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GENERALIZATIONS OF 1-ABSORBING PRIMARY IDEALS 

OF COMMUTATIVE RINGS 

Ece YETKIN CELIKEL1 

Let 𝑅 be a commutative ring with identity. In this paper, we extend the concept 

of 1-absorbing primary ideals to the concept of 𝜑-1-absorbing primary ideals. Let 

𝜑: 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅} be a function, where 𝑆(𝑅) is the set of all ideals of 𝑅. A proper 

ideal 𝐼 of 𝑅 is called a 𝜑-1-absorbing primary ideal of 𝑅 if whenever nonunit elements 

𝑎, 𝑏, 𝑐 of 𝑅 and 𝑎𝑏𝑐 ∈ 𝐼\𝜑(𝐼), then 𝑎𝑏 ∈ 𝐼 or 𝑐 ∈ √𝐼. A number of results concerning 

𝜑-1-absorbing primary ideals are given and some characterizations of 𝜑-1-absorbing 

primary ideals in some special rings are obtained. 

Keywords: 1-absorbing primary ideal, weakly 1-absorbing primary ideal, 𝜑-1-

absorbing primary ideal. 

1. Introduction 

Throughout this paper 𝑹 denotes a commutative ring with identity and the 

set of all ideals of 𝑹 is denoted by 𝑺(𝑹).Various generalizations of prime (primary) 

ideals are studied in [1]-[14]. The concept of weakly prime ideals was introduced 

by Anderson and Smith in [2]. According to that paper, a proper ideal 𝑰 of 𝑹 is 

called a weakly prime ideal of 𝑹 if whenever 𝟎 ≠ 𝒂𝒃 ∈ 𝑰 for some 𝒂, 𝒃 ∈ 𝑰, then 

𝒂 ∈ 𝑰 or 𝒃 ∈ 𝑰. A proper ideal 𝑰 of 𝑹 is called a weakly primary ideal of 𝑹 as in [4] 

if whenever 𝟎 ≠ 𝒂𝒃 ∈ 𝑰 for some 𝒂, 𝒃 ∈ 𝑰, then 𝒂 ∈ 𝑰 or 𝒃 ∈ √𝑰. Let 𝝋: 𝑺(𝑹) →
𝑺(𝑹) ∪ {∅} be a function. A proper ideal 𝑰 of 𝑹 is called a 𝝋-prime ideal of 𝑹 as in 

[1] if whenever 𝒂, 𝒃 ∈ 𝑹 with 𝒂𝒃 ∈ 𝑰 ∖ 𝝋(𝑰) implies 𝒂 ∈ 𝑰 or 𝒃 ∈ 𝑰. A proper ideal 

𝑰 of 𝑹 is called a 𝝋-primary ideal of 𝑹 as in [12] if whenever 𝒂, 𝒃 ∈ 𝑹 with 𝒂𝒃 ∈

𝑰 ∖ 𝝋(𝑰), then 𝒂 ∈ 𝑰 or 𝒃 ∈ √𝑰. As a different generalization of (resp. weakly 

prime) prime ideals, (resp. [6]) [5] that a proper ideal 𝑰 of 𝑹 is said to be a (resp. 

weakly) 2-absorbing ideal of 𝑹 if whenever (resp. 𝟎 ≠ 𝒂𝒃𝒄 ∈ 𝑰) 𝒂𝒃𝒄 ∈ 𝑰 for some 

𝒂, 𝒃, 𝒄 ∈ 𝑹, then 𝒂𝒃 ∈ 𝑰 or 𝒃𝒄 ∈ 𝑰 or 𝒂𝒄 ∈ 𝑰. Recall that a proper ideal 𝑰 of 𝑹 is 

called a 𝝋-2-absorbing ideal of 𝑹 as in [13] if whenever 𝒂, 𝒃, 𝒄 ∈ 𝑹 with 𝒂𝒃𝒄 ∈ 𝑰 ∖
𝝋(𝑰), then 𝒂𝒃 ∈ 𝑰 or 𝒂𝒄 ∈ 𝑰 or 𝒃𝒄 ∈ 𝑰. Some generalizations of (resp. weakly) 2-

absorbing ideals, (resp. weakly) 2-absorbing primary ideals were introduced and 

studied in [7] and [8], where a proper ideal of 𝑹 is said to be a (resp. weakly) 2-

absorbing primary ideal if whenever 𝒂, 𝒃, 𝒄 ∈ 𝑹 with (resp. 𝟎 ≠ 𝒂𝒃𝒄 ∈ 𝑰) 𝒂𝒃𝒄 ∈ 𝑰, 
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then 𝒂𝒃 ∈ 𝑰 or 𝒂𝒄 ∈ √𝑰 or 𝒃𝒄 ∈ √𝑰. Later, a generalization of 2-absorbing primary 

ideals was introduced which covers all the above mentioned definitions. Recall 

from [9] that a proper ideal 𝑰 of 𝑹 is said to be a 𝝋-2-absorbing primary ideal if 

whenever 𝒂, 𝒃, 𝒄 ∈ 𝑹 with 𝒂𝒃𝒄 ∈ 𝑰 ∖ 𝝋(𝑰), then 𝒂𝒃 ∈ 𝑰 or 𝒂𝒄 ∈ √𝑰 or 𝒃𝒄 ∈ √𝑰. In 

some recent studies [10] and [11], Badawi and Yetkin Celikel introduced the 

concepts of 1-absorbing primary and weakly 1-absorbing primary ideals. A proper 

ideal 𝑰 of 𝑹 is said to be a (resp. weakly) 1-absorbing primary if whenever nonunit 

𝒂, 𝒃, 𝒄 ∈ 𝑹 and (resp. 𝟎 ≠ 𝒂𝒃𝒄 ∈ 𝑰) 𝒂𝒃𝒄 ∈ 𝑰, then 𝒂𝒃 ∈ 𝑰 or 𝒄 ∈ √𝑰.  

In this paper, we extend the concept of 1-absorbing primary ideal to the 

concept of 𝝋-1-absorbing primary ideal. Let 𝝋: 𝑺(𝑹) → 𝑺(𝑹) ∪ {∅} be a function. 

We call a proper ideal 𝑰 of 𝑹 a 𝝋-1-absorbing primary ideal if whenever nonunit 

elements 𝒂, 𝒃, 𝒄 of 𝑹 with 𝒂𝒃𝒄 ∈ 𝑰 ∖ 𝝋(𝑰), then 𝒂𝒃 ∈ 𝑰 or 𝒄 ∈ √𝑰. Let 𝝋(𝑰) ≠ ∅. 
Then, we have the following relations among these mentioned concepts: 

primary ⇒ 1-absorbing primary ⇒ 2-absorbing primary 

⇓  ⇓  ⇓ 

weakly primary ⇒ weakly 1-absorbing primary ⇒ weakly 2-absorbing primary 

 
⇓  ⇓  ⇓ 

𝝋-primary ⇒ 𝝋-1-absorbing primary ⇒ 𝝋-2-absorbing primary 

 We show that 𝝋-1-absorbing primary ideals enjoy analogs of many of the 

properties of (weakly) 1-absorbing primary ideals. Among many results in this 

paper, we show (Theorem 2.3) that if 𝑰 is a 𝝋-1-absorbing primary ideal of 𝑹 such 

that 𝝋 is an order-preserving function with 𝝋(𝑰) ≠ 𝑰 and √𝝋(𝑰) = 𝝋(𝑰), then √𝑰 

is a prime ideal of 𝑹. Additionally, if 𝑹 is a Dedekind domain, we show (Theorem 

2.5) that the converse of Theorem 2.3 is also satisfied. We show (Theorem 2.4) that 

in divided rings (chained rings) 𝝋-1-absorbing primary ideals 𝑰 of 𝑹 coincide with 

𝝋-primary ideals of 𝑹 provided that 𝝋(𝑰) ≠ 𝑰 and 𝝋(𝑰) is a radical ideal, where 𝝋 

is an order-preserving function. Furthermore, a characterization for 𝝋-1-absorbing 

primary ideals in u-rings is obtained via equivalent conditions. (Theorem 2.9). 

