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GLOBAL ATTRACTOR FOR A MATHEMATICAL MODEL OF 2D

MAGNETO-VISCOELASTIC FLOWS

Aibo Liu1, Changchun Liu2

We consider a mathematical model for magneto-viscoelastic flows in two di-

mensional bounded domains. The model couples the Navier–Stokes equations with evo-
lutionary equations for the deformation gradient and the magnetization obtain from a

special case of the micromagnetic energy. By the combination of the suitable dissipative

estimates with the energy techniques, we establish the existence of a global attractor on
a suitable phase-space and prove that the attractor has a regular compact absorbing set.
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1. Introduction

In this paper, we consider the following magneto-viscoelastic flows

vt + (v · ∇)v − ν∆v +∇p = ∇ · (FF> −∇M �∇M),

∇ · v = 0,

Ft + (v · ∇)F −∇vF = κ∆F,

Mt + (v · ∇)M = µ,

µ = ∆M − f(M),

(1)

in the domain QT := (0, T ) × Ω, where Ω ⊂ R2 is a bounded regular domain with smooth
boundary, and T > 0 is a given time. Here v(x, t) : QT → R2 is the velocity field, F : QT →
R2×2 is the deformation gradient, M : QT → R3 is the magnetization vector, p(x, t) stands
for the fluid pressure, A> is the transpose of a matrix A, (A�B)i,j =

∑m
k=1AkiBkj , and ν,

κ are positive constants. Throughout this paper, we use ∂i to denote ∂
∂xi

and the Hamilton

operator ∇ = (∂1, ∂2, · · · , ∂d), the Laplace operator ∆ =
∑d
i=1 ∂

2
i .

The system (1) is completed with Dirichlet boundary conditions for v, F and the
Neumann boundary condition for M

v|∂Ω = 0, F |∂Ω = 0,
∂M

∂n

∣∣∣
∂Ω

= 0, (2)

and the initial conditions

v(0, x) = v0(x), with ∇ · v0 = 0 in Ω,

F (0, x) = F0(x) = I, M(0, x) = M0(x) in Ω, (3)

where I is the 2× 2 identity matrix.
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We set that f : R2 → R2 is a function and G(r) =
∫ r

0
f(ξ)dξ is a potential function

as follows

f(M) = (|M |2 − 1)M, G(M) =
1

4
(|M |2 − 1)2,

and introduce the basic energy:

E(t) =
1

2
‖v‖2L2 +

1

2
‖F‖2L2 +

1

2
‖∇M‖2L2 +

∫
Ω

G(M)dx.

Magnetic materials are of great importance in technological applications. Therein,
magnetoelastic materials are strongly susceptible to be the phenomenon of converting ap-
plied into changes of the magnetic field and vice versa. They can be regarded as smart
materials. Magnetoelastic materials have been of interest for a variety of applications. For
instance, they can be found in sensors to measure the torque of a force, and used in magnetic
actuators and generators for ultrasonic sounds.

The system (1) is a mathematical model for magneto-viscoelastic flows of a typical
magnetoelastic material. First derived in [4], the model couples the Navier–Stokes equations
with evolutionary equations for the deformation gradient and magnetization obtained as a
special case of the micromagnetic energy

vt + (v · ∇)v − ν∆v +∇p = ∇ ·
(
W ′(F )F> − 2A(∇M �∇M)

)
,

∇ · v = 0,

Ft + (v · ∇)F −∇vF = κ∆F,

Mt + (v · ∇)M = 2A∆M − 1
γ2 (|M |2 − 1)M,

(4)

where A, γ and κ are positive constants. The elastic density W : Rd×d −→ R+
0 is assumed

to have the properties

W ∈ C2(Rd×d;R), C1|Ξ|2 ≤W (Ξ) ≤ C1(|Ξ|2 + 1),

|W ′(Ξ)| ≤ C2(1 + |Ξ|), W ′(0) = 0, |W ′′(Ξ)| ≤ C3,

(W ′′(Ξ1)∇Ξ2)
...∇Ξ2 ≥ a|∇Ξ2|2 a.e. in Ω,

for some positive constants C1, C2, C3, a, any Ξ ∈ Rd×d, and any Ξ1,Ξ2 ∈ H1(Rd×d). The
system (1) is derived by choosing A = 1/2, µ = 1 and W (F ) = 1

2 |F |
2 (which means

W ′(F )=F); obviously, this W (F ) satisfies the above conditions, existence of weak solutions
has been proved in [4], and the uniqueness of a solution has been studied in [13] for d = 2
and 3.

