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ON PARTIAL SUMS OF WRIGHT FUNCTIONS

by Muhey U Din1, Mohsan Raza2, Nihat Yagmur3 and Sarfraz Nawaz Malik4

In this paper, we find the partial sums of two kinds of normalized Wright
functions and the partial sums of Alexander transform of these normalized Wright func-

tions. In view of the importance of these results, their geometric interpretation is also

included. Furthermore, we discuss the radii of starlikeness for both the normalizations
of the Wright functions.
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1. Introduction and preliminaries

Let A be the class of functions f of the form

f(z) = z +

∞∑
m=2

amz
m

analytic in the open unit disc U = {z : |z| < 1}. Consider the Alexander transform given as:

A [f ] (z) =

z∫
0

f(t)

t
dt = z +

∞∑
m=2

am
m
zm.

The surprise use of Hypergeometric function in the solution of the Bieberbach conjecture
has attracted many researchers to study the special functions. Many authors who study geo-
metric functions theory are intersted in some geometric properties such as univalency, star-
likeness, convexity and close-to-convexity of special functions. Recently, several researchers
have studied the geometric properties of hypergeometric functions [17, 34], Bessel functions
[1, 2, 3, 4, 5, 6, 7, 28, 29, 30], Struve functions [20, 36], Lommel functions [11]. This study
motivated Prajpat [24] to study some geometric properties of Wright functions

Wλ,µ(z) =

∞∑
m=0

zm

m!Γ (λm+ µ)
, λ > −1, µ ∈ C.

This series is absolutely convergent in C, when λ > −1 and absolutely convergent in open
unit disc U for λ = −1. Furthermore these function are entire. The Wright functions were
introduced by Wright [35] and have been used in the asymtotic theory of partitions, in the
theory of integral transforms of Hankel type and in Mikusinski operational calculus. Re-
cently, Wright functions have been found in the solution of partial differential equations of
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fractional order. It was found that the corresponding Green functions can be expressed in
terms of Wright functions [23, 27]. Mainardi [16] involved Wright functions in the solution
of fractional diffusion wave equation. Luchko et.al [10, 15] obtained the scale variant solu-
tions of partial differential equations of fractional order in terms of Wright functions. For
positive rational number λ, the Wright functions can be expressed in terms of generalized
hypergeometric functions. For some details see [13, section 2.1]. In particular, the functions
W1,v+1(−z2/4) can be expressed in terms of the Bessel functions Jv, given as:

Jv (z) =
(z

2

)2

W1,v+1(−z2/4) =

∞∑
m=0

(−1)
m

(z/2)
2m+v

m!Γ (m+ v + 1)
.

The Wright functions generalize various functions like Airy functions, Whittaker functions,
entire auxiliary functions, etc. For the details, we refer to [13]. Prajapat discussed some
geometric properties of the following normalizations of Wright functions in [24]

Wλ,µ(z) = Γ (µ) zWλ,µ(z)

= z +

∞∑
m=1

Γ (µ)

m!Γ (λm+ µ)
zm+1. λ > −1, µ > 0, z ∈ U, (1)

Wλ,µ(z) = Γ (λ+ µ)

[
Wλ,µ(z)− 1

Γ (µ)

]
= z +

∞∑
m=1

Γ (λ+ µ)

(m+ 1)!Γ (λm+ λ+ µ)
zm+1, z ∈ U, (2)

where λ > −1, λ+ µ > 0. The Pochhammer (or Appell) symbol, defined in terms of Euler’s
gamma functions is given as (x)n = Γ(x+n)/Γ(x) = x(x+1)...(x+n−1). For some further
work on Wright functions see [8, 26].

In this note, we study the ratio of a function of the forms (1) and (2) to its sequence

of partial sums (Wλ,µ)n (z) = z +
n∑

m=1

Γ(µ)
m!Γ(λm+µ)z

m+1 when the coefficients of Wλ,µ satisfy

certain conditions. We determine the lower bounds of <
{

Wλ,µ(z)
(Wλ,µ)

n
(z)

}
, <

{
(Wλ,µ)

n
(z)

Wλ,µ(z)

}
,

<
{

W′
λ,µ(z)

(Wλ,µ)′
n

(z)

}
, <
{

(Wλ,µ)′
n

(z)

W′
λ,µ(z)

}
,

<
{

A[Wλ,µ](z)
(A[Wλ,µ])

n
(z)

}
, <

{
(A[Wλ,µ])

n
(z)

A[Wλ,µ](z)

}
, where A [Wλ,µ] is the Alexander transform of

Wλ,µ. Some similar results are obtained for the function Wλ,µ(z). For some works on partial
sums, we refer [9, 14, 19, 21, 22, 31, 32, 33].