2. φ-1-absorbing primary ideals 

Definition 2.1. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅. We define the function 

𝜑𝛼: 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅} and the corresponding 𝜑𝛼-1-absorbing primary ideals, 

where 𝛼 ∈ {∅} ∪ {0,1,2, . . . } ∪ {𝜔} as follows: 

(1) If 𝜑(𝐼) = ∅ for every 𝐼 ∈ 𝑆(𝑅), then 𝜑 = 𝜑∅ and 𝐼 is called a 𝜑∅-1-absorbing 

primary ideal of 𝑅, and hence 𝐼 is a 1-absorbing primary ideal of 𝑅. 

(2) If 𝜑(𝐼) = 0 for every 𝐼 ∈ 𝑆(𝑅), then 𝜑 = 𝜑₀ and 𝐼 is called a 𝜑₀-1-absorbing 

primary ideal of 𝑅. Thus 𝐼 is a weakly 1-absorbing primary ideal of 𝑅. 
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(3) If 𝜑(𝐼) = 𝐼 for every 𝐼 ∈ 𝑆(𝑅), then 𝜑 = 𝜑₁ and 𝐼 is called a 𝜑₁-1-absorbing 

primary ideal of 𝑅. (any ideal.) 

(4) If 𝑛 ≥ 2 and 𝜑(𝐼) = 𝐼ⁿ for every 𝐼 ∈ 𝑆(𝑅), then 𝜑 = 𝜑𝑛 and 𝐼 is called a 𝜑𝑛-

1-absorbing primary ideal (𝑛-almost 1-absorbing primary ideal) of 𝑅. In particular, 

if 𝑛 = 2, then we say that 𝐼 is an almost-1-absorbing primary ideal  

(5) If 𝜑(𝐼) = ⋂ 𝐼𝑛∞
𝑛=1  for every 𝐼 ∈ 𝑆(𝑅), then 𝜑 = 𝜑𝜔 and 𝐼 is called a 𝜑𝜔-1-

absorbing primary ideal of 𝑅. 

Since 𝐼 ∖ 𝜑(𝐼) = 𝐼 ∖ (𝐼 ∩ 𝜑(𝐼)), throughout we may assume that 𝜑(𝐼) ⊆ 𝐼. 

Given two functions 𝜓₁, 𝜓₂ ∶ 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅}, if 𝜓₁(𝐼) ⊆ 𝜓₂(𝐼), then it is clear 

that if 𝐼 is a 𝜓₁-1-absorbing primary, then 𝐼 is a 𝜓₂-1-absorbing primary ideal of 𝑅. 

The following example shows that the concepts of (weakly) 1-absorbing primary 

ideal and 𝜑-1-absorbing primary ideal are different. 

Example 2.1. Consider an ideal 𝐽 = {0,6,12,18} of ℤ₂₄ and the idealization ring 

𝑅 = ℤ₂₄(+)𝐽. Then 𝐼 = {(0,0), (0,6), (0,12), (0,18)} is a 𝜑₂ -1-absorbing primary 

ideal of 𝑅. Observe that if 𝑎𝑏𝑐 ∈ 𝐼 for some 𝑎, 𝑏, 𝑐 ∈ 𝑅\𝐼, 𝑎𝑏𝑐  can be neither (0,6) 

nor (0,18). So, 𝑎𝑏𝑐 ∈ 𝐼 for some 𝑎, 𝑏, 𝑐 ∈ 𝑅\𝐼 if and only if 𝑎𝑏𝑐 ∈ 𝜑₂(𝐼) = 𝐼² =
{(0,0), (0,12)}. Thus 𝐼 is a 𝜑₂-1-absorbing primary ideal of 𝑅. However, it is not 

weakly 1-absorbing primary since (0,0) ≠ (0,12) = (2,0)(4,6)(3,0) ∈ 𝐼, but 

neither (2,0)(4,6) = (8,12) ∈ 𝐼 nor (3,0) ∈ √𝐼 = 𝐼. 
Theorem 2.1. Let 𝐼 be a proper ideal of 𝑅. Then 

(1) 𝐼 is a primary ideal ⇒ 𝐼 is a 1-absorbing primary ideal ⇒ 𝐼 is a weakly 1-

absorbing primary ideal ⇒ 𝐼 is a 𝜑𝜔-1- absorbing primary ideal ⇒ 𝐼 is an 𝑛-almost-

1-absorbing primary ideal for 𝑛 ≥ 2  ⇒  𝐼 is an almost 1-absorbing primary ideal. 

(2) If 𝐼 is an idempotent ideal of 𝑅, then 𝐼 is an 𝜑𝜔-1-absorbing primary ideal of 𝑅.  

(3) 𝐼 is a 𝜑𝑛-1-absorbing primary ideal of 𝑅 for all 𝑛 ≥ 2 if and only if 𝐼 is a 𝜑𝜔-

1-absorbing primary ideal of 𝑅. 

(4) If 𝑅/𝜑(𝐼) is an integral domain, then 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅 if 

and only if 𝐼 is a 1-absorbing primary ideal of 𝑅. 

(5) If 𝑅 is a quasilocal ring with maximal ideal √0, then 𝐼 is a 𝜑-1-absorbing 

primary ideal of 𝑅 for all 𝜑. 

Proof. (1) It is clear that every primary ideal is 1-absorbing primary. Since ∅ ⊆ 0 ⊆
⋂ 𝐼𝑛∞

𝑛=1 ⊆ ⋯ ⊆ 𝐼ⁿ ⊆ ⋯ ⊆ 𝐼² ⊆ 𝐼, the implications follow from the definitions.  

(2) If 𝐼 is an idempotent ideal, then 𝐼 = 𝐼² = 𝐼ⁿ = ⋂ 𝐼𝑛∞
𝑛=1 ; so we are done. 

(3) It is obvious from definitions. 

(4) Suppose that 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅. Let 𝑎𝑏𝑐 ∈ 𝐼 for some 

nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅 and 𝑎𝑏 ∉ 𝐼. If 𝑎𝑏𝑐 ∉ 𝜑(𝐼), then 𝑐 ∈ √𝐼, so we are done. 

