effectively to
avoid local optima and improve the diversity of particles. The new update
equation is [15]:

Wy (t)vid (t)+C1r1( Pig _Xid)+C2r2 (gd _Xid) if rand () > 7
vy (t+1)=
o(t+1) @y (1) Vig (1) +C.1; (P =% )+ €1 (96 = Xia) if rand () <
+Cly (Mg — %)

©)
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At each step time, and according to a certain probability, the update of the
particle velocity is done using a contemporary leader nig. In our new
multiobjective algorithm, this contemporary leader is initialized by comparing two
solutions of the external archive according to the crowding distance. The best
solution between them will be the contemporary leader. After that, the updating of
this contemporary leader is done by choosing a particle of the whole swarm. If
this particle dominates the contemporary leader, the update is then performed.

In the OMOPSO algorithm, the values of ®, c1 and c, are independently
calculated. The inertia factor takes random values in the interval [0.1, 0.5].
Moreover, the self-cognition c1 and the social guidance c» take random values in
the interval [1.5, 2]. This random guidance can converge the particles towards
local optima or slow down the convergence. For example, if the learning factors
are very small, the particle memory information will not be fully used.
Conversely, if c1 is large, the particles tend to exploit their own range, which
slows down the search speed. If ¢, is large, the particles may fall into local optima
at an initial stage.

To overcome these problems, an evolutionary strategy must be used to
adjust the values of these factors. In the early stages of research, this strategy
adjusts the self-cognition factor to a great value, and the social guidance to a small
value, which will encourage the particle to search around itself when the research
space is very large, thereby improving the particles diversity. At later points of
research, the self-cognition factor must be adjusted to small value and the social
guidance to a great value, which will increase the particle displacement when the
research space is small, thereby improving the precision of the algorithm and the
convergence towards the global optimal solutions. Moreover, the adaptive inertia
factor technique is used. The inertia factor o and the learning factors c1, ¢z and c3
are expressed by the following equations [15]:

wmax

=], (om0 )

min = Nmean
(Xmean — Xein )

if g (t)> X

mean

(4)

rx(t-1
cl1=05+2xcos| ————=

)
2x(T 1)
)

. 7Z'><(t—1
c2=05+2xsin| ——=~
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(6)
c3=cl 7)
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We can notice that the new algorithm pays more attention to the particle at
an early stage. Then, NMOPSO highlights the intelligence of the whole swarm at
a later stage. The third social orientation factor cs takes on the same value as the
self-cognition of the particle. The principle of the new multiobjective PSO
algorithm (NMOPSO) is presented by the following pseudocode:

Pseudocode of NMPSO Algorithm

1: Initialize the swarm (particles)

2: Evaluation (particles)

3: Initialize the personal leaders of particles

4: Initialize the global leaders in the external archive
5: Crowding distance (global leaders)

6: Initialize the contemporary leaders of particles

7
8

: Repeat
For each particle do

9: Choose the global leader
10: Update the speed and the position (Egs. 3-7 and Eqg. 2)
11: Perform the mutation
12: Evaluate the particle
13: Update the personal leader
14: End for
15: Update the contemporary leaders of particles
16: Update the global leaders
17: Send global leaders to the external archive

18: Crowding distance (global leaders)
19: Until (Maximum number of iterations reached)
20: Return the external archive

4. Formulation of the optimization problem

To test the effectiveness of the NMPSO proposed in this paper, this
algorithm is applied to a multiobjective optimization problem formulated from the
analytical model of the studied machine. Indeed, the optimization process consists
to find the optimal geometry of an in-wheel permanent magnets motor intended
for an electric vehicle. In this section, the dimensions parameters of this machine
are given as they present the decision variables of our optimization problem.
Then, the magnetic properties and the copper and iron losses, necessary for the
optimization process are presented. Finally, the objective functions are defined.

4.1 Decision variables

The studied machine of the in-wheel motor is a 3-phase, 18-slots, 16-
poles, surface-mounted permanent magnets machine with an external rotor and
unequal stator teeth. The sizing parameters of this machine consider the decision
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variables of our optimization problem. They are given in Table 1 with their
symbols and ranges of values. The geometric dimensions are shown in Fig. 1.

Table 1
Sizing parameters
Parameters Symbols Bounds
The air gap length o [1:2]
The rotor inner diameter Drint [225 ; 230]
The magnet height hm [2;4]
The wider stator tooth width brs1 [21;27]
The lower stator tooth width bis2 [15;17]
The stator slot height hs [30 ; 40]
The axial machine length I [70; 85]
The half pole angle a [19;21]
The stator inner diameter Dsint [115;122]

D —
Dine sext

Driﬂt —p |

Dyoxe =

Fig. 1. Geometric dimensions of the machine
4.2 Magnetic proprieties

In the present section, we describe the major magnetic flux densities in all
machine parts. Indeed, the analytical calculations of the magnetic proprieties are
expressed as follows:

The amplitude of the fundamental component of the air gap flux density is
given by [16]:

By = ﬂB sin(a

dl p m ( ) (8)
Where B is the mean air gap flux density, and a is the half pole angle.
The rotor yoke flux density is determined by [12]:

Byt
B ry — m-m

ry
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Where 1y is the slot pitch, hyy is the rotor yoke height, and k;j is the lamination
stacking factor.