Lemma 1.1. Let λ, µ ∈ R and λ ≥ 1, µ > 0. Then the function Wλ,µ : U→ C defined by
(1) satisfies the following inequalities:

(i)

|Wλ,µ(z)| ≤ 2µ2 + 3µ+ 2

2µ2 + µ
, z ∈ U,

(ii) ∣∣W′λ,µ(z)
∣∣ ≤ 2µ3 + 8µ2 + 13µ+ 10

2µ3 + 4µ2 + 2µ
, z ∈ U,

(iii)

|A [Wλ,µ] (z)| ≤ 2µ2 + 2µ+ 1

2µ2 + µ
, z ∈ U.

Proof. (i) By using the well-known triangle inequalitiy

|z1 + z2| ≤ |z1|+ |z2|
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with the inequality Γ (µ+m) ≤ Γ (µ+mλ) , m ∈ N, which is equivalent to Γ(µ)
Γ(λm+µ) ≤

1
µ(µ+1)...(µ+m−1) = 1

(µ)m
, m ∈ N and the inequalities

(µ)m ≥ µ
m, m! ≥ 2m−1, m ∈ N,

we obtain

|Wλ,µ(z)| =

∣∣∣∣∣z +

∞∑
m=1

Γ (µ)

m!Γ (λm+ µ)
zm+1

∣∣∣∣∣ ≤ 1 +

∞∑
m=1

Γ (µ)

m!Γ (λm+ µ)

≤ 1 +

∞∑
m=1

1

m! (µ)m

≤ 1 +
1

µ

∞∑
m=1

(
1

2 (µ+ 1)

)m−1

=
2µ2 + 3µ+ 2

2µ2 + µ
, µ > −1/2, z ∈ U.

(ii) To prove (ii), we use the well-known triangle inequality with the inequality Γ(µ)
Γ(λm+µ) ≤

1
µ(µ+1)...(µ+m−1) = 1

(µ)m
, m ∈ N and the inequalities

(µ+ 1)m ≥ (µ+ 1)
m
, m! ≥ 2 (m+ 1)

3
, m ∈ N\ {1} ,

we have

∣∣W′λ,µ(z)
∣∣ =

∣∣∣∣∣1 +

∞∑
m=1

Γ (µ) (m+ 1)

m!Γ (λm+ µ)
zm

∣∣∣∣∣ ≤ 1 +

∞∑
m=1

Γ (µ) (m+ 1)

m!Γ (λm+ µ)

≤ 1 +

∞∑
m=1

m+ 1

m! (µ)m

= 1 +
2

µ
+

∞∑
m=2

m+ 1

m! (µ)m

≤ 1 +
2

µ
+

3

2µ (µ+ 1)

∞∑
m=2

(
1

µ+ 2

)m−2

=
2µ3 + 8µ2 + 13µ+ 10

2µ3 + 4µ2 + 2µ
, µ > −1, z ∈ U.

(iii) Making the use of triangle inequality with Γ(µ)
Γ(λm+µ) ≤

1
(µ)m

and the inequalities

(µ+ 1)m ≥ (µ+ 1)
m
, (m+ 1)! ≥ 2m, m ∈ N,
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we have

|A [Wλ,µ] (z)| =

∣∣∣∣∣z +

∞∑
m=1

Γ (µ)

(m+ 1)!Γ (λm+ µ)
zm+1

∣∣∣∣∣
≤ 1 +

∞∑
m=1

Γ (µ)

(m+ 1)!Γ (λm+ µ)

≤ 1 +

∞∑
m=1

1

(m+ 1)! (µ)m

≤ 1 +
1

2µ

∞∑
m=1

(
1

2 (µ+ 1)

)m−1

=
2µ2 + 2µ+ 1

2µ2 + µ
, µ > −1/2, z ∈ U.

�

Lemma 1.2. Let λ, µ ∈ R and λ ≥ 1, M = λ + µ > 0. Then the function Wλ,µ : U→ C
defined by (2) satisfies the following inequalities:

(i) If M > − 1
2 , then

|Wλ,µ(z)| ≤ 2M2 + 3M + 2

2M2 +M
, z ∈ U.