Assume that 𝑎𝑏𝑐 ∈ 𝜑(𝐼). Since 𝑎𝑏 ∉ 𝜑(𝐼) and 𝑅/𝜑(𝐼) is an integral domain, we 

concude that 𝑐 ∈ 𝜑(𝐼) ⊆ 𝐼 ⊆ √𝐼. The converse part is clear. 

(5) If 𝑅 is a quasilocal ring with maximal ideal √0, then for every nonunit element 

𝑐 of 𝑅, 𝑐 ∈ √0 ⊆ √𝐼. Therefore, 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅. 



170                                                     Ece Yetkin Celikel 

Theorem 2.2. Let 𝜑: 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅} be a function and 𝐼 a proper ideal of 𝑅. 

Then the following statements hold: 

(1) If 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅 and 𝐽 is a proper ideal of 𝑅 with 

𝜑(𝐼) ⊆ 𝐽 ⊆ 𝐼, then 𝐼/𝐽 is a weakly 1-absorbing primary ideal of 𝑅/𝐽. 

(2) Suppose that the set of unit elements of 𝑅/𝜑(𝐼) is 𝑈(𝑅/𝜑(𝐼)) = {𝑎 + 𝜑(𝐼) ∣
𝑎 ∈ 𝑈(𝑅)}. Then 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅 if and only if 𝐼/𝜑(𝐼) is a 

weakly 1-absorbing primary ideal of 𝑅/𝜑(𝐼). 
(3) Suppose that the set of unit elements of 𝑅/𝐼ⁿ is 𝑈(𝑅/𝐼ⁿ) = {𝑎 + 𝐼ⁿ ∣ 𝑎 ∈
𝑈(𝑅)}. Then 𝐼 is a 𝜑𝑛-1-absorbing primary ideal of 𝑅 for 𝑛 ≥ 2 if and only if 𝐼/𝐼ⁿ 

is a weakly 1-absorbing primary ideal of 𝑅/𝐼ⁿ. 

Proof. (1) Suppose that 𝐽 ≠ (𝑎 + 𝐽)(𝑏 + 𝐽)(𝑐 + 𝐽) ∈ 𝐼/𝐽 for some nonunit (𝑎 + 𝐽), 
(𝑏 + 𝐽), (𝑐 + 𝐽)  ∈  𝑅/𝐽. Hence 𝑎𝑏𝑐 ∈ 𝐼 ∖ 𝐽, where 𝑎, 𝑏, 𝑐 are nonunit elements of 

𝑅. Since 𝜑(𝐼) ⊆ 𝐽, we have 𝑎𝑏𝑐 ∈ 𝐼 ∖ 𝜑(𝐼). It follows that 𝑎𝑏 ∈ 𝐼 or 𝑐 ∈ √𝐼. Since 

√𝐼/𝐽 = √𝐼/𝐽, we have 𝑎𝑏 + 𝐽 ∈ 𝐼/𝐽 or 𝑐 + 𝐽 ∈ √𝐼/𝐽.  

(2) Suppose that 𝐼/𝜑(𝐼) is a weakly 1-absorbing primary ideal of 𝑅/𝜑(𝐼) and 

𝑎𝑏𝑐 ∈ 𝐼 ∖ 𝜑(𝐼) for some nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅. Thus 𝜑(𝐼) ≠ (𝑎 + 𝜑(𝐼))(𝑏 +
𝜑(𝐼))(𝑐 + 𝜑(𝐼)) ∈ 𝐼/𝜑(𝐼), where 𝑎 + 𝜑(𝐼), 𝑏 + 𝜑(𝐼), 𝑐 + 𝜑(𝐼) are nonunit 

elements of 𝑅/𝜑(𝐼) by hypothesis. Hence (𝑎 + 𝜑(𝐼))(𝑏 + 𝜑(𝐼)) ∈ 𝐼/𝜑(𝐼) or 𝑐 +

𝜑(𝐼) ∈ √𝐼/𝜑(𝐼). Thus 𝑎𝑏 ∈ 𝐼 or 𝑐 ∈ √𝐼. The converse part is clear by (1).  

(3) Since 𝜑𝑛(𝐼) = 𝐼ⁿ, the conclusion follows from (2). 

A function 𝜑: 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅} is said to be order-preserving if whenever 

𝐼, 𝐽 ∈ 𝑆(𝑅) with 𝐼 ⊆ 𝐽, then 𝜑(𝐼) ⊆ 𝜑(𝐽). 
Theorem 2.3. Let 𝜑: 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅} be an order-preserving function. If 𝐼 is a 

𝜑-1-absorbing primary ideal of 𝑅 such that 𝜑(𝐼) ≠ 𝐼 and √𝜑(𝐼) = 𝜑(𝐼), then √𝐼 

is a prime ideal of 𝑅. 

Proof. First we show that √𝐼 is a 𝜑-prime ideal of R. Suppose that 𝑎𝑏 ∈ √𝐼  ∖

𝜑(√𝐼) for some 𝑎, 𝑏 ∈ 𝑅. We may assume that 𝑎, 𝑏 are nonunit. Then there exists 

an even positive integer 𝑛 = 2𝑚 (𝑚 ≥ 1) such that (𝑎𝑏)ⁿ ∈ 𝐼. If (𝑎𝑏)ⁿ ∈ 𝜑(𝐼), 

then 𝑎𝑏 ∈ √𝜑(𝐼) = 𝜑(𝐼) ⊆ 𝜑(√𝐼), a contradiction. So, we  have (𝑎𝑏)ⁿ =

𝑎𝑚𝑎𝑚𝑏ⁿ ∈ 𝐼 ∖ 𝜑(𝐼). Thus 𝑎𝑚𝑎𝑚 = 𝑎ⁿ ∈ 𝐼 or 𝑏ⁿ ∈ √𝐼, and therefore √𝐼 is a 𝜑-

prime ideal of 𝑅. Thus, √𝐼 is a prime ideal of 𝑅 by [1, Corollary 7]. 

Recall that a ring 𝑅 is called divided if for every prime ideal 𝑃 of 𝑅 and for 

every 𝑥 ∈ 𝑅 ∖ 𝑃, we have 𝑥 ∣ 𝑝 for every 𝑝 ∈ 𝑃. We have the following result. 

Theorem 2.4. Let 𝑅 be a divided ring and 𝐼 a proper ideal of 𝑅 with such that 

𝜑(𝐼) ≠ 𝐼 and √𝜑(𝐼) = 𝜑(𝐼) for some order-preserving function 𝜑. Then 𝐼 is a 𝜑-

1-absorbing primary ideal of 𝑅 if and only if 𝐼 is a 𝜑-primary ideal of 𝑅. 

Proof. Suppose that 𝑎𝑏 ∈ 𝐼 ∖ 𝜑(𝐼) for some 𝑎, 𝑏 ∈ 𝑅 and 𝑏 ∉ √𝐼. We may assume 

that 𝑎 and 𝑏 are nonunit. Since √𝐼 is a prime ideal of 𝑅 by Theorem 2.3, we 
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conclude that 𝑎 ∈ √𝐼. Since 𝑅 is divided, we conclude that 𝑏 ∣ 𝑎. Thus 𝑎 = 𝑏𝑐 for 

some 𝑐 ∈ 𝑅. Observe that 𝑐 is a nonunit element of 𝑅 as 𝑏 ∉ √𝐼 and 𝑎 ∈ √𝐼. Since 

𝑎𝑏 = 𝑏𝑐𝑏 ∈ 𝐼 ∖ 𝜑(𝐼), 𝐼 is 𝜑-1-absorbing primary and 𝑏 ∉ √𝐼, we conclude that 

𝑏𝑐 = 𝑎 ∈ 𝐼. Thus 𝐼 is a 𝜑-primary ideal of 𝑅. The converse part is clear. 