Forster [4] also derived another model for magneto-viscoelastic flows as follows:
vt + (v · ∇)v − ν∆v +∇p = ∇ · (FF> −∇M �∇M),

∇ · v = 0,

Ft + (v · ∇)F −∇vF = κ∆F,

Mt + (v · ∇)M = −M ×∆M −M × (M ×∆M),

(5)

it couples the Landau–Lifshitz–Gilbert equation (LLG equation) with elasticity in the small
strain setting. The existence of weak solutions has been proved in [4] and [2]. More math-
ematical studies for this model are needed, and we discovered that the model has critical
structure or so called self-similar solutions. That is, if (v, F,M) is a solution to the system,
the scaling relation solution:

(vλ, Fλ,Mλ) := (λv(λ2t, λx), λF (λ2t, λx),M(λ2t, λx))

is also a solution of the system, which means that we can study this system in critical
Sobolev or Besov spaces.
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We now analyze the structures of the system (1). If M = 0, κ = 0, the system (1)
reduces to a model for incompressible viscoelastic flows, c.f.[6, 7, 8, 9]. If F = 0, it reduces
to incompressible liquid crystal flows. Grasselli and Wu [5] proved that the system has a
finite-dimensional global attractor in R2 with periodic boundary conditions. You and Li [15]
gave the Pullback attractor of this system in two dimensions (see [10]). If M = F = 0, it
becomes the Navier–Stokes equations, where one has uniqueness of weak solutions in two
dimensions and weak-strong uniqueness in three spatial dimensions, also has unique global
classical solutions for smallness data or largeness viscosity ν(compared to the initial data),
and the global existence of classical solutions for general data in three spatial dimensions
is still in open problem. Since the system (1) contains the Navier-Stokes equations as a
subsystem, one cannot expect better results than those for Navier-Stokes equations.

The understanding of the asymptotic behavior of dynamical systems is one of the most
important problems of modern mathematical physics. One way to deal with this problem
for a dissipative system is to analyse the existence and structure of its attractor. Generally
speaking, the attractor has a very complicated geometry that reflects the complexity of the
long-time behavior of the system. During the past years, many authors have paid much
attention to the attractor of higher order parabolic equations [11, 12, 17, 18]. In this paper,
we study the existence of global attractor for the system (1). The main difficulties for
treating the system (1) are caused by the strong coupling nonlinear terms and the Neumann
boundary conditions. The results for incompressible liquid crystal flows generally account
for the Dirichlet boundary conditions or period boundary conditions.

The plan of the paper is as follows. In section 2, we introduce the associated spaces
and recall some useful lemmas for the proof of the global attractor. Section 3 is devoted to
the proof of a number of dissipative estimates that entail the existence of compact absorbing
sets in the phase space. In section 4, we prove the existence of the global attractor.

2. Preliminaries

We intorduce the spaces as follows

V := {v : v ∈ C∞0 , divv = 0},

H := closure of V in L2(Ω),

V := closure of V in H1(Ω),

Hm
0 (Ω) := {v ∈ Hm(Ω), v|∂Ω = 0},

Hm
n (Ω) := {v ∈ Hm(Ω),

∂v

∂n

∣∣∣
∂Ω

= 0},

Hm(Ω) := Wm,2(Ω), the Sobolev spaces Wm,p(Ω) with p = 2,

and the phase-space

Y := H× L2(Ω)×H1
n(Ω).

We denote the inner product on L2 by (·, ·) and the associated norm by ‖ · ‖L2 . The
space Hm(Ω) will be shorthanded by Hm. Einstein summation convention is used, that
is, summation sign is omitted and the sum is over all indices which appear twice. Such
as: a · b = Σdi=1aibi := aibi, by this way, we denote (a ⊗ b)i,j = aibj for vector a and b.

A : B = AijBij , ∇A
...∇B = ∂kAij∂kBij and (A�B)i,j = AkiBkj for matrix A and B.