(ii) If M > 0, then ∣∣W′λ,µ(z)
∣∣ ≤ M2 + 2M + 2

M2
, z ∈ U.

Proof. (i) By using the well-known triangle inequality

|z1 + z2| ≤ |z1|+ |z2|

with the inequality Γ (λ+ µ+m) ≤ Γ (mλ+ λ+ µ) , m ∈ N, which is equivalent to Γ(λ+µ)
Γ(mλ+λ+µ) ≤

1
(λ+µ)(λ+µ+1)...(λ+µ+m−1) = 1

(λ+µ)m
, m ∈ N and the inequalities

(λ+ µ+ 1)m ≥ (λ+ µ+ 1)
m
, m! ≥ 2m−1, m ∈ N,

we obtain

|Wλ,µ(z)| =

∣∣∣∣∣z +

∞∑
m=1

Γ (λ+ µ)

m!Γ (λm+ λ+ µ)
zm+1

∣∣∣∣∣ ≤ 1 +

∞∑
m=1

Γ (λ+ µ)

m!Γ (λm+ λ+ µ)

≤ 1 +

∞∑
m=1

1

m! (λ+ µ)m

≤ 1 +
1

M

∞∑
m=1

(
1

2 (M + 1)

)m−1

=
2M2 + 3M + 2

2M2 +M
, M > −1/2, z ∈ U.

(ii) By using the well-known triangle inequality with the inequality Γ(λ+µ)
Γ(mλ+λ+µ) ≤

1
(λ+µ)(λ+µ+1)...(λ+µ+m−1) =

1
(λ+µ)m

,m ∈ N and the inequalities

(λ+ µ+ 1)m ≥ (λ+ µ+ 1)
m
, m! ≥ m+ 1

2
, m ∈ N,
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we have∣∣W′λ,µ(z)
∣∣ =

∣∣∣∣∣1 +

∞∑
m=1

Γ (λ+ µ) (m+ 1)

m!Γ (λm+ λ+ µ)
zm

∣∣∣∣∣ ≤ 1 +

∞∑
m=1

Γ (λ+ µ) (m+ 1)

m!Γ (λm+ λ+ µ)

≤ 1 +

∞∑
m=1

m+ 1

m! (λ+ µ)m

≤ 1 +
2

M

∞∑
m=1

(
1

M + 1

)m−1

=
M2 + 2M − 2

M2
, M > 0, z ∈ U.

�

2. Partial Sums of Wλ,µ(z)

Theorem 2.1. Let λ, µ ∈ R such that λ ≥ 1, µ > 1.280776406 · · · . Then

Re

{
Wλ,µ(z)

(Wλ,µ)n (z)

}
≥ 2µ2 − µ− 2

2µ2 + µ
, z ∈ U, (3)

and

Re

{
(Wλ,µ)n (z)

Wλ,µ(z)

}
≥ 2µ2 + µ

2µ2 + 3µ+ 2
, z ∈ U. (4)

Proof. By using (i) of Lemma 1.1, it is clear that

1 +

∞∑
m=1

|am| ≤
2µ2 + 3µ+ 2

2µ2 + µ
,

which is equivalent to

2µ2 + µ

2µ+ 2

∞∑
m=1

|am| ≤ 1,

where am = Γ(µ)
m!Γ(λm+µ) . Now, we may write

2µ2 + µ

2µ+ 2

{
Wλ,µ(z)

(Wλ,µ)n (z)
− 2µ2 − µ− 2

2µ2 + µ

}

=

1 +
n∑

m=1
amz

m +
(

2µ2+µ
2µ+2

) ∞∑
m=n+1

amz
m

1 +
n∑

m=1
amzm

= :
1 + w(z)

1− w(z)
.

Then it is clear that

w(z) =

(
2µ2+µ
2µ+2

) ∞∑
m=n+1

amz
m

2 + 2
n∑

m=1
amzm +

(
2µ2+µ
2µ+2

) ∞∑
m=n+1

amzm

and

|w(z)| ≤

(
2µ2+µ
2µ+2

) ∞∑
m=n+1

|am|

2− 2
n∑

m=1
|am| −

(
2µ2+µ
2µ+2

) ∞∑
m=n+1

|am|
.
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This implies that |w (z)| ≤ 1 if and only if

2

(
2µ2 + µ

2µ+ 2

) ∞∑
m=n+1

|am| ≤ 2− 2

n∑
m=1

|am| .