Remark 2.1. Recall that a ring 𝑅 is called a chained ring if for every 𝑥, 𝑦 ∈ 𝑅, we 

have 𝑥 ∣ 𝑦 or 𝑦 ∣ 𝑥. Every chained ring is divided. So, if 𝑅 is a chained ring, then a 

proper ideal 𝐼 of 𝑅 with the properties that 𝜑(𝐼) ≠ 𝐼 and √𝜑(𝐼) = 𝜑(𝐼), where 𝜑 

is a order-preserving function, is a 𝜑-1-absorbing primary if and only if it is 𝜑-

primary. 

Theorem 2.5. Let 𝑅 be a Dedekind domain and 𝐼 a proper ideal of 𝑅 such that 

𝜑(𝐼) ≠ 𝐼 and √𝜑(𝐼) = 𝜑(𝐼), where 𝜑 is an order-preserving function. Then 𝐼 is a 

𝜑-1-absorbing primary ideal of 𝑅 if and only if √𝐼 is a prime ideal of 𝑅. 

Proof. Suppose that 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅. Then √𝐼 is a prime 

ideal of 𝑅 by Theorem 2.3. Conversely, if √𝐼 is prime, then 𝐼 is 1-absorbing primary 

by  [10, Theorem 14]. Thus 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅. 

The following result is similar to [11, Theorem 2]. 

Theorem 2.6. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅. If 𝐼 is not a 𝜑-primary 

ideal of 𝑅, then there exist an irreducible element 𝑥 ∈ 𝑅 and a nonunit element 𝑦 ∈

𝑅 such that 𝑥𝑦 ∈ 𝐼 ∖ 𝜑(𝐼), but neither 𝑥 ∈ 𝐼 nor 𝑦 ∈ √𝐼. Furthermore, if 𝑎𝑏 ∈ 𝐼 ∖

𝜑(𝐼) for some nonunit 𝑎, 𝑏 ∈ 𝑅 such that neither 𝑎 ∈ 𝐼 nor 𝑏 ∈ √𝐼, then 𝑎 is an 

irreducible element of 𝑅. 

Proof. Suppose that 𝐼 is not a 𝜑-primary ideal of 𝑅. Then there exist nonunit 𝑥, 𝑦 ∈

𝑅 such that 𝑥𝑦 ∈ 𝐼 ∖ 𝜑(𝐼) with 𝑥 ∉ 𝐼 , 𝑦 ∉ √𝐼. Assume that 𝑥 is not an irreducible 

element of R. Then 𝑥 = 𝑐𝑑 for some nonunit 𝑐, 𝑑 ∈ 𝑅. Since 𝑥𝑦 = 𝑐𝑑𝑦 ∈ 𝐼 ∖

𝜑(𝐼) and 𝐼 is 𝜑-1-absorbing primary and 𝑦 ∉ √𝐼, we conclude that 𝑐𝑑 = 𝑥 ∈ 𝐼, a 

contradiction. Hence 𝑥 is an irreducible element of 𝑅. 

Theorem 2.7. Let 𝑥 be a nonunit element of 𝑅 with (0: 𝑥) ⊆ (𝑥). Then the 

following statements are equivalent: 

(1) (𝑥) is 𝜑-1-absorbing primary ideal of 𝑅 for some 𝜑 with 𝜑 ≤ 𝜑₃. 
(2) (𝑥) is a 1-absorbing primary ideal of 𝑅. 

Proof. (1)⇒(2) Suppose that (𝑥) is 𝜑₃-1-absorbing primary and 𝑎𝑏𝑐 ∈ (𝑥) and 

𝑎𝑏 ∉ (𝑥) for some nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅. If 𝑎𝑏𝑐 ∉ (𝑥³) = 𝜑₃((𝑥)), we have 𝑐 ∈

√(𝑥). Suppose that 𝑎𝑏𝑐 ∈ (𝑥³). Hence 𝑎𝑏𝑐 + 𝑎𝑏𝑥 = 𝑎𝑏(𝑐 + 𝑥) ∈ (𝑥). Since 𝑎𝑏 ∉

(𝑥), (𝑐 + 𝑥) is a nonunit element of 𝑅. Now, we show that 𝑎𝑏(𝑐 + 𝑥) ∉ (𝑥³). 

Assume that 𝑎𝑏(𝑐 + 𝑥) ∈ (𝑥³). Since 𝑎𝑏𝑐 ∈ (𝑥³), we have 𝑎𝑏𝑥 ∈ (𝑥³). Hence 

there exists 𝑟 ∈ 𝑅 such that 𝑎𝑏𝑥 = 𝑟𝑥³ which means (𝑎𝑏 − 𝑟𝑥²) ∈ (0: 𝑥). We get 

𝑎𝑏 ∈ (0: 𝑥) + (𝑥) ⊆ (𝑥), a contradiction. Thus 𝑎𝑏(𝑐 + 𝑥) ∉ (𝑥³). Since (𝑥) is 𝜑₃-
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1-absorbing primary and 𝑎𝑏 ∉ (𝑥), we have (𝑐 + 𝑥) ∈ √(𝑥). Thus 𝑐 ∈ √(𝑥). 

Therefore, (𝑥) is a 1-absorbing primary ideal of 𝑅. (2)⇒(1)  is clear. 

Theorem 2.8. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅 with (𝜑(𝐼): 𝑐) ⊆
 𝜑((𝐼: 𝑐)). If 𝑐 is a nonunit element of 𝑅\𝐼, then (𝐼: 𝑐) is a 𝜑-primary ideal of 𝑅. 

Proof. Suppose that 𝑎𝑏 ∈ (𝐼: 𝑐) ∖ 𝜑((𝐼: 𝑐)) and 𝑎 ∉ (𝐼: 𝑐). Hence 𝑏 is a nonunit 

element of 𝑅. If 𝑎 is unit, then 𝑏 ∈ (𝐼: 𝑐) ⊆ √(𝐼: 𝑐) and we are done. Assume that 

𝑎 is nonunit. Then 𝑎𝑐𝑏 ∈ 𝐼 ∖ 𝜑(𝐼) as (𝜑(𝐼): 𝑐) ⊆  𝜑((𝐼: 𝑐)). Since 𝑎𝑐 ∉ 𝐼 and 𝐼 is 

a 𝜑-1-absorbing primary ideal of 𝑅, we conclude that 𝑏 ∈ √𝐼 ⊆ √(𝐼: 𝑐), as needed. 

Let 𝑅 be a commutative ring. If an ideal of 𝑅 contained in a finite union of 

ideals must be contained in one of those ideals, then 𝑅 is called a u-ring [15]. The 

next theorem gives a characterization for 𝜑-1-absorbing primary ideals in u-rings. 

