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GLOBAL ATTRACTOR FOR A MATHEMATICAL MODEL OF 2D
MAGNETO-VISCOELASTIC FLOWS

Aibo Liu', Changchun Liu®

We consider a mathematical model for magneto-viscoelastic flows in two di-
mensional bounded domains. The model couples the Navier—Stokes equations with evo-
lutionary equations for the deformation gradient and the magnetization obtain from a
special case of the micromagnetic energy. By the combination of the suitable dissipative
estimates with the energy techniques, we establish the existence of a global attractor on
a suitable phase-space and prove that the attractor has a regular compact absorbing set.
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1. Introduction

In this paper, we consider the following magneto-viscoelastic flows

vi+(@W-Vv—vAv+Vp=V-(FFT — VM ® VM),

V-v=0,

Fi+ (v-V)F — VuF = KAF, (1)

]\4t-i-(’UV)Z\4:,LL7
in the domain Q7 := (0,T) x 2, where 2 C R? is a bounded regular domain with smooth
boundary, and T > 0 is a given time. Here v(x,t) : Qr — R? is the velocity field, F : Q7 —
R?*2 is the deformation gradient, M : Q7 — R3? is the magnetization vector, p(z,t) stands
for the fluid pressure, AT is the transpose of a matrix A, (A® B)ij = 4y AgiByj, and v,
k are positive constants. Throughout this paper, we use 9; to denote % and the Hamilton
operator V = (91,0, --- ,0y), the Laplace operator A = Zle 02.

The system (1) is completed with Dirichlet boundary conditions for v, F' and the

Neumann boundary condition for M

oM
- = O F - = O _— = O 2
U|dQ ) |0Q ) on laa ) ( )

and the initial conditions
v(0,x) = vo(x), with V-vg=0 1in Q,
F(O,:C) = FO(x) =1, M(va) = MO(x) in 0, (3)

where [ is the 2 x 2 identity matrix.
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We set that f : R? — R? is a function and G(r) = for f(&)d¢ is a potential function
as follows

FOM) = (MP = 1)M, G(M) = F(MP ~ 1),

and introduce the basic energy:
1 1 1
£(t) = 30l + 5IFI3: + 5 IVMIE: + | GO,

Magnetic materials are of great importance in technological applications. Therein,
magnetoelastic materials are strongly susceptible to be the phenomenon of converting ap-
plied into changes of the magnetic field and vice versa. They can be regarded as smart
materials. Magnetoelastic materials have been of interest for a variety of applications. For
instance, they can be found in sensors to measure the torque of a force, and used in magnetic
actuators and generators for ultrasonic sounds.

The system (1) is a mathematical model for magneto-viscoelastic flows of a typical
magnetoelastic material. First derived in [4], the model couples the Navier—Stokes equations
with evolutionary equations for the deformation gradient and magnetization obtained as a
special case of the micromagnetic energy

v+ (v V)o—vAv+Vp=V- (W’(F)FT —2A(VM VM)>7
V-v=0, (4)
Fi+ (v-V)F — VoF = kAF,
My + (v- V)M = 2AAM — 5 (|M|* = 1)M,
where A,v and  are positive constants. The elastic density W : R¥*4 —; R(J{ is assumed
to have the properties
W e C*(R™4GR),  C|E? < W(E) < C1(|E]* + 1),
W(E) < C2(1+[2]), W(0)=0, [W'(E)=<Cs

(W"(21)VE2):VEy > a|VE|? a.e. in Q,

for some positive constants Cy, Cy, C3,a, any = € R¥*? and any Z;,Z, € H'(R?¥9). The
system (1) is derived by choosing A = 1/2, p = 1 and W(F) = %|F|? (which means
W'(F)=F); obviously, this W (F') satisfies the above conditions, existence of weak solutions
has been proved in [4], and the uniqueness of a solution has been studied in [13] for d = 2
and 3.