Which further implies that

n∑
m=1

|am|+
(

2µ2 + µ

2µ+ 2

) ∞∑
m=n+1

|am| ≤ 1. (5)

It suffices to show that the left hand side of (5) is bounded above by
(

2µ2+µ
2µ+2

) ∞∑
m=1
|am| ,

which is equivalent to

2µ2 − µ− 2

2µ+ 2

n∑
m=1

|am| ≥ 0.

To prove (4) , we write

2µ2 + 3µ+ 2

2µ+ 2

{
(Wλ,µ)n (z)

Wλ,µ(z)
− 2µ2 + µ

2µ2 + 3µ+ 2

}

=

1 +
n∑

m=1
amz

m −
(

2µ2+µ
2µ+2

) ∞∑
m=n+1

amz
m

1 +
∞∑
m=1

amzm

=
1 + w(z)

1− w(z)
.

Therefore

|w(z)| ≤

(
2µ2+3µ+2

2µ+2

) ∞∑
m=n+1

|am|

2− 2
n∑

m=1
|am| −

(
2µ2−µ−2

2µ+2

) ∞∑
m=n+1

|am|
≤ 1.

The last inequality is equivalent to

n∑
m=1

|am|+
(

2µ2 + µ

2µ+ 2

) ∞∑
m=n+1

|am| ≤ 1. (6)

Since the left hand side of (6) is bounded above by
(

2µ2+µ
2µ+2

) ∞∑
m=1
|am| , this completes the

proof. �

Theorem 2.2. Let λ, µ ∈ R, with λ ≥ 1 and µ > 2.542886.... Then

Re

{
W′λ,µ(z)

(Wλ,µ)
′
n (z)

}
≥ 2µ3 − 9µ− 10

2µ3 + 4µ2 + 2µ
, z ∈ U, (7)

Re

{
(Wλ,µ)

′
n (z)

W′λ,µ(z)

}
≥ µ2

µ2 + 2µ+ 2
, z ∈ U. (8)

Proof. From part (ii) of Lemma 1.1, we observe that

1 +

∞∑
m=1

(m+ 1) |am| ≤
2µ3 + 8µ2 + 13µ+ 10

2µ3 + 4µ2 + 2µ
,
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where am = Γ(µ)
m!Γ(λm+µ) . This implies that(

2µ3 + 4µ2 + 2µ

4µ2 + 11µ+ 10

) ∞∑
m=1

(m+ 1) |am| ≤ 1.

Consider (
2µ3 + 4µ2 + 2µ

4µ2 + 11µ+ 10

){
W′λ,µ(z)

(Wλ,µ)
′
n (z)

− 2µ3 − 9µ− 10

2µ3 + 4µ2 + 2µ

}

=

1 +
n∑

m=1
(m+ 1)amz

m +
(

2µ3+4µ2+2µ
4µ2+11µ+10

) ∞∑
m=n+1

(m+ 1)amz
m

1 +
n∑

m=1
(m+ 1)amzm

=
1 + w(z)

1− w(z)
.

Therefore

|w(z)| ≤

(
2µ3+4µ2+2µ
4µ2+11µ+10

) ∞∑
m=n+1

(m+ 1) |am|

2− 2
n∑

m=1
(m+ 1) |am| −

(
2µ3+4µ2+2µ
4µ2+11µ+10

) ∞∑
m=n+1

(m+ 1) |am|
≤ 1.

The last inequality is equivalent to

n∑
m=1

(m+ 1) |am|+
(

2µ3 + 4µ2 + 2µ

4µ2 + 11µ+ 10

) ∞∑
m=n+1

(m+ 1) |am| ≤ 1. (9)

It suffices to show that the left hand side of (9) is bounded above by(
2µ3+4µ2+2µ
4µ2+11µ+10

) ∞∑
m=1
|am| (m + 1). Which is equivalent to

(
2µ3+4µ2+2µ
4µ2+11µ+10 − 1

) n∑
m=1

(m +

1) |am| ≥ 0.
To prove the result (8) , we write(

2µ3 + 8µ2 + 13µ+ 10

4µ2 + 11µ+ 10

){
(Wλ,µ)

′
n (z)

W′λ,µ(z)
− 2µ3 + 4µ2 + 2µ

2µ3 + 8µ2 + 13µ+ 10

}

=
1 + w(z)

1− w(z)
.