Theorem 2.9. Let 𝐼 be a proper ideal of a u-ring 𝑅. The following are equivalent: 

(1) 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅. 

(2) For every nonunit 𝑎, 𝑏 ∈ 𝑅 with 𝑎𝑏 ∉ 𝐼, (𝐼: 𝑎𝑏) = (𝜑(𝐼): 𝑎𝑏) or (𝐼: 𝑎𝑏) ⊆ √𝐼. 

(3) For every nonunit 𝑎 ∈ 𝑅 and every ideal 𝐼₁ of 𝑅 with 𝐼₁ ⊈ √𝐼, if (𝐼: 𝑎𝐼₁) is a 

proper ideal of R, then (𝐼: 𝑎𝐼₁) = (𝜑(𝐼): 𝑎𝐼₁) or (𝐼: 𝑎𝐼₁) ⊆ (𝐼: 𝑎). 

(4) For every ideals 𝐼₁, 𝐼₂ of 𝑅 with 𝐼₁ ⊈ √𝐼, if (𝐼: 𝐼₁𝐼₂) is a proper ideal of 𝑅, then 

(𝐼: 𝐼₁𝐼₂) = (𝜑(𝐼): 𝐼₁𝐼₂) or (𝐼: 𝐼₁𝐼₂) ⊆ (𝐼: 𝐼₂). 

(5) For every ideals 𝐼₁, 𝐼₂, 𝐼₃ of 𝑅 with 𝐼₁𝐼₂𝐼₃ ⊆ 𝐼 ∖ 𝜑(𝐼), 𝐼₁𝐼₂ ⊆ 𝐼 or 𝐼₃ ⊆ √𝐼. 

Proof. (1)⇒(2) Suppose that 𝑐 ∈ (𝐼: 𝑎𝑏). Then 𝑎𝑏𝑐 ∈ 𝐼. Since 𝑎𝑏 ∉ 𝐼, 𝑐 is nonunit. 

If 𝑎𝑏𝑐 ∈ 𝜑(𝐼), then 𝑐 ∈ (𝜑(𝐼): 𝑎𝑏). Assume that 𝑎𝑏𝑐 ∈ 𝐼 ∖ 𝜑(𝐼). Since 𝐼 is 𝜑-1-

absorbing primary, we have 𝑐 ∈ √𝐼. Hence (𝐼: 𝑎𝑏) ⊆ (𝜑(𝐼): 𝑎𝑏) ∪ √𝐼. Since 𝑅 is 

a u-ring, we obtain that (𝐼: 𝑎𝑏) = (𝜑(𝐼): 𝑎𝑏) or (𝐼: 𝑎𝑏) ⊆ √𝐼. (2)⇒(3) Suppose that 

𝑐 ∈ (𝐼: 𝑎𝐼₁). It is clear that 𝑐 is nonunit. Then 𝑎𝑐𝐼₁ ⊆ 𝐼. Now 𝐼₁ ⊆ (𝐼: 𝑎𝑐). If 𝑎𝑐 ∈

𝐼, then 𝑐 ∈ (𝐼: 𝑎). Suppose that 𝑎𝑐 ∉ 𝐼. Hence (𝐼: 𝑎𝑐) = (𝜑(𝐼): 𝑎𝑐) or (𝐼: 𝑎𝑐) ⊆ √𝐼 

by (2). Thus 𝐼₁ ⊆ (𝜑(𝐼): 𝑎𝑐) or 𝐼₁ ⊆ √𝐼. Since 𝐼₁ ⊈ √𝐼 by hypothesis, we conclude 

𝐼₁ ⊆ (𝜑(𝐼): 𝑎𝑐); i.e. 𝑐 ∈ (𝜑(𝐼): 𝑎𝐼₁). Thus (𝐼: 𝑎𝐼₁) ⊆ (𝜑(𝐼): 𝑎𝐼₁)  ∪ (𝐼: 𝑎). Since 

𝑅 is a u-ring, we have (𝐼: 𝑎𝐼₁) = (𝜑(𝐼): 𝑎𝐼₁) or (𝐼: 𝑎𝐼₁) ⊆ (𝐼: 𝑎). (3)⇒(4) If 𝐼₁ ⊆

√𝐼, then we are done. Suppose that 𝐼₁ ⊈ √𝐼 and 𝑐 ∈ (𝐼: 𝐼₁𝐼₂). Then 𝐼₂ ⊆
(𝐼: 𝑐𝐼₁). Since (𝐼: 𝐼₁𝐼₂) is proper, c is nonunit. Hence 𝐼₂ ⊆ (𝜑(𝐼): 𝑐𝐼₁) or 𝐼₂ ⊆ (𝐼: 𝑐) 

by (3). If 𝐼₂ ⊆ (𝜑(𝐼): 𝑐𝐼₁), then 𝑐 ∈ (𝐼: 𝐼₁𝐼₂). If 𝐼₂ ⊆ (𝐼: 𝑐), then 𝑐 ∈ (𝐼: 𝐼₂). So, 

(𝐼: 𝐼₁𝐼₂) ⊆ (𝜑(𝐼): 𝐼₁𝐼₂) ∪ (𝐼: 𝐼₂) which implies that (𝐼: 𝐼₁𝐼₂) = (𝜑(𝐼): 𝐼₁𝐼₂) or 

(𝐼: 𝐼₁𝐼₂) ⊆ (𝐼: 𝐼₂). (4)⇒(5) It is clear. (5)⇒(1) Let 𝑎, 𝑏, 𝑐 ∈ 𝑅 nonunit elements and 

𝑎𝑏𝑐 ∈ 𝐼 ∖ 𝜑(𝐼). Put 𝐼₁ = 𝑎𝑅, 𝐼₂ = 𝑏𝑅, and 𝐼3 = 𝑐𝑅 in (5). Then the result is clear. 

Definition 2.2. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅. If 𝑎𝑏𝑐 ∈ 𝜑(𝐼) for some 

nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅 such that 𝑎𝑏 ∉ 𝐼, 𝑐 ∉ √𝐼, then we call (𝑎, 𝑏, 𝑐) a 𝜑-1-triple-zero 

of 𝐼. 
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Let 𝐼 be a proper ideal of a ring 𝑅. Observe that 𝐼 is 𝜑-1-absorbing primary 

that is not 1-absorbing primary if and only if 𝐼 has a 𝜑-triple-zero. We obtain the 

next theorem and corollary similar to [11,Theorem 10 and Theorem 11]. 

Theorem 2.10. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅, and (𝑎, 𝑏, 𝑐) a 𝜑-1-

triple-zero of 𝐼. Then 

(1) 𝑎𝑏𝐼 ⊆ 𝜑(𝐼). 

(2) If 𝑎, 𝑏 ∉ (𝐼: 𝑐), then 𝑏𝑐𝐼 = 𝑎𝑐𝐼 = 𝑎𝐼² = 𝑏𝐼² = 𝑐𝐼² ⊆ 𝜑(𝐼). 

(3) If 𝑎, 𝑏 ∉ (𝐼: 𝑐), then 𝐼³ ⊆ 𝜑(𝐼). 
Proof. (1) Suppose that 𝑎𝑏𝐼 ⊈ 𝜑(𝐼). Then 𝑎𝑏𝑥 ∉ 𝜑(𝐼) for some nonunit 𝑥 ∈ 𝐼. 