Forster [4] also derived another model for magneto-viscoelastic flows as follows:

v+ (- V)o—vAv+Vp=V-(FF' —VM & VM),
V-v=0,

Fi+ (v-V)F — VuF = KAF,

M, + (v-V)M = —M x AM — M x (M x AM),

()

it couples the Landau-Lifshitz—Gilbert equation (LLG equation) with elasticity in the small
strain setting. The existence of weak solutions has been proved in [4] and [2]. More math-
ematical studies for this model are needed, and we discovered that the model has critical
structure or so called self-similar solutions. That is, if (v, F, M) is a solution to the system,
the scaling relation solution:

(v, Fx, My) := (Av(\%t, A\x), \F(N*t, Ax), M(\*t, )

is also a solution of the system, which means that we can study this system in critical
Sobolev or Besov spaces.
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We now analyze the structures of the system (1). If M = 0,k = 0, the system (1)
reduces to a model for incompressible viscoelastic flows, c.f.[6, 7, 8, 9]. If F' = 0, it reduces
to incompressible liquid crystal flows. Grasselli and Wu [5] proved that the system has a
finite-dimensional global attractor in R? with periodic boundary conditions. You and Li [15]
gave the Pullback attractor of this system in two dimensions (see [10]). If M = F' =0, it
becomes the Navier—Stokes equations, where one has uniqueness of weak solutions in two
dimensions and weak-strong uniqueness in three spatial dimensions, also has unique global
classical solutions for smallness data or largeness viscosity v(compared to the initial data),
and the global existence of classical solutions for general data in three spatial dimensions
is still in open problem. Since the system (1) contains the Navier-Stokes equations as a
subsystem, one cannot expect better results than those for Navier-Stokes equations.

The understanding of the asymptotic behavior of dynamical systems is one of the most
important problems of modern mathematical physics. One way to deal with this problem
for a dissipative system is to analyse the existence and structure of its attractor. Generally
speaking, the attractor has a very complicated geometry that reflects the complexity of the
long-time behavior of the system. During the past years, many authors have paid much
attention to the attractor of higher order parabolic equations [11, 12, 17, 18]. In this paper,
we study the existence of global attractor for the system (1). The main difficulties for
treating the system (1) are caused by the strong coupling nonlinear terms and the Neumann
boundary conditions. The results for incompressible liquid crystal flows generally account
for the Dirichlet boundary conditions or period boundary conditions.

The plan of the paper is as follows. In section 2, we introduce the associated spaces
and recall some useful lemmas for the proof of the global attractor. Section 3 is devoted to
the proof of a number of dissipative estimates that entail the existence of compact absorbing
sets in the phase space. In section 4, we prove the existence of the global attractor.

2. Preliminaries

We intorduce the spaces as follows
V:={v:veC§, divu =0},
H := closure of V in L?(Q),
V := closure of V in H*(Q),
Hy"(Q) := {v e H"(Q), wv|oq = 0},

ov

HNQ) = {ve B™(Q), | =

n

0},

H™(Q) := W™?%(Q), the Sobolev spaces W™ (Q) with p = 2,
and the phase-space
Y :=H x L*(Q) x H}(Q).

We denote the inner product on L? by (-,-) and the associated norm by || - |[z2. The
space H™(Q) will be shorthanded by H™. FEinstein summation convention is used, that
is, summation sign is omitted and the sum is over all indices which appear twice. Such
as: a-b= X% a;b; :== a;b;, by this way, we denote (a ® b);.; = a;b; for vector a and b.

A:B=A;;B;j, VAVB = Ok A0k B;j and (A © B); j = Ag; By, for matrix A and B.
The following inequalities are suited for Neumann boundary conditions, and are very
useful for the proof of our theorem.
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Lemma 2.1. ([3]) Let Q C R3 be a bounded reqular open set. There exists a positive constant
C such that for all M € H?(SY) satisfying %—Af =0 on 09,

1Ml 2y < CUIM 220y + 1AM 220",
IV M| () < CUIVMZa () + 1AM]1220) ",
M| ) < C(IM 320 + | AM[220) >,
If Q C R?, then

IVM ] psoy < CIVM L x (IVM 32 + [AM][2)14,
1AM || sy < CIAM L x (|AM 32 + [VAM|3)"/*4
IV2M | sy < CUM 32 + [AMI[22)2 + (1M1 + |AM|32) 4V AM| 2.
The system (1) has a weak solution defined as follows:

Definition 2.1. ([4]) The triple (v, F, M) is called a weak solution to the system (1) in Qr,
for 0 < T < 400, provided that

ve L®0,T;H)N L*0,T; V),

F € L>(0,T; L*(Q; R™>™4) 0 L0, T; H' (Q; R4*4)),

M € L>=(0,T; H (9 R*) n L*(0, T; H*(Q; R?)),
and if for test functions ¢ € WL>=(0,T;R) with ((T) = 0, £ € V, E € H}(Q;R¥*9),
© € HY (S R3) together with the boundary conditions (2), it satisfies the equalities