Therefore

|w(z)| ≤

(
2µ3+8µ2+13µ+10

4µ2+11µ+10

) ∞∑
m=n+1

(m+ 1) |am|

2− 2
n∑

m=1
(m+ 1) |am| − 2µ3−9µ−10

4µ2+11µ+10

∞∑
m=n+1

(m+ 1) |am|
≤ 1.

The last inequality is equivalent to

n∑
m=1

|am| (m+ 1) +
2µ3 + 4µ2 + 2µ

4µ2 + 11µ+ 10

∞∑
m=n+1

(m+ 1) |am| ≤ 1. (10)

It suffices to show that the left hand side of (10) is bounded above by

2µ3+4µ2+2µ
4µ2+11µ+10

∞∑
m=1

(m+ 1) |am| , the proof is complete. �
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Theorem 2.3. Let λ, µ ∈ R, with λ ≥ 1 and µ > 0.70710678.... Then

Re

{
A [Wλ,µ] (z)

(A [Wλ,µ])n (z)

}
≥ 2µ2 − 1

2µ2 + µ
, z ∈ U, (11)

and

Re

{
(A [Wλ,µ])n (z)

A [Wλ,µ] (z)

}
≥ 2µ2 + µ

2µ2 + 2µ+ 1
, z ∈ U, (12)

where A [Wλ,µ] is the Alexander transform of Wλ,µ.

Proof. To prove (11) , we consider from part (iii) of Lemma 1.1 so that

1 +

∞∑
m=1

|am|
(m+ 1)

≤ 2µ2 + 2µ+ 1

2µ2 + µ
,

which is equvalent to (
2µ2 + µ

µ+ 1

) ∞∑
m=1

|am|
(m+ 1)

≤ 1,

where am = Γ(µ)
m!Γ(λm+µ) . Now, we write(

2µ2 + µ

µ+ 1

){
A [Wλ,µ] (z)

(A [Wλ,µ])n (z)
− 2µ2 − 1

2µ2 + µ

}

=

1 +
n∑

m=1

am
(m+1)z

m +
(

2µ2+µ
µ+1

) ∞∑
m=n+1

am
(m+1)z

m

1 +
n∑

m=1

am
(m+1)z

m

=
1 + w(z)

1− w(z)
,

where

|w(z)| ≤

(
2µ2+µ
µ+1

) ∞∑
m=n+1

|am|
(m+1)

2− 2
n∑

m=1

|am|
(m+1) −

(
2µ2+µ
µ+1

) ∞∑
m=n+1

|am|
(m+1)

≤ 1.

The last inequality is equivalent to
n∑

m=1

|am|
(m+ 1)

+

(
2µ2 + µ

µ+ 1

) ∞∑
m=n+1

|am|
(m+ 1)

≤ 1. (13)

It suffices to show that the left hand side of (13) is bounded above by(
2µ2+µ
µ+1

) ∞∑
m=1

|am|
(m+1) , which is equivalent to

(
2µ2−1
µ+1

) ∞∑
m=1

|am|
(m+1) ≥ 0. This completes

the proof.
The proof of (12) is similar to the proof of Theorem 2.1. �

Remark 2.4. For λ = 1, µ = 5/2 we get W1,5/2(−z) = 3
4

(
sin(2

√
z)

2
√
z
− cos(2

√
z)
)
,

and for n = 0, we have
(
W1,5/2

)
0

(z) = z, so,

Re

(
sin(2

√
z)− 2

√
z cos(2

√
z)

2z
√
z

)
≥ 8

15
∼= 0.53333... (z ∈ U) , (14)

and

Re

(
2z
√
z

sin(2
√
z)− 2

√
z cos(2

√
z)

)
≥ 15

22
∼= 0.681818... (z ∈ U) . (15)
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The image domains of f(z) = sin(2
√
z)−2

√
z cos(2

√
z)

2z
√
z

and g(z) = 2z
√
z

sin(2
√
z)−2

√
z cos(2

√
z)

are

shown in the Figure below.

Figure 1

3. Partial Sums of Wλ,µ(z)

Theorem 3.1. Let λ, µ ∈ R, with λ ≥ 1 and M = µ+ λ > 0. Then

Re

{
Wλ,µ(z)

(Wλ,µ)n (z)

}
≥ 2M2 −M − 2

2M2 +M
, z ∈ U, (16)

and

Re

{
(Wλ,µ)n (z)

Wλ,µ(z)

}
≥ 2M2 +M

2M2 + 3M + 2
, z ∈ U, (17)

where Wλ,µ(z) is the normalized Wright function.