Hence 𝑎𝑏(𝑐 + 𝑥) ∈ 𝐼 ⊈ 𝜑(𝐼). Since 𝑎𝑏 ∉ 𝐼, (𝑐 + 𝑥) is nonunit element of 𝑅. Since 

𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅 and 𝑎𝑏 ∉ 𝐼, we conclude that (𝑐 + 𝑥) ∈ √𝐼. 

Since 𝑥 ∈ 𝐼, we have 𝑐 ∈ √𝐼, a contradiction. Thus 𝑎𝑏𝐼 ⊆ 𝜑(𝐼).  

(2) Suppose that 𝑏𝑐𝑦 ∉ 𝜑(𝐼) for some nonunit 𝑦 ∈ 𝐼. Hence 𝑏𝑐𝑦 = 𝑏(𝑎 + 𝑦)𝑐 ∈
𝐼 ∖ 𝜑(𝐼). Since 𝑏 ∉ (𝐼: 𝑐), we conclude that 𝑎 + 𝑦 is a nonunit element of 𝑅. Since 

𝐼 is 𝜑-1-absorbing primary, 𝑎𝑏 ∉ 𝐼 and 𝑏𝑦 ∈ 𝐼, we conclude that 𝑏(𝑎 + 𝑦) ∉ 𝐼, and 

hence 𝑐 ∈ √𝐼, a contradiction. Thus 𝑏𝑐𝐼 ⊆ 𝜑(𝐼). We show that 𝑎𝑐𝐼 ⊆ 𝜑(𝐼). 
Suppose that 𝑎𝑐𝐼 ⊈ 𝜑(𝐼). Then 𝑎𝑐𝑦 ∉ 𝜑(𝐼) for some nonunit element 𝑦 ∈ 𝐼. Hence 

𝑎𝑐𝑦 = 𝑎(𝑏 + 𝑦)𝑐 ∈ 𝐼 ∖ 𝜑(𝐼). Since 𝑎 ∉ (𝐼: 𝑐), we conclude that 𝑏 + 𝑦 is a nonunit 

element of 𝑅. Since 𝐼 is 𝜑-1-absorbing primary, 𝑎𝑏 ∉ 𝐼 and 𝑎𝑦 ∈ 𝐼, we conclude 

that 𝑎(𝑏 + 𝑦) ∉ 𝐼, and hence 𝑐 ∈ √𝐼, a contradiction. Thus 𝑎𝑐𝐼 ⊆ 𝜑(𝐼). Now we 

prove that 𝑎𝐼² ⊆ 𝜑(𝐼). Suppose that 𝑎𝑥𝑦 ∉ 𝜑(𝐼) for some 𝑥, 𝑦 ∈ 𝐼. Since 𝑎𝑏𝐼 ⊆
𝜑(𝐼) by (1) and 𝑎𝑐𝐼 ⊆ 𝜑(𝐼) by (2), 𝑎𝑥𝑦 = 𝑎(𝑏 + 𝑥)(𝑐 + 𝑦) ∈ 𝐼 ∖ 𝜑(𝐼). Since 

𝑎𝑏 ∉ 𝐼, we conclude that 𝑐 + 𝑦 is a nonunit element of 𝑅. Since 𝑎 ∉ (𝐼: 𝑐), we 

conclude that 𝑏 + 𝑥 is a nonunit element of 𝑅. Since 𝐼 is 𝜑-1-absorbing primary, 

we have 𝑎(𝑏 + 𝑥) ∈ 𝐼 or (𝑐 + 𝑦) ∈ √𝐼. Since 𝑥, 𝑦 ∈ 𝐼, we conclude that 𝑎𝑏 ∈ 𝐼 or 

𝑐 ∈ √𝐼, a contradiction. Thus 𝑎𝐼² ⊆ 𝜑(𝐼). By a similar manner, one can easily 

obtain that 𝑏𝐼² ⊆ 𝜑(𝐼). Now, we show that 𝑐𝐼² ⊆ 𝜑(𝐼). Suppose that 𝑐𝑥𝑦 ∉
𝜑(𝐼) for some 𝑥, 𝑦 ∈ 𝐼. Since 𝑎𝑐𝐼 = 𝑏𝑐𝐼 ⊆ 𝜑(𝐼) by (2), 𝑐𝑥𝑦 = (𝑎 + 𝑥)(𝑏 + 𝑦)𝑐 ∈
𝐼 ∖ 𝜑(𝐼). Since 𝑎, 𝑏 ∉ (𝐼: 𝑐), we conclude that 𝑎 + 𝑥 and 𝑏 + 𝑦 are nonunit 

elements of 𝑅. Since 𝐼 is 𝜑-1-absorbing primary, we have (𝑎 + 𝑥)(𝑏 + 𝑦) ∈ 𝐼 or 

𝑐 ∈ √𝐼. Since 𝑥, 𝑦 ∈ 𝐼, we conclude that 𝑎𝑏 ∈ 𝐼 or 𝑐 ∈ √𝐼, a contradiction. Thus 

𝑐𝐼² ⊆ 𝜑(𝐼). 

(3) Assume that 𝑥𝑦𝑧 ⊈ 𝜑(𝐼) for some 𝑥, 𝑦, 𝑧 ∈ 𝐼. Then 𝑥𝑦𝑧 = (𝑎 + 𝑥)(𝑏 + 𝑦)(𝑐 +
𝑧) ∈ 𝐼 ∖ 𝜑(𝐼) by (1) and (2). Since 𝑎𝑏 ∉ 𝐼, we conclude 𝑐 + 𝑧 is a nonunit element 

of 𝑅. Since 𝑎, 𝑏 ∉ (𝐼: 𝑐), we conclude that 𝑎 + 𝑥 and 𝑏 + 𝑦 are nonunit elements 

of 𝑅. Since 𝐼 is 𝜑-1-absorbing primary, (𝑎 + 𝑥)(𝑏 + 𝑦) ∈ 𝐼 or 𝑐 + 𝑧 ∈ √𝐼. Since 

𝑥, 𝑦, 𝑧 ∈ 𝐼, we conclude that 𝑎𝑏 ∈ 𝐼 or 𝑐 ∈ √𝐼, a contradiction. Thus 𝐼³ ⊆ 𝜑(𝐼). 
Corollary 2.1. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅 such that 𝜑(𝐼) ≠ 𝐼. 
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(1) Let 𝑅/𝜑(𝐼) be a reduced ring. If (𝑎, 𝑏, 𝑐) is a 𝜑-1-triple-zero of 𝐼, then 𝑎𝑐 ∈ 𝐼 

or 𝑏𝑐 ∈ 𝐼. 