The following inequalities are suited for Neumann boundary conditions, and are very
useful for the proof of our theorem.
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Lemma 2.1. ([3]) Let Ω ⊂ R3 be a bounded regular open set. There exists a positive constant
C such that for all M ∈ H2(Ω) satisfying ∂M

∂n = 0 on ∂Ω,

‖M‖H2(Ω) ≤ C
(
‖M‖2L2(Ω) + ‖∆M‖2L2(Ω)

)1/2
,

‖∇M‖H1(Ω) ≤ C
(
‖∇M‖2L2(Ω) + ‖∆M‖2L2(Ω)

)1/2
,

‖M‖L∞(Ω) ≤ C
(
‖M‖2L2(Ω) + ‖∆M‖2L2(Ω)

)1/2
.

If Ω ⊂ R2, then

‖∇M‖L4(Ω) ≤ C‖∇M‖
1/2
L2 × (‖∇M‖2L2 + ‖∆M‖2L2)1/4,

‖∆M‖L4(Ω) ≤ C‖∆M‖
1/2
L2 × (‖∆M‖2L2 + ‖∇∆M‖2L2)1/4

‖∇2M‖L4(Ω) ≤ C(‖M‖2L2 + ‖∆M‖2L2)1/2 + (‖M‖2L2 + ‖∆M‖2L2)1/4‖∇∆M‖1/2L2 .

The system (1) has a weak solution defined as follows:

Definition 2.1. ([4]) The triple (v, F,M) is called a weak solution to the system (1) in QT ,
for 0 < T < +∞, provided that

v ∈ L∞(0, T ; H) ∩ L2(0, T ; V),

F ∈ L∞(0, T ;L2(Ω;Rd×d)) ∩ L2(0, T ;H1(Ω;Rd×d)),
M ∈ L∞(0, T ;H1(Ω;R3) ∩ L2(0, T ;H2(Ω;R3)),

and if for test functions ζ ∈ W 1,∞(0, T ;R) with ζ(T ) = 0, ξ ∈ V, Ξ ∈ H1
0 (Ω;Rd×d),

ϕ ∈ H1(Ω;R3) together with the boundary conditions (2), it satisfies the equalities∫ T

0

∫
Ω

−v · (ζ ′ξ) + (v · ∇)v · (ζξ) +
(
W ′(F )F> −∇M �∇M

)
: (ζ∇ξ)dxdt

−
∫

Ω

v(0)(ζ(0)ξ)dx = −
∫ T

0

∫
Ω

ν∇v : (ζ∇ξ)dxdt,∫ T

0

∫
Ω

−F : (ζ ′Ξ) + (v · ∇)F : (ζΞ)− (∇vF ) : (ζΞ)dxdt

−
∫

Ω

F (0)(ζ(0)Ξ)dx = −
∫ T

0

∫
Ω

κ∇F
...(ζ∇Ξ)dxdt∫ T

0

∫
Ω

−M · (ζ ′ϕ) + (v · ∇)M · (ζϕ)dxdt−
∫

Ω

M(0) · (ζ(0)ϕ)dx

=

∫ T

0

∫
Ω

−∇M : (ζ∇ϕ)− 1

µ2
(|M |2 − 1)M · (ζϕ)dxdt.

The existence and uniqueness of weak solutions of the system (1) for (v0, F0,M0) ∈
H×L2(Ω)×H1

n(Ω) have been proved in [4] and [13]. We now introduce the energy estimates
for weak solutions.

Lemma 2.2. Let (v, F,M) be a weak solution to the system (1), the basic energy E(t) is
introduced in section 1. Then we have

d

dt
E(t) =

d

dt

(1

2
‖v‖2L2 +

1

2
‖F‖2L2 +

1

2
‖∇M‖2L2 +

∫
Ω

G(M)
)

+

∫
Ω

(
ν|∇v|2 + κ|∇F |2 + |µ|2

)
dx = 0. (6)
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Proof. Multiplying equation (1)1 by v, equation (1)3 by F , equation (1)4 by −µ, we have

1

2

d

dt
‖v‖2L2

=

∫
Ω

(
− ν|∇v|2 − (v · ∇)v · v +

[
∇ · (FF> −∇M �∇M)

]
· v
)
dx,

1

2

d

dt
‖F‖2L2 =

∫
Ω

(
− κ|∇F |2 − (v · ∇)F : F + (∇vF ) : F

)
dx,

and

1

2

d

dt
(‖∇M‖2L2 +G(M))

=

∫
Ω

(
− |µ|2 + (v · ∇)M ·∆M − (v · ∇)M · f(M)

)
dx.