The stator yoke flux density is expressed by [17]:

BS - Bmtm

y ~ -
2hg k; (10)

Where hsy is the stator yoke height.
The flux densities in the widest and lowest teeth are respectively given by
the following equations [18] [19]:

B = Bts (1 + 2d)

*H l:lslkjl (11)
5. = Bts (1 + 2d)

st2 b[sijI

(12)
Where 1s is the slot pitch, 1 is the axial machine length, d is the air gap length, bis
is the width of the widest stator tooth, and b2 is the width of the lowest stator
tooth.

4.3 Copper and iron losses
The copper losses in the stator windings are expressed as [20]:
oo = 311 Rpn (13)

Where |1 is the rms stator current and Rpn is the winding resistance of a phase.

The iron losses in the rotor yoke (Pr), the stator yoke (Psy), the wider

stator teeth (Pst1), and the lower stator teeth (Pst2) are expressed respectively by the
following expressions [20]:

t " )
Pry = §ﬁ<hyst'3ry‘c * keddyBrzyf2 * 8'67kechf1Y5fl'5%/ry

(14)

— b Q

— b ]
Psi1 = EkhystBstlf + KegayB&1f2 + 8.67kex Bt 1'5§/st1 (16)
Pyo = §<hystB§2f + kegayB3,f2 + 8.67kexcsslt-gf1-5§/st2 an

Where Where Knyst is the hysteresis coefficient,  is the Steintmetz
constant, f is the electrical frequency, Keday iS the eddy current coefficient, Kexc is
the excess eddy current loss coefficient, Vy is the rotor yoke volume, Vsy is the
stator yoke volume Vs is the wider teeth volume and Vs is the lower teeth
volume.
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4.4 Obijective functions

The optimization procedure is performed according to three objective
functions. Indeed, the maximization of the machine efficiency presents the first
objective function, and the minimization of the mass and the torque ripple are the
second and third objective functions, respectively. We can formulate the first
objective to be minimized in order to decrease the complexity of the problem.
With (n) is the machine efficiency, the minimization of (1-n) is identical to the
maximization of (n). The three objectives’ functions are determined by the
following equations:

objective_ function1 = minimize(1- h) (18)
Where (n) is the machine efficiency. It is determined according to the output
power, (Pout), and the copper and iron losses as follow:

h = Pout

Pout + I:)CO + I:)ry + I:)sy + I:)stl + PstZ (19)
objective_ function2 = minimize(mass) (20)
objective_ function3 = minimize(T ;) 1)

Where (Trip) is the torque ripple, and given by:

T B Bl B Bl B

E; (22)
Where éi is the i harmonic of the induced electromotive force.

T 2

rip =

5. Optimization results

To show the effectiveness of the improved algorithm NMOPSO, it has
been applied and compared with the OMOPSO and SMPSO algorithms on the
considered machine sizing problem. For the computation, we have used, as
environment, the "Eclipse” platform and the “jMetal” framework which is an
object-oriented Java-based framework for multiobjective optimization. The Pareto
fronts of these algorithms are shown in Fig. 2, Fig. 3, and Fig. 4.
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The objective functions used in this optimization procedure are
contradictory since the increase in the efficiency of the machine also causes the
increase in its mass and its torque ripple, and vice versa. Despite that, we can
notice that all the applied algorithms are able to find a compromise between the
contradictory objectives and thus generate optimal Pareto fronts. Indeed, all the
produced solutions are feasible since they respect the machine requirements.

In this regard, the designer must make a compromise between the
objective functions to determine the solution that meets the design requirements
of the machine. The difference between these Pareto fronts can be noticed by the
number of solutions generated by each algorithm. Indeed, by referring to these
Pareto fronts, we can still report that the NMOPSO algorithm has the richest
Pareto front since it allows to generate more than 500 solutions, well diversified
on the research space. The OMOPSO algorithm generates only more than 400
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solutions and the SMPSO algorithm loses its diversity and generates only 100
solutions at each execution. We have chosen the best optimal sizing of the studied
machine among the solutions generated by each algorithm. The results are
presented in Table 2.