T
/0 /Q —0- ((€) + (v-V)v- (C&) + (W' (F)FT —VM 0 VM) : ((VE)dxdt

- / v(0)(¢ / / vV 1 (CVE)dadt,

/ / + (v-V)F : ((2) — (VuF) : ((Z)dxdt

_ /Q F(0)(¢(0)E)dw = — /0 ' /Q KV Fi((VE)dadt

T
/ / M () + (0 V)M - (Co)ddt — / M(0) - (C(0)g)de
0 Q Q

T
= / / —VM : (V) — %(\M|2 —1)M - (Cp)dxdt.
0o Jo 12

The existence and uniqueness of weak solutions of the system (1) for (vo, Foy, Mp) €
H x L3(Q) x H}(£2) have been proved in [4] and [13]. We now introduce the energy estimates
for weak solutions.

Lemma 2.2. Let (v, F, M) be a weak solution to the system (1), the basic energy E(t) is
introduced in section 1. Then we have

d
dt

+/ (u\wz +k|VEF]? + \u|2)dm = 0. (6)
Q

d 1 1 1
G0 = 5 (G0l + SIFIE + 51VMI + [ G
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Proof. Multiplying equation (1); by v, equation (1)3 by F, equation (1)4 by —u, we have
1d
2dt

:/ (—1/|V11|2 —(v-V)v-v+ {V~(FFT —VM@VM)} ~v)da:,
Q

(El®

1d
7fF22:/ — k|VF|? = (v-V)F: F+ (VuF) : F)dz,
3 ailFlEe = | (= sVFP = @) (Vo) : F)
and
1d )
3z IVMIz2 + G(M))

:/Q(7|,u|2+(v-V)M~AM—(v~V)M~f(M))dx.

Using Einstein summation convention (Einstein notation), for dxd matrix A and B, we define

d d
AB = Z AikBkj = AikBkj7 A:B= Z AijBij = AijBija the transpose (AT)ij = Aji
ij=1 1,5=1

and (ATB)Z-]- = Apy;Bij. Hence we can rewrite above equality as

/(V . FFT) ~vdxr = / aJ(EkF]k)’U?dl‘ = 7/ Fiijkajvide
Q Q Q

= 7/ 8jUiij Fik dr = 7/(VUF) : Fdl’,
ik 1

V- (VM OVM) = @-(&Mkaij) = 3j8¢Mk6ij + (%Mkank

1 2 2 VM
= —0;|0; M| +31'Mk3ij =V +V'MAM
2 M~ — 2

and
(VIMAM) - v = 0;Mp07 My, v; = v;0; Myp0; My, = (v- V)M - AM.
—_—— ~~
ij (v-V)
Above discussion and VG(M) = f(M) - VM, we can easy obtain the last equality.

/Q(VG(M)—FvaﬂQ)-vdasz/ﬁ(wV)v-vdaxz/ﬂ(v-V)F:Fda:zO.

Using free divergence condition (V - v = 0), we have

/Q (VG(M) + v%) vda = — /Q (G(M) + %) (V- v)dz =0,

=0

/(v-V)v~vdm=/V|v|2~vdﬂc:—/ [v|*(V - v)dz = 0,
Q Q Q

and
/(v-V)F : Fdr = / V|F]? - vdx = —/ |F12(V - v)dz = 0.
Q Q Q

Summing the above notations, we obtain (6). |

We now introduce a Gronwall inequality which is useful to prove dissipative estimates.
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Lemma 2.3 ([16], Lemma 6.2.1). Let T be given, 0 < T < co. Suppose that y(t) and h(t) are
nonnegative continuous functions defined on [0,T), which satisfy the following conditions:

d T T
d%l < cy® +ea + h(t), / y(t)dt < cs, / h(t)dt < c4,
0 0

where ¢; (i = 1,2,3,4) are given nonnegative constants. Then, for any r € (0,T) the
following estimate holds:

y(t+r) < (673 + cor + C4)eclc3, Yt € [0, T —r].

3. Dissipative estimates

We begin to prove the first basic dissipative inequality that is a direct consequence of
the basic energy law (6).