(2) If (𝑎 + 𝜑(𝐼), 𝑏 + 𝜑(𝐼), 𝑐 + 𝜑(𝐼)) is a 1-triple-zero of 𝐼/𝜑(𝐼), then (𝑎, 𝑏, 𝑐) is 

a 𝜑-1-triple-zero of 𝐼. 
Proof. (1) Assume that neither 𝑎𝑐 ∈ 𝐼 nor 𝑏𝑐 ∈ 𝐼. Hence 𝐼³ ⊆ 𝜑(𝐼) by Theorem 

2.10 (3). Since 𝑅/𝜑(𝐼) is reduced, we conclude that 𝐼 ⊆ 𝜑(𝐼). Thus 𝐼 = 𝜑(𝐼), a 

contradiction. Therefore, 𝑎𝑐 ∈ 𝐼 or 𝑏𝑐 ∈ 𝐼. 

(2) Suppose that ((𝑎 + 𝜑(𝐼), 𝑏 + 𝜑(𝐼), 𝑐 + 𝜑(𝐼)) is a 1-triple-zero of 𝐼/𝜑(𝐼). It is 

clear that 𝑎, 𝑏, 𝑐 are nonunit elements of 𝑅. Then ((𝑎 + 𝜑(𝐼))(𝑏 + 𝜑(𝐼)) ∉ 𝐼/𝜑(𝐼) 

and 𝑐 + 𝜑(𝐼) ∉ √𝐼/𝜑(𝐼) = √𝐼/𝜑(𝐼). Thus 𝑎𝑏 ∉ 𝐼 and 𝑐 ∉ √𝐼  which means that 

(𝑎, 𝑏, 𝑐) is a 𝜑-1-triple-zero of 𝐼. 

The following theorem is a generalization of [11, Theorem 15]. 

Theorem 2.11. Let 𝑅 and 𝑅′ be commutative rings with identity, 𝑓: 𝑅 → 𝑅′ be a 

ring homomorphismwith 𝑓(1𝑅) = 1𝑅′, and let 𝜑: 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅} and 

𝜑′: 𝑆(𝑅′) → 𝑆(𝑅′) ∪ {∅} be functions. Then the following statements hold: 

(1) Suppose that 𝑓(𝑎) is a nonunit element of 𝑅′ for every nonunit 𝑎 ∈ 𝑅 (for 

example if 𝑈(𝑅′) is a torsion group) and 𝐽 is a 𝜑′-1-absorbing primary ideal of 𝑅′ 
with 𝜑(𝑓⁻¹(𝐽)) = 𝑓⁻¹(𝜑′(𝐽)). Then 𝑓⁻¹(𝐽) is a 𝜑-1-absorbing primary ideal of 𝑅. 

(2) If 𝑓 is an epimorphism, 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅 such that 

𝐾𝑒𝑟(𝑓) ⊆ 𝐼 and 𝜑′(𝑓(𝐼)) = 𝑓(𝜑(𝐼)), then 𝑓(𝐼) is a 𝜑-1-absorbing primary ideal 

of 𝑅′. 
Proof. (1) Let 𝑎𝑏𝑐 ∈ 𝑓⁻¹(𝐽) ∖ 𝜑(𝑓⁻¹(𝐽)) for some nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅. Then 

𝑓(𝑎𝑏𝑐) = 𝑓(𝑎)𝑓(𝑏)𝑓(𝑐) ∈ 𝐽 ∖ 𝜑′(𝐽), where 𝑓(𝑎), 𝑓(𝑏), 𝑓(𝑐) are nonunit elements 

of 𝑅′ by hypothesis. Hence 𝑓(𝑎)𝑓(𝑏) ∈ 𝐽 or 𝑓(𝑐) ∈ √𝐽. Hence 𝑎𝑏 ∈ 𝑓⁻¹(𝐽) or 𝑐 ∈

√𝑓⁻¹(𝐽) = 𝑓⁻¹(√𝐽). Thus 𝑓⁻¹(𝐽) is a 𝜑-1-absorbing primary ideal of 𝑅. 

(2) Let 𝑥𝑦𝑧 ∈ 𝑓(𝐼) ∖ 𝜑′(𝑓(𝐼)) for some nonunit 𝑥, 𝑦, 𝑧 ∈ 𝑅. Since 𝑓 is onto, there 

exists nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅 such that 𝑥 = 𝑓(𝑎), 𝑦 = 𝑓(𝑏), 𝑧 = 𝑓(𝑐). Then 𝑓(𝑎𝑏𝑐) =
𝑓(𝑎)𝑓(𝑏)𝑓(𝑐) = 𝑥𝑦𝑧 ∈ 𝑓(𝐼) ∖ 𝑓(𝜑(𝐼)). Since 𝐾𝑒𝑟(𝑓) ⊆ 𝐼, we have 𝑎𝑏𝑐 ∈ 𝐼 ∖

𝜑(𝐼). It follows 𝑎𝑏 ∈ 𝐼 or 𝑐 ∈ √𝐼. Thus 𝑥𝑦 ∈ 𝑓(𝐼) or 𝑧 ∈ 𝑓(√𝐼). Since 𝑓 is onto 

and 𝐾𝑒𝑟(𝑓) ⊆ 𝐼, we have 𝑓(√𝐼)  = √𝑓(𝐼). Thus we are done. 

Given an ideal 𝐼 of 𝑅, define 𝜑𝐼: 𝑆(𝑅/𝐼) → 𝑆(𝑅/𝐼) ∪ {∅} by 𝜑𝐼(𝐽/𝐼) =
(𝜑(𝐽) + 𝐼)/𝐼 for 𝐼 ⊆ 𝐽. Note that 𝜑𝐼(𝐽/𝐼) ⊆ 𝐽/𝐼 and (𝜑𝛼)𝐼 = 𝜑𝛼 for 𝛼 ∈ {∅} ∪
{0,1,2, . . . }. 
Corollary 2.2. Let 𝐼 and 𝐽 be proper ideals of 𝑅 such that 𝐼 ⊆ 𝐽. If 𝐽 is a 𝜑-1-

absorbing primary ideal of 𝑅, then 𝐽/𝐼 is a 𝜑𝐼-1-absorbing primary ideal of 𝑅/𝐼. 
Proof. Suppose that (𝑎 + 𝐼)(𝑏 + 𝐼)(𝑐 + 𝐼) ∈ 𝐽/𝐼 ∖ 𝜑𝐼(𝐽/𝐼) = 𝐽/𝐼 ∖ (𝜑(𝐽) + 𝐼)/𝐼 

for some nonunit 𝑎 + 𝐼, 𝑏 + 𝐼, 𝑐 + 𝐼 ∈ 𝑅/𝐼. Since 𝐼 ⊆ 𝐽, we have 𝑎𝑏𝑐 ∈ 𝐽 ∖ 𝜑(𝐽), 

where 𝑎, 𝑏, 𝑐 are nonunit elements of 𝑅. Hence 𝑎𝑏 ∈ 𝐽 or 𝑐 ∈ √𝐽. Thus (𝑎 + 𝐼)(𝑏 +

𝐼) ∈ 𝐽/𝐼 or (𝑐 + 𝐼) ∈ √𝐽/𝐼 = √𝐽/𝐼.  
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We characterize 𝜑-1-absorbing primary ideals of 𝑅 = 𝑅₁ × 𝑅₂, where 𝑅₁ 

and 𝑅₂ are commutative rings with identity in the following theorem. 