Using Einstein summation convention (Einstein notation), for d×dmatrix A and B, we define

AB =

d∑
i,j=1

AikBkj = AikBkj , A : B =

d∑
i,j=1

AijBij = AijBij , the transpose (A>)ij = Aji

and (A>B)ij = AkiBkj . Hence we can rewrite above equality as∫
Ω

(∇ · FF>) · vdx =

∫
Ω

∂j(FikFjk)vidx = −
∫

Ω

FikFjk∂jvidx

= −
∫

Ω

∂jviFjk︸ ︷︷ ︸
ik

Fik︸︷︷︸
ik

dx = −
∫

Ω

(∇vF ) : Fdx,

∇ · (∇M �∇M) = ∂j(∂iMk∂jMk) = ∂j∂iMk∂jMk + ∂iMk∂
2
jMk

=
1

2
∂i|∂jMk|2 + ∂iMk︸ ︷︷ ︸

ki

∂2
jMk︸ ︷︷ ︸
kj

= ∇|∇M |
2

2
+∇>M∆M

and

(∇>M∆M) · v = ∂iMk∂
2
jMk︸ ︷︷ ︸

ij

vi = vi∂i︸︷︷︸
(v·∇)

Mk∂
2
jMk = (v · ∇)M ·∆M.

Above discussion and ∇G(M) = f(M) · ∇M , we can easy obtain the last equality.∫
Ω

(
∇G(M) +∇|∇M |

2

2

)
· vdx =

∫
Ω

(v · ∇)v · vdx =

∫
Ω

(v · ∇)F : Fdx = 0.

Using free divergence condition (∇ · v = 0), we have∫
Ω

(
∇G(M) +∇|∇M |

2

2

)
· vdx = −

∫
Ω

(
G(M) +

|∇M |2

2

)
(∇ · v)︸ ︷︷ ︸

=0

dx = 0,

∫
Ω

(v · ∇)v · vdx =

∫
Ω

∇|v|2 · vdx = −
∫

Ω

|v|2(∇ · v)dx = 0,

and ∫
Ω

(v · ∇)F : Fdx =

∫
Ω

∇|F |2 · vdx = −
∫

Ω

|F |2(∇ · v)dx = 0.

Summing the above notations, we obtain (6). �

We now introduce a Gronwall inequality which is useful to prove dissipative estimates.



160 Aibo Liu, Changchun Liu

Lemma 2.3 ([16], Lemma 6.2.1). Let T be given, 0 < T ≤ ∞. Suppose that y(t) and h(t) are
nonnegative continuous functions defined on [0, T ], which satisfy the following conditions:

dy

dt
≤ c1y2 + c2 + h(t),

∫ T

0

y(t)dt ≤ c3,
∫ T

0

h(t)dt ≤ c4,

where ci (i = 1, 2, 3, 4) are given nonnegative constants. Then, for any r ∈ (0, T ) the
following estimate holds:

y(t+ r) ≤
(c3
r

+ c2r + c4
)
ec1c3 , ∀t ∈ [0, T − r].

3. Dissipative estimates

We begin to prove the first basic dissipative inequality that is a direct consequence of
the basic energy law (6).

Lemma 3.1. There exist constants C0 > 0, θ > 0 independent of initial data (v0, F0,M0),
such that

d

dt
E(t) + κE(t) ≤ C0, ∀t ≥ 0. (7)

Proof. Taking the scalar product in L2(Ω) of (1)5 with M , we obtain

(µ,M)L2 =(∆M,M)L2 − ((|M |2 − 1)M,M)L2

=− ‖∇M‖2L2 − ‖M‖4L4 + ‖M‖2L2 . (8)

On the other hand, by the Hölder and Young inequalities, we have

− (µ,M)L2 ≤ ‖µ‖L2‖M‖L2 ≤ 1

2
‖µ‖2L2 +

1

2
‖M‖2L2 , (9)

‖M‖2L2 ≤
1

3
‖M‖4L4 +

3

4
|Ω|. (10)

Combining (8) and energy equality (6), we get

d

dt
E(t) + θE(t) = Λ(t),

where

Λ(t) :=
θ

2
‖v‖2L2 +

θ

2
‖F‖2L2 +

θ

2
‖∇M‖2L2 + θ

∫
Ω

G(M)dx− ν‖∇v‖2L2

− κ‖∇F‖2L2 − ‖µ‖2L2 + (−‖∇M‖2L2 − ‖M‖4L4 + ‖M‖2L2 − (µ,M)L2). (11)