Lemma 3.1. There exist constants Cy > 0, 6 > 0 independent of initial data (vo, Fo, Mp),
such that

d
a&(t) +kE(t) < Cpy, VE>O. (7)
Proof. Taking the scalar product in L?(2) of (1)5 with M, we obtain
(1, M) 2 =(AM, M) 2 — ((|M|* = 1)M, M)
=~ [VM|Z: — | M| 7s + [[M][72 (8)
On the other hand, by the Holder and Young inequalities, we have

1 1
= (M) > < [l 2| M| > < 5”#”%2 + §IIMH%2, 9)
1 3
IM]Z. < g\lMll‘iz; + 719 (10)

Combining (8) and energy equality (6), we get

Bl — A
SE(1) + 08 (1) = A(t),
where
0 0 0
A®) = Gl + 5IFI + 5IVMIE: +6 | GOz v Vol
— Kl[VF|72 = llulliz + (=IVM|172 — M| 4 + [IM]72 — (1, M) 2). (11)

Moreover, we notice that

_ } 2 2 T
Q/QG(M)dfo/Q4(|M| 1)%d

O vina. o iz, L0 0 019

< - 4 = 2 — < = —_—
< DI+ Sz + 0 < D+ 2 (12)

Applying (8)-(12) and the Poincaré’s inequality for v and F, we deduce that
0 o 0
A(D) < (v — S Ca)[V0l3a — (5 — SCa)[VE I3 — (1= D)IVM]s
1 6. 1 Q| ,9

G~ MU~ el + B v o), (13)

where C, is the optimal Poincaré constant. We choose

2v 2k
f =min<{1l, —, —
mln{ ’CQ’CQ}’
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and set

_ 129
Co = T(Z-f—e),

then we obtain
%S(t) 1 OE(t) < Co, > 0.
O

Thanks to Lemma 3.1 and the uniqueness property of weak solutions, ([13]) we have
the following proposition.

Proposition 3.1. Let (v, F, M) be the unique weak solution to system (1). The system (1)
defines a nonlinear strongly continuous semigroup

S(t): Y =Y, (14)
by setting, for t >0, 8(t)(vo, Fo, Mo) = (v(t), F(t), M(t)).

Proposition 3.2. Assume that (v, F, M) is a weak solution to the system (1). Then there
exists a time tg, and positive constants My, Ms depending on Cy and &y, such that

o112 + [FOIZ: + M@ < My, V>t (15)

and
i 2 2 2
/t (o)l + 1E Oz + 1M (7)[[g2)dr < M, VE > to. (16)

Proof. Multiplying (7) by e~% and integrating the relation from 0 to ¢, we have
Co

E(t) < &(0)e " + 5 Y=t
Taking
to = L1 —2
— | 1n
"7 0| Co(0) ]
we have
8(t)§2%7 Yt >t

From this and (10), we obtain
1M[7 < CUIVMIZ: + [M]1Z2) < CUIVMIIZ: + [ M]|2s +1) < CE(0),
which implies the constant M; depending on Cp and €(0), such that (15) holds.
Integrating (6) from ¢ to t + 1, we obtain

t+1
E(t+1) +/t WIVo()IZ> + KIVE@)Zs + u(r)lZ2)dr = E(1).

This implies

t+1
WIIVo(n)72 + KIVE ()12 + llu(r)lI72)dr

2
&(t) < &(0) < ﬁ, Vit > t.

K

~

IA
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Using (15), the interpolation theorem and the Sobolev imbedding theorem [1], with p =
AM — (|[M]? — 1)M, we deduce

t+1 t+1

[ e <0y [ (AMEIE: + 132 )dr
t - t
<c, / (AM — (M2~ 1)M)(7)[2.)dr

t+1
+C [P = DM@ + M OIE)dr
t-‘rtl

<C, / ()2 + M) [So + | M (7)]22)dr

t+1
SCs/t ()12 + M) [z + 1M (7)|[F2)dr

2
SCs(% +M;? 4+ M),

Then, we obtain

t+1
/t (o lF + IF O E + 1M ()1F2)dr

2Cy  2Cy 2Cy 3/2
< — 4+ — —+ M M) = M. t > to.
_V9+K9+03(6+1+1) 5, Vt>to
Therefore, (16) holds. O

Now, we prove the flowing proposition.