Theorem 2.12. Let 𝑅₁ and 𝑅₂ be commutative rings with identity, 𝐼₁, 𝐼₂ nonzero 

ideals of 𝑅₁, 𝑅₂, respectively, and 𝑅 = 𝑅₁ × 𝑅₂. Let 𝜓𝑖: 𝑆(𝑅𝑖) → 𝑆(𝑅𝑖) ∪ ∅ (𝑖 =
1,2) be functions such that 𝜓₁(𝐼₁) = 𝐼₁ and 𝜓₂(𝐼₂) = 𝐼₂. Let 𝜑 = 𝜓₁ × 𝜓₂. If 𝐼 is 

a proper ideal of 𝑅, then the following statements are equivalent: 

(1) 𝐼₁ × 𝐼₂ is a 𝜑-1-absorbing primary ideal of 𝑅. 

(2) 𝐼₁ = 𝑅₁, 𝐼₂ is a primary ideal of 𝑅₂ or 𝐼₂ = 𝑅₂, 𝐼₁ is a primary ideal of 𝑅₁. 
(3) 𝐼₁ × 𝐼₂ is a primary ideal of 𝑅. 

(4) 𝐼₁ × 𝐼₂ is a 1-absorbing primary ideal of 𝑅. 

Proof. Suppose that 𝜓₁(𝐼₁) = ∅ or 𝜓₂(𝐼₂) = ∅. Then 𝜑(𝐼₁ × 𝐼₂) = ∅. Hence 

(1)⇔(2)⇔(3). Thus assume that 𝜑(𝐼₁ × 𝐼₂) = ∅, and hence neither 𝜓₁(𝐼₁) = ∅ nor 

𝜓₂(𝐼₂) = ∅. (1)⇒(2). Suppose that 𝐼₁ × 𝐼₂ is a 𝜑-1-absorbing primary ideal of 𝑅. 

Hence 𝐼₁/𝜓₁(𝐼₁) × 𝐼₂/𝜓₂(𝐼₂) is a weakly 1-absorbing primary ideal of 

𝑅₁/𝜓₁(𝐼₁) × 𝑅₂/𝜓₂(𝐼₂) by Theorem 2.2 (1). Hence by [11, Theorem 13], we 

conclude that 𝐼₁/𝜓₁(𝐼₁) = 𝑅₁/𝜓₁(𝐼₁) and 𝐼₂/𝜓₂(𝐼₂) is a primary ideal of 

𝑅₂/𝜓₂(𝐼₂) or 𝐼₂/𝜓₂(𝐼₂) = 𝑅₂/𝜓₂(𝐼₂) and 𝐼₁/𝜓(𝐼₁) is a primary ideal of 

𝑅₁/𝜓₁(𝐼₁). Thus 𝐼₁ = 𝑅₁ and 𝐼₂ is a primary ideal of 𝑅₂ or 𝐼₂ = 𝑅₂ and 𝐼₁ is a 

primary ideal of 𝑅₁. (2)⇒(3)⇒(4)⇒(1) It is straightforward. 

Definition 2.3. Let 𝜑: 𝑆(𝑅) → 𝑆(𝑅) ∪ {∅} be a function, and 𝑆 a multiplicatively 

closed subset of 𝑅. A proper ideal 𝐿𝑆 of 𝑅𝑆, where 𝐿 is a proper ideal of 𝑅 such that 

𝐿 ∩ 𝑆 = ∅, is called a 𝜑𝑆-1-absorbing primary ideal of 𝑅𝑆 if whenever nonunit 

𝑎, 𝑏, 𝑐 ∈ 𝑅𝑆 with 𝑎𝑏𝑐 ∈ 𝐿𝑆 ∖ 𝜑(𝐿)𝑆, then 𝑎𝑏 ∈ 𝐿𝑆 or 𝑐 ∈ √𝐿𝑆. 

Let 𝑍(𝑅) denotes the set of all zero-divisors of 𝑅 and 𝑍𝐼(𝑅) = {𝑎 ∈ 𝑅: 𝑎𝑏 ∈
𝐼 for some 𝑏 ∈ 𝑅\𝐼}. We have the following result similar to [11, Theorem 17]. 

Theorem 2.13. Let 𝐼 be a proper ideal of 𝑅 and 𝑆 a multiplicatively closed subset 

of 𝑅 such that 𝑆 ∩ 𝑍(𝑅) = 𝑆 ∩ 𝐼 = 𝑆 ∩ 𝑍𝐼(𝑅) = ∅. Then 𝐼 is a 𝜑-1-absorbing 

primary ideal of 𝑅 if and only if 𝐼𝑆 is a 𝜑𝑆-1-absorbing primary ideal of 𝑅𝑆. 

Proof. Suppose that 𝑎𝑏𝑐 ∈ 𝐼𝑆 ∖ 𝜑(𝐼)𝑆 for some nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅𝑆. Hence there is 

an 𝑠 ∈ 𝑆 and nonunit 𝑎₁, 𝑏₁, 𝑐₁, 𝑑₁ ∈ 𝑅 such that 𝑎 = 𝑎₁/𝑠, 𝑏 = 𝑏₁/𝑠, 𝑐 = 𝑐₁/𝑠. 
Thus ((𝑎₁𝑏₁𝑐₁)/(𝑠³)) = ((𝑑₁)/(𝑠³)) ∈ 𝐼𝑆 ∖ 𝜑(𝐼)𝑆. Since 𝑍(𝑅) ∩ 𝑆 = ∅, we have 

𝑎₁𝑏₁𝑐₁ = 𝑑₁ ∈ 𝐼 ∖ 𝜑(𝐼). Thus 𝑎𝑏 ∈ 𝐼 or 𝑐 ∈ √𝐼. Since 𝑍(𝑅) ∩ 𝑆 = ∅, √𝐼𝑆 =

(√𝐼)𝑆. Thus 𝑎𝑏 ∈ 𝐼𝑆 or 𝑐 ∈ √𝐼𝑆. Conversely, suppose that 𝑎𝑏𝑐 ∈ 𝐼 ∖ 𝜑(𝐼) for some 

nonunit 𝑎, 𝑏, 𝑐 ∈ 𝑅. Then ((𝑎𝑏𝑐)/1) = (𝑎/1)(𝑏/1)(𝑐/1) ∈ 𝐼𝑆 ∖ 𝜑(𝐼)𝑆 as 𝑆 ∩

𝑍(𝑅) = ∅. Hence (𝑎/1)(𝑏/1) ∈ 𝐼𝑆 or (𝑐/1) ∈ √𝐼𝑆. If (𝑎/1)(𝑏/1) ∈ 𝑆⁻¹𝐼, then 

𝑢𝑎𝑏 ∈ 𝐼 for some 𝑢 ∈ 𝑆. Since 𝑆 ∩ 𝑍𝐼(𝑅) = ∅,  we conclude that 𝑎𝑏 ∈ 𝐼. If 

(𝑐/1) ∈ (√𝐼)𝑆, then (𝑡𝑐)ⁿ ∈ 𝐼 for some 𝑛 ≥ 1 and 𝑡 ∈ 𝑆. Since 𝑆 ∩ 𝑍𝐼(𝑅) = ∅, we 

have 𝑡ⁿ ∉ 𝑍𝐼(𝑅). Hence 𝑐