Table 2
Optimization results
NMOPSO OMOPSO SMPSO
) 1 1 1
Drint 230 227.66 229.85
Nim 2.02 2.45 2.38
bis1 21.05 21.08 21.01
bis2 17 15.37 16
hs 35.75 36.53 36.16
| 81.92 75.70 77.50
o 19.0 19.0 19.0
Dsint 121.75 117.64 118.50
Efficiency 88.56% 87.31% 88.13%
Mass (kg) 31.98 3241 32.63
Ripple torque 0.384 0.375 0.375
CPU (s) 4.960 4.424 5.252

The results show that the performance of the NMOPSO algorithm
outperforms the other algorithms with regard to the efficiency and mass of the
machine. Moreover, this algorithm has the best convergence accuracy with a fast
execution time.

6. Performance Measurement

To measure the performance of the NMOPSO algorithm, the
“measurement instruments” must be available. In this paper, we adopted two
comparison metrics which are the covariance metric and the hypervolume metric.
The covariance metric is a relative metric that makes it possible to compare two
fronts A and B according to the dominance of Pareto. Indeed, the value C (A, B)
allows to calculate which portion of the front A dominates the front B. the
calculation of this ratio is carried out according to the following equation:

card ({y T B;$x I A|x dominatesy })
card (B) (23)
Thus, C (A, B) =1 implies that the front B is totally dominated by A.
Conversely, C (A, B) = 0 implies that none of the points of B is dominated by a
point of A. Therefore, the more the value of C (A, B) is closer to 1, the more the
front A is better with respect to B. Since this metric is not symmetrical, it is

necessary to consider C (A, B) and C (B, A) to obtain a more reliable measure of
the two compared fronts. Each algorithm has been executed ten times. At each

C(AB) =



212 Lassaad Zaaraoui, Ali Mansouri, Nadia Smairi

execution, the three algorithms have been compared. The average values of the
covariance metric are illustrated in Table 3.

Table 3
Covariance metric

C(column, row) NMPSO OMOPSO | SMPSO

NMPSO * 0,2449 0,0804

OMOPSO 0,3549 * 0,0917
SMPSO 0,5836 0,5666 *

The results show that NMOPSO is the best algorithm according to the
Pareto dominance. Indeed, the NMOPSO and OMOPSO algorithms are better
than the SMPSO algorithm, and there are more portions of NMOPSO that
dominate the OMOPSO algorithm.

The second metric is the hypervolume indicator. It measures the
hypervolume of the portion of the objectives space that is dominated by the found
Pareto front. It is an indicator to be maximized. The average values of ten

comparisons are shown in Table 4.
Table 4
Hypervolume indicator (HI)
NMOPSO OMOPSO SMPSO
HI | 7,75403313495 | 7,73851478683 | 7,72883901804

The results show that the NMOPSO algorithm is better than the other two
algorithms, since it has the highest value of the hypervolume indicator.

7. Validation of NMOPSO results

To validate the NMOPSO optimization results, the studied machine has
been analyzed using the finite element method. The FEA results are presented in
Fig.5, Fig. 6 and Table 5.

Leakﬂgeﬂux Liﬂkageﬂ“x - 416E-07 21602 - 43388 Lesas2 86776 Loss 1.302 181 1.736 1asz

Fig. 5. 2-D Magnetic flux lines Fig. 6. Magnetic flux denéity distribution

By referring to Fig. 5, we clearly notice the flux lines which do not follow the
intended path and do not cross the air gap. These magnetic flux lines are called the
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leakage flux. Fig. 6 shows the distribution of the magnetic flux density of the
studied machine.

Table 5
FEA results
Parameter NMOPSO FEA results Error
results

The fundamental air gap flux density Bs, 0.91 0.96 5%
The rotor yoke flux density By 1.17 1.31 10%

The stator yoke flux density Bsy 0.95 1.02 10%

The widest stator tooth flux density Bsu 1.48 1.4 5%
The lowest stator tooth flux density Bst, 1.84 1.54 16%

We can clearly identify some magnetic saturations in the stator teeth and
some small areas in the stator yoke. According to Table 5, we can notice that there
is a good agreement between the FEA and the NMPSO results, which make the
improved multiobjective algorithm (NMOPSO) a valuable tool for the
optimization of complex real problems, in particular for the optimal design of
permanent magnet machines.

8. Conclusion

In the present work, a new swarm particle optimization technique
(NMOPSO) has been proposed. This improved multiobjective PSO algorithm
introduces new parameters and adjusts the relationship between various
parameters. The new algorithm has been evaluated using multiobjective
optimization problem for the design of an in-wheel motor. Then it has been
compared with the standard OMOPSO and SMPSO algorithms using the
covariance metric and the hypervolume indicator. The results shown that the
NMOPSO algorithm overcomes the performance in both comparison metrics.
Indeed, it has the best convergence accuracy and the richest Pareto front. The
optimization results of the NMOPSO algorithm have been also compared with the
FEA results of the studied machine. This comparison shows that the proposed
NMOPSO is a valuable tool for the design of permanent magnet motors.