Proposition 3.3. Assume that (vo, Fo, My) € H x L*(Q) x H}(Q) and (v, F, M) is a weak
solution to the system (1). Then there exists positive constants Mz, My, such that for
t1 =tg + 1, the following uniform estimate hold,

Ol + IFOF + 1M @))5e < Ms, V>t (17)

t+1
/ (lo()F2 + 1F @ + (M (7)|Fs)dr < My, Yt > 1. (18)
t

Proof. We take the inner product of (1); in L?*(Q2) with —2Awv (we can do that within a
suitable Galerkin discretization scheme), and obtain

%HVUH?? + 20| Av||3. = 2/@(1} - Vo) - Avdz
-2 Qv.(FFT)-Auda:+2/gv-(VM@VM)-Audx. (19)
We take the inner product of (1)3 in L?(Q2) with —2AF, and have
%HVFH%Q + 2| AF||2, = Q/Q(v -VF): AFdx — Q/QVUF : AFdzx. (20)
We differentiate in (1); by V and take the inner product in L?(Q) with 2VAM, to get

d
ZIAM]3: + 2 VAMIE

= —2/ V(v-VM): VAde—Q/ V(M) : VAMdz. (21)
Q Q
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Adding up the relationships (19), (20) and (21), we have that

d
= (IVeli3e + IVFIZ: + 1AMI32) + 2(v1Avl3e + RIAFIE + [ VAM]E.)
:2/(v~Vu)-Avdm—2/ V- (FF")- Avdx

Q Q

+2/V-(VM®VM)~Avdx+2/
Q

(v-VF):AFda:—Q/ VoF : AFdz
Q Q

7
p /Q V(v-VM): VAMdz — 2 /Q V(M) : VAde:;Ii(t). (22)

We now estimate I; term by term. For I;, by the interpolation inequality and Young’s
inequality, we have

L(t) = 2/(1} - V) - Avdz < 2||v||pa|| V| pa || Aul L2
Q

1/2 1/2 1/2 1/2
< ellul IV ull 5 1Vl ) A 157 | A 2
1/2 3/2
= cllull 157 | Vull g2 ]| Aull3
1%
< cullull 3 1Vl 3] Val 72 + 7 1Au]3:

v
< e[| Vullz2 | Vulz: + SllAulZe,

where we use the Young’s inequality coefficient 4 and 4/3, (1/4+3/4 = 1) and the Gagliar-
doCNirenberg inequality [1] for two dimensions as follows

lullos < ellull 22Vl I Vulles < o[ Val 2] Au] 2.
For I, using Einstein summation convention, we know

(V- (FFT)), = 0;(FiFjk) = (9;F) Fj + Fu(9; Fj),
which means

I = _2/ V- (FFT)- Avda < | F||a||VF 1 ]|Av] 2

< | FIRIVEIZ IV E 2 IAF| 5 Aol e
< | VE|| 2| AF |} Av] 12 < || VF |22 | AF]| 2 + f||Av||L2

<l VFIL: + SIAFIZ: + S )A0]3-.

For I3, recall that

(V- (VM ©VM)), , = V;(V;MV,;My) = v VME 9T vam

VM?
2
and (notice V- v =0)

T VM2
(VI MAM) -Av=(Av-V)M - AM, VT'Avdxzo
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then (notice ||M|| g1 < C for t > ) for Young’s inequality and Lemma 2.1
I :2/QV~(VM®VM)-Avdx:Z/Q(Av-V)M~AMda:
< || Av| 2| VM| | AM || s
< | VML (IVMIZ: + |AM][3.)
AMILIAMZ: + [[VAM][:) 4] Av]| s
(1AM Iz + |AMITE + [AMIZ IV AM| 2
+ ||AM||L2||VAMH”2) | Aclzs
< e IAMIIL + JIVAM|Z: + %) A0ls + .
For I and Is,
I4—|—I5:2/Q(1J~VF):AFd:l:—Z/QVUF:AFdx
< loll oI VEN g |AF | g2 + e Vol o | Fl | AF| 2
< cllol IVl IV Pl AR
+ [Vl 17| Av ||”2||FH”2||VF||”2||AF||L2
< | Vull32 IVEIG: + IAFIZ: + Cl1Av]3,

where we use the Young’s inequality coeﬁi(:lents 4 and 4/3, (1/4+3/4 = 1) for the first part,
the coefficient 2 and 2, (1/2+ 1/2 = 1) for the second part.
For Ig, we have

(V(’U . VM))i,j = 8]' (kakMi) = 6j1}k8kMi + UkakajMi,
which means
— 2/ V(’U . VM) : VAMdx
Q