Moreover, we notice that

θ

∫
Ω

G(M)dx = θ

∫
Ω

1

4
(|M |2 − 1)2dx

≤ θ

4
‖M‖4L4 +

θ

2
‖M‖2L2 +

θ|Ω|
4
≤ θ

2
‖M‖4L4 +

θ|Ω|
2
. (12)

Applying (8)-(12) and the Poincaré’s inequality for v and F , we deduce that

Λ(t) ≤ −(ν − θ

2
CΩ)‖∇v‖2L2 − (κ− θ

2
CΩ)‖∇F‖2L2 − (1− θ

2
)‖∇M‖2L2

− (
1

2
− θ

2
)‖M‖4L4 −

1

2
‖µ‖2L2 +

|Ω|
2

(9

4
+ θ
)
, (13)

where CΩ is the optimal Poincaré constant. We choose

θ = min

{
1,

2ν

CΩ
,

2κ

CΩ

}
,
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and set

C0 =
|Ω|
2

(9

4
+ θ
)
,

then we obtain
d

dt
E(t) + θE(t) ≤ C0, t ≥ 0.

�

Thanks to Lemma 3.1 and the uniqueness property of weak solutions, ([13]) we have
the following proposition.

Proposition 3.1. Let (v, F,M) be the unique weak solution to system (1). The system (1)
defines a nonlinear strongly continuous semigroup

S(t) : Y→ Y, (14)

by setting, for t ≥ 0, S(t)(v0, F0,M0) = (v(t), F (t),M(t)).

Proposition 3.2. Assume that (v, F,M) is a weak solution to the system (1). Then there
exists a time t0, and positive constants M1, M2 depending on C0 and E0, such that

‖v(t)‖2L2 + ‖F (t)‖2L2 + ‖M(t)‖2H1 ≤M1, ∀t ≥ t0 (15)

and ∫ t+1

t

(‖v(τ)‖2H1 + ‖F (τ)‖2H1 + ‖M(τ)‖2H2)dτ ≤M2, ∀t ≥ t0. (16)

Proof. Multiplying (7) by e−θt and integrating the relation from 0 to t, we have

E(t) ≤ E(0)e−θt +
C0

θ
, ∀t ≥ t0.

Taking

t0 =
1

θ

∣∣∣∣ ln θ

C0E(0)

∣∣∣∣,
we have

E(t) ≤ 2C0

θ
, ∀t ≥ t0.

From this and (10), we obtain

‖M‖2H1 ≤ C(‖∇M‖2L2 + ‖M‖2L2) ≤ C(‖∇M‖2L2 + ‖M‖4L4 + 1) ≤ CE(0),

which implies the constant M1 depending on C0 and E(0), such that (15) holds.
Integrating (6) from t to t+ 1, we obtain

E(t+ 1) +

∫ t+1

t

(ν‖∇v(τ)‖2L2 + κ‖∇F (τ)‖2L2 + ‖µ(τ)‖2L2)dτ = E(t).

This implies ∫ t+1

t

(ν‖∇v(τ)‖2L2 + κ‖∇F (τ)‖2L2 + ‖µ(τ)‖2L2)dτ

≤ E(t) ≤ E(0) ≤ 2C0

κ
, ∀t ≥ t0.
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Using (15), the interpolation theorem and the Sobolev imbedding theorem [1], with µ =
∆M − (|M |2 − 1)M , we deduce∫ t+1

t

‖M(τ)‖2H2dτ ≤ C1

∫ t+1

t

(‖∆M(τ)‖2L2 + ‖M(τ)‖2L2)dτ

≤C1

∫ t+1

t

(‖(∆M − (|M |2 − 1)M)(τ)‖2L2)dτ

+ C1

∫ t+1

t

(‖(|M |2 − 1)M(τ)‖2L2 + ‖M(τ)‖2L2)dτ

≤C2

∫ t+1

t

(‖µ(τ)‖2L2 + ‖M(τ)‖3L6 + ‖M(τ)‖2L2)dτ

≤C3

∫ t+1

t

(‖µ(τ)‖2L2 + ‖M(τ)‖3H1 + ‖M(τ)‖2H1)dτ

≤C3

(2C0

θ
+M

3/2
1 +M1

)
.