Proof. By using Lemma 1.2 (i), It is clear that

1 +

∞∑
m=1

|am| ≤
2M2 + 3M + 2

2M2 +M
,

where am = Γ(λ+µ)
(m+1)!Γ(λm+λ+µ) . This implies that(

2M2 +M

2M + 2

) ∞∑
m=1

|am| ≤ 1.

Now we may write (
2M2 +M

2M + 2

){
Wλ,µ(z)

(Wλ,µ)n (z)
− 2M2 −M − 2

2M2 +M

}

=

1 +
n∑

m=1
amz

m +
(

2M2+M
2M+2

) ∞∑
m=n+1

amz
m

1 +
n∑

m=1
amzm

=
1 + w(z)

1− w(z)
.
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It is clear that

w(z) =

{2 (λ+ µ)− 1}
∞∑

m=n+1
amz

m

2 + 2
n∑

m=1
amzm + {2 (λ+ µ)− 1}

∞∑
m=n+1

amzm
,

and

|w(z)| ≤

(
2M2+M
2M+2

) ∞∑
m=n+1

|am|

2− 2
n∑

m=1
|am| −

(
2M2+M
2M+2

) ∞∑
m=n+1

|am|
.

This implies that |w (z)| ≤ 1 if and only if
n∑

m=1

|am|+
(

2M2 +M

2M + 2

) ∞∑
m=n+1

|am| ≤ 1. (18)

It suffices to show that the left hand side of (18) is bounded above by(
2M2+M
2M+2

) ∞∑
m=1
|am| , which is equivalent to

(
2M2+M
2M+2 − 1

) ∞∑
m=1
|am| ≥ 0.

To prove (17) , we consider that

2M2 + 3M + 2

2M + 2

{
(Wλ,µ)n (z)

Wλ,µ(z)
− 2M2 +M

2M2 + 3M + 2

}
.

=

1 +
n∑

m=1
amz

m −
(

2M2+M
2M+2

) ∞∑
m=n+1

amz
m

1 +
∞∑
m=1

amzm

=
1 + w(z)

1− w(z)
.

Therefore

|w(z)| ≤

(
2M2+3M+2

2M+2

) ∞∑
m=n+1

|am|

2− 2
n∑

m=1
|am| −

(
2M2−M−2

2M+2

) ∞∑
m=n+1

|am|
.

The last inequality is equivalent to
n∑

m=1

|am|+
(

2M2 +M

2M + 2

) ∞∑
m=n+1

|am| ≤ 1. (19)

Since the left hand side of (19) is bounded above by
(

2M2+M
2M+2

) ∞∑
m=1
|am| , the proof is com-

plete. �

Similarly, we have the following result.

Theorem 3.2. Let λ, µ ∈ R, with λ ≥ 1 and µ+ λ > 0. Then

Re

{
W′λ,µ(z)

(Wλ,µ)
′
n (z)

}
≥ M2 − 2M − 2

M2
, z ∈ U, (20)

and

Re

{
(Wλ,µ)

′
n (z)

W′λ,µ(z)

}
≥ M2

M2 + 2M + 2
, z ∈ U, (21)
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where Wλ,µ(z) is the normalized Wright function.

Proof. Proof is similar to the Theorem 2.2. �

Remark 3.1. Recently Ravichandran [25] presented a survey article on geometric properties
of partial sums of univalent functions. Using Noshiro Warsc-
hawski Theorem [12] for n = 0 in the inequalities (7) of Theorem 2.2 and (20) of Theorem
3.2, the functions Wλ,µ(z) and Wλ,µ(z) are univalent and also close to convex. Noshiro [18]
showed that the radius of starlikness of fn ( the partial sums of the function f ∈ A) is 1/M
if f satisfies the inequality |f ′(z)| ≤M. This implies that by using the parts (ii) of Lemma
1.1 and Lemma 2.1, the radii of starlikeness of the functions (Wλ,µ)n (z) and (Wλ,µ)n (z)

are µ2

µ2+2µ+2 and M2

M2+2M+2 respectively.
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[2] Á. Baricz, Functional inequalities involving special functions. II, J. Math. Anal. Appl., 27 (2007),

1202-1213.
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