= —2/ VoV T M : VAde—Q/ v-VVM : VAMdz,
Q Q

where VVM = V2M stands for Or0jM;. Lemma 2.1 implies
IV2M|| 10y < CUIM |22 + [AM|22)2 + (|M122 + [AM]22) Y4V AM]|Z,
IVM| sy < CIVM|LL x (VM2 + [|AM|22)14,

then, we obtain (analogous estimate method as above terms)

Is = 72/(VUVTM) : VAMdzx — 2/ v-VVM : VAMdzx
Q Q
< c(IVollpa[VM]|pa + (o]l ]| V2 M| 24) [VAM || 2

1/2 1/2 1/2 1/2
<c(||w|| CIAv) LIV M + ol 5 190 2292 M 14 ) [VAM | 2
1%
< cv + FIVAMIZ + 280l + el TolPIAM| 3.

We now estimate the last term. First, recalling the embedding inequality

M| Lo (0) < cl|M]| 20,
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when combining it with Lemma 2.1, we have

I; = —2/QVf(M) : VAMdr = fQ/QV((\MF —1)M) : VAMdx

:—2/ M®(MVM):VAde+/ M|V M : VAMdz
Q Q

< | M3~ IV M2 [V AM] 2
< c(IAM32 + M]3V M2 [V AM| 2
<c+c|AM|]: + iHVAMHQLQ.
Now we set,
A®) = (IVollde + IVFI2 + [AM]32 ).

Summarizing the estimates of I; ~ I7, we have

d
ZAW) + (v180]3: + RIAFI: + [ VAM: ) < CLAW®? + Co.

By (16), we get
t+1
/ A(r)dr < M.
¢

The uniform Gronwall inequality (Lemma 2.3) implies that
At 4 1) < (My + Cy)e“ M2 .= My, t > 1,

which means A(t) < (Ma+ Cy)e“ M2 := M3, t > t; := to+ 1. The same way, we can obtain
(18), from ||MH%{3(Q) < C(||M||2L2(Q) + HVAM||2L2(Q)). The proof is completed. |

4. Global attractor
First of all, we recall the definition and a lemma about global attractors. ([14])

Definition 4.1. An attractor is a set A which belongs to a metric space H and enjoys the
following properties:

(1) A is an invariant set under (8(t)A = A), for all t > 0.

(2) A possesses an open neighborhood u that for every ug in u, 8(t)ug converges to A
ast — 00, dist(8(t)ug, A) = 0, ast — oco. Here dist is understood as the distance of a point
to a set; d(x,A) = igfcl d(z,y).

y

Definition 4.2. If A is an attractor, the largest open set u that satisfies (2) of the Definition
4.1 is called the basin of attraction of A. We say that A uniformly attracts a set B C u if
dist(8(t)B, A) — 0, as t — oo, where d(Bg,B1) = sup inf d(zx,y).

2E€Bo YEB1
Definition 4.3. We say that A C H is a global attractor for the semigroup {8(t)}t>o0 if A
18 a compact attractor that attracts the bounded sets of H.

We now present the generate lemma of global attractors.

Lemma 4.1. Let the closed semigroup {8(t)}i>0 have a connect compact attracting set B.
Assume also that 8(t)B C B for every t sufficiently large. Then 8(t) has a connected global
attractor A.

The main result of the paper is contained in the following theorem.

Theorem 4.1. The dynamical system (Y,8(t)) of (1) possesses a connected global attractor
A which is bounded in H x L?(Q) x H().



166 Aibo Liu, Changchun Liu

Proof. By Proposition 3.2, we know that the dynamical system (Y,8(¢)) has a bounded
absorbing set in H x L2(Q2) x H1(€). Proposition 3.3 implies that it has a compact absorbing
set which is contained in H x L?(Q) x H}(Q). On the basis of Lemma 4.1, we know that
the dynamical system (Y, 8(¢)) has a global attractor A. The proof of Theorem 4.1 is now
complete. O

5. Conclusions

The dynamic properties of the equation (1), such as the global asymptotical behaviors
of solutions and existence of global attractors are important. The main difficulties for
treating the system (1) are caused by the strong coupling nonlinear terms and the Neumann
boundary conditions. Based on the combination of the suitable dissipative estimates with
the energy techniques, we established the existence of global attractor A on a suitable phase-
space and proved that the attractor have a regular compact absorbing set.
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