Then, we obtain∫ t+1

t

(‖v(τ)‖2H1 + ‖F (τ)‖2H1 + ‖M(τ)‖2H2)dτ

≤ 2C0

νθ
+

2C0

κθ
+ C3

(2C0

θ
+M

3/2
1 +M1

)
:= M2, ∀t ≥ t0.

Therefore, (16) holds. �

Now, we prove the flowing proposition.

Proposition 3.3. Assume that (v0, F0,M0) ∈ H×L2(Ω)×H1
n(Ω) and (v, F,M) is a weak

solution to the system (1). Then there exists positive constants M3, M4, such that for
t1 = t0 + 1, the following uniform estimate hold,

‖v(t)‖2H1 + ‖F (t)‖2H1 + ‖M(t)‖2H2 ≤M3, ∀t ≥ t1, (17)

∫ t+1

t

(‖v(τ)‖2H2 + ‖F (τ)‖2H2 + ‖M(τ)‖2H3)dτ ≤M4, ∀t ≥ t1. (18)

Proof. We take the inner product of (1)1 in L2(Ω) with −2∆v (we can do that within a
suitable Galerkin discretization scheme), and obtain

d

dt
‖∇v‖2L2 + 2ν‖∆v‖2L2 = 2

∫
Ω

(v · ∇v) ·∆vdx

− 2

∫
Ω

∇ · (FF>) ·∆vdx+ 2

∫
Ω

∇ · (∇M �∇M) ·∆vdx. (19)

We take the inner product of (1)3 in L2(Ω) with −2∆F , and have

d

dt
‖∇F‖2L2 + 2κ‖∆F‖2L2 = 2

∫
Ω

(v · ∇F ) : ∆Fdx− 2

∫
Ω

∇vF : ∆Fdx. (20)

We differentiate in (1)4 by ∇ and take the inner product in L2(Ω) with 2∇∆M , to get

d

dt
‖∆M‖2L2 + 2‖∇∆M‖2L2

= −2

∫
Ω

∇(v · ∇M) : ∇∆Mdx− 2

∫
Ω

∇f(M) : ∇∆Mdx. (21)
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Adding up the relationships (19), (20) and (21), we have that

d

dt

(
‖∇v‖2L2 + ‖∇F‖2L2 + ‖∆M‖2L2

)
+ 2
(
ν‖∆v‖2L2 + κ‖∆F‖2L2 + ‖∇∆M‖2L2

)
= 2

∫
Ω

(v · ∇v) ·∆vdx− 2

∫
Ω

∇ · (FF>) ·∆vdx

+ 2

∫
Ω

∇ · (∇M �∇M) ·∆vdx+ 2

∫
Ω

(v · ∇F ) : ∆Fdx− 2

∫
Ω

∇vF : ∆Fdx

− 2

∫
Ω

∇(v · ∇M) : ∇∆Mdx− 2

∫
Ω

∇f(M) : ∇∆Mdx =

7∑
i=1

Ii(t). (22)

We now estimate Ii term by term. For I1, by the interpolation inequality and Young’s
inequality, we have

I1(t) = 2

∫
Ω

(v · ∇v) ·∆vdx ≤ 2‖v‖L4‖∇u‖L4‖∆u‖L2

≤ c‖u‖1/2L2 ‖∇u‖1/2L2 ‖∇u‖1/2L2 ‖∆u‖1/2L2 ‖∆u‖L2

= c‖u‖1/2L2 ‖∇u‖L2‖∆u‖3/2L2

≤ cν‖u‖2L2‖∇u‖2L2‖∇u‖2L2 +
ν

4
‖∆u‖2L2

≤ cν‖∇u‖2L2‖∇u‖2L2 +
ν

6
‖∆u‖2L2 ,

where we use the Young’s inequality coefficient 4 and 4/3, (1/4 + 3/4 = 1) and the Gagliar-
doCNirenberg inequality [1] for two dimensions as follows

‖u‖L4 ≤ c‖u‖1/2L2 ‖∇u‖1/2L2 , ‖∇u‖L4 ≤ c‖∇u‖1/2L2 ‖∆u‖1/2L2 .