REFERENCES

[1]. R.C. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory,” Proceedings of the
Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, 1995, pp.
39-43.

[2]. D. Bratton, J. Kennedy, “Defining a Standard for Particle Swarm Optimization,” Proceedings of the
2007 IEEE Swarm Intelligence Symposium, pp.120-127.

[3]. M. Clerc, P. Siarry, “Une nouvelle métaheuristique pour 'optimisation difficile : la méthode des
essaims particulaires ”, 2004. http://www.particleswarm.info

[4]. M.R. Sierra, C.A.C. Coello, “Multiobjective Particle Swarm Optimizers: A survey of the State-Of-
the-Art,” International Journal of Computational Intelligence Research, 2006, pp. 287-308.



214 Lassaad Zaaraoui, Ali Mansouri, Nadia Smairi

[5]. R. Banerjee, P. Sensarma, “Design Optimization of a Switched Reluctance Machine using
Analytical model and PSO,” Proceedings in the 45th Annual Conference of the IEEE Industrial
Electronics Society, Lisbon, Portugal, 2019.

[6]. ©. Dal, M. Yildirim, H. Kurum, “Optimization of Permanent Magnet Synchronous Motor Design by
Using PSO,” Proceedings in 4th International Conference on Power Electronics and their
Applications, Elazig, Turkey, 2019.

[7]. L. Zaaraoui, A. Mansouri, “Optimization and finite element analysis of an in-wheel permanent
magnet motor” Malaysian Journal of Fundamental and Applied Sciences, vol. 17, 2021, pp. 104—
108.

[8]. L. Zaaraoui, A. Mansouri, “Multiobjective optimal design of an in-wheel permanent magnet
synchronous motor for an electric vehicle” Journal of Automation & Systems Engineering, vol.
13, 2019, pp. 29-43.

[9]. M.R. Sierra, C.A.C. Coello, “Improving PSO-based multi-objective optimization using crowding,
mutation and e-dominance,” Proceedings In third International Conference on Evolutionary
Multi-Criterion Optimization, EMO, Guanajuata, 2005, pp. 505-519.

[10]. A.J. Nebro, et al., “SMPSO: A new PSO-based metaheuristic for multi-objective optimization,”
Proceedings of the IEEE Symposium on Computational Intelligence in Multi-criteria Decision-
Making, 2009, pp. 66-73.

[11]. L. Zaaraoui, A. Mansouri, H. Trabelsi, “PSO-Based Optimal Design of In-Wheel Permanent
Magnet Motor,” The 2017 International Conference on Internet of Things, Embedded Systems
and Communications, Gafsa, Tunisia, 2017.

[12]. L. Zaaraoui, A. Mansouri, H. Trabelsi, “Particle swarm-based optimization of an in wheel
permanent magnet motor,” Proceedings in the 14th International Multi-Conference on Systems,
Signals & Devices (SSD), Marrakech, Morocco, 2017.

[13]. L. Zaaraoui, A. Mansouri, “Design improvement of an in-Wheel machine for electric vehicle
based on multiobjective algorithms”, Proceedings of the International Conference on Recent
Advances in Electrical Systems, Hammamet, Tunisia, 2018.

[14]. Zaaraoui Lassaad, Mansouri Ali, “Conception optimale d’un moteur-roue destiné & un véhicule
électrique”, Editions universitaires européennes, 2019.

[15]. H. Liu, D. Yue, L. Zhang, Z. Li, D. Jiang, “A New Improved Simplified Particle Swarm
Optimization Algorithm,” Journal of Physics Conference Series, vol. 1187, 2019.

[16]. A. Mansouri, N. Smairi, H. Trabelsi, “Multi-objective optimization of an in-wheel electric vehicle
motor,” International Journal of Applied Electromagnetics and Mechanics vol. 50, 2016, pp.
449-465.

[17]. D. Martinez, “Design of a permanent magnet synchronous machine with non-overlapping
concentrated windings for the shell eco marathon urban prototype,” Master’s thesis, Royal
Institute of Technology, Stockholm, 2012.

[18]. Y. L. Feng, C. N. Zhang, “Analytical calculation for predicting the air gap flux density in surface-
mounted permanent magnet synchronous machine,” Journal of Electrical Engineering and
Technology, vol. 12, pp.769-777, 2017.

[19]. A. Mansouri, N. Smairi, H. Trabelsi, “Multi-objective optimization of an in-wheel electric vehicle
motor,” International Journal of Applied Electromagnetics and Mechanics, vol. 50, 2016, pp.
449-465.

[20]. T. D. Strous, “Design of a permanent magnet radial flux concentrated coil generator for a range
extender application,” Master’s thesis, Delft University of Technology, 2010.