For I2, using Einstein summation convention, we know(
∇ · (FF>)

)
i,j

= ∂j(FikFjk) = (∂jFik)Fjk + Fik(∂jFjk),

which means

I2 = −2

∫
Ω

∇ · (FF>) ·∆vdx ≤ c‖F‖L4‖∇F‖L4‖∆v‖L2

≤ c‖F‖1/2L2 ‖∇F‖1/2L2 ‖∇F‖1/2L2 ‖∆F‖1/2L2 ‖∆v‖L2

≤ c‖∇F‖L2‖∆F‖1/2L2 ‖∆v‖L2 ≤ cν‖∇F‖2L2‖∆F‖L2 +
ν

4
‖∆v‖2L2

≤ cν,κ‖∇F‖4L2 +
κ

3
‖∆F‖2L2 +

ν

6
‖∆v‖2L2 .

For I3, recall that

(
∇ · (∇M �∇M)

)
i,j

= ∇j(∇iMk∇jMk) = ∇|∇M |
2

2
+∇>M∆M

and (notice ∇ · v = 0)

(∇>M∆M) ·∆v = (∆v · ∇)M ·∆M,

∫
Ω

∇|∇M |
2

2
·∆vdx = 0,
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then (notice ‖M‖H1 ≤ C for t ≥ t0) for Young’s inequality and Lemma 2.1

I3 = 2

∫
Ω

∇ · (∇M �∇M) ·∆vdx = 2

∫
Ω

(∆v · ∇)M ·∆Mdx

≤ c‖∆v‖L2‖∇M‖L4‖∆M‖L4

≤ c‖∇M‖1/2L2 (‖∇M‖2L2 + ‖∆M‖2L2)1/4

· ‖∆M‖1/2L2 (‖∆M‖2L2 + ‖∇∆M‖2L2)1/4‖∆v‖L2

≤ c
(
‖∆M‖L2 + ‖∆M‖3/2L2 + ‖∆M‖1/2L2 ‖∇∆M‖1/2L2

+ ‖∆M‖L2‖∇∆M‖1/2L2

)
‖∆v‖L2

≤ cν‖∆M‖4L2 +
1

4
‖∇∆M‖2L2 +

ν

4
‖∆v‖2L2 + c.

For I4 and I5,

I4 + I5 = 2

∫
Ω

(v · ∇F ) : ∆Fdx− 2

∫
Ω

∇vF : ∆Fdx

≤ c‖v‖L4‖∇F‖L4‖∆F‖L2 + c‖∇v‖L4‖F‖L4‖∆F‖L2

≤ c‖v‖1/2L2 ‖∇v‖1/2L2 ‖∇F‖1/2L2 ‖∆F‖3/2L2

+ ‖∇v‖1/2L2 ‖∆v‖1/2L2 ‖F‖1/2L2 ‖∇F‖1/2L2 ‖∆F‖L2

≤ c‖∇v‖2L2‖∇F‖2L2 +
κ

3
‖∆F‖2L2 +

ν

6
‖∆v‖2L2 ,

where we use the Young’s inequality coefficients 4 and 4/3, (1/4+3/4 = 1) for the first part,
the coefficient 2 and 2, (1/2 + 1/2 = 1) for the second part.

For I6, we have(
∇(v · ∇M)

)
i,j

= ∂j(vk∂kMi) = ∂jvk∂kMi + vk∂k∂jMi,

which means

− 2

∫
Ω

∇(v · ∇M) : ∇∆Mdx

= −2

∫
Ω

∇v∇>M : ∇∆Mdx− 2

∫
Ω

v · ∇∇M : ∇∆Mdx,

where ∇∇M = ∇2M stands for ∂k∂jMi. Lemma 2.1 implies

‖∇2M‖L4(Ω) ≤ C(‖M‖2L2 + ‖∆M‖2L2)1/2 + (‖M‖2L2 + ‖∆M‖2L2)1/4‖∇∆M‖1/2L2 ,

‖∇M‖L4(Ω) ≤ C‖∇M‖
1/2
L2 × (‖∇M‖2L2 + ‖∆M‖2L2)1/4,

then, we obtain (analogous estimate method as above terms)

I6 = −2

∫
Ω

(∇v∇>M) : ∇∆Mdx− 2

∫
Ω

v · ∇∇M : ∇∆Mdx

≤ c(‖∇v‖L4‖∇M‖L4 + ‖v‖L4‖∇2M‖L4)‖∇∆M‖L2

≤ c
(
‖∇v‖1/2L2 ‖∆v‖1/2L2 ‖∇M‖L4 + ‖v‖1/2L2 ‖∇v‖1/2L2 ‖∇2M‖L4

)
‖∇∆M‖L2

≤ cν +
1

4
‖∇∆M‖2L2 +

ν

6
‖∆v‖2L2 + c‖∇v‖2‖∆M‖2L2 .

We now estimate the last term. First, recalling the embedding inequality

‖M‖L∞(Ω) ≤ c‖M‖H2(Ω),
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when combining it with Lemma 2.1, we have

I7 = −2

∫
Ω

∇f(M) : ∇∆Mdx = −2

∫
Ω

∇((|M |2 − 1)M) : ∇∆Mdx

= −2

∫
Ω

M ⊗ (M∇M) : ∇∆Mdx+

∫
Ω

|M |2∇M : ∇∆Mdx

≤ c‖M‖2L∞‖∇M‖L2‖∇∆M‖L2

≤ c(‖∆M‖2L2 + ‖M‖2L2)‖∇M‖L2‖∇∆M‖L2

≤ c+ c‖∆M‖4L2 +
1

4
‖∇∆M‖2L2 .

Now we set

A(t) =
(
‖∇v‖2L2 + ‖∇F‖2L2 + ‖∆M‖2L2

)
.

Summarizing the estimates of I1 ∼ I7, we have

d

dt
A(t) +

(
ν‖∆v‖2L2 + κ‖∆F‖2L2 + ‖∇∆M‖2L2

)
≤ C1A(t)2 + C2.

By (16), we get ∫ t+1

t

A(τ)dτ ≤M2.

The uniform Gronwall inequality (Lemma 2.3) implies that

A(t+ 1) ≤ (M2 + C2)eC1M2 := M3, t ≥ t0,
which means A(t) ≤ (M2 +C2)eC1M2 := M3, t ≥ t1 := t0 + 1. The same way, we can obtain
(18), from ‖M‖2H3(Ω) ≤ C

(
‖M‖2L2(Ω) + ‖∇∆M‖2L2(Ω)

)
. The proof is completed. �

4. Global attractor

First of all, we recall the definition and a lemma about global attractors. ([14])

Definition 4.1. An attractor is a set A which belongs to a metric space H and enjoys the
following properties:

(1) A is an invariant set under (S(t)A = A), for all t ≥ 0.
(2) A possesses an open neighborhood u that for every u0 in u, S(t)u0 converges to A

as t→∞, dist(S(t)u0,A)→ 0, as t→∞. Here dist is understood as the distance of a point
to a set; d(x,A) = inf

y∈A
d(x, y).

Definition 4.2. If A is an attractor, the largest open set u that satisfies (2) of the Definition
4.1 is called the basin of attraction of A. We say that A uniformly attracts a set B ⊂ u if
dist(S(t)B,A)→ 0, as t→∞, where d(B0,B1) = sup

x∈B0

inf
y∈B1

d(x, y).

Definition 4.3. We say that A ⊂ H is a global attractor for the semigroup {S(t)}t≥0 if A
is a compact attractor that attracts the bounded sets of H.

We now present the generate lemma of global attractors.

Lemma 4.1. Let the closed semigroup {S(t)}t≥0 have a connect compact attracting set B.
Assume also that S(t)B ⊂ B for every t sufficiently large. Then S(t) has a connected global
attractor A.

The main result of the paper is contained in the following theorem.

Theorem 4.1. The dynamical system (Y, S(t)) of (1) possesses a connected global attractor
A which is bounded in H× L2(Ω)×H1

n(Ω).
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Proof. By Proposition 3.2, we know that the dynamical system (Y, S(t)) has a bounded
absorbing set in H×L2(Ω)×H1

n(Ω). Proposition 3.3 implies that it has a compact absorbing
set which is contained in H × L2(Ω) × H1

n(Ω). On the basis of Lemma 4.1, we know that
the dynamical system (Y, S(t)) has a global attractor A. The proof of Theorem 4.1 is now
complete. �

5. Conclusions

The dynamic properties of the equation (1), such as the global asymptotical behaviors
of solutions and existence of global attractors are important. The main difficulties for
treating the system (1) are caused by the strong coupling nonlinear terms and the Neumann
boundary conditions. Based on the combination of the suitable dissipative estimates with
the energy techniques, we established the existence of global attractor A on a suitable phase-
space and proved that the attractor have a regular compact absorbing set.

Acknowledgment

The authors would like to express their deep thanks to the referee’s valuable sugges-
tions for the revision and improvement of the manuscript.

R E F E R E N C E S

[1] R. A. Adams, J. F. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics (Ams-

terdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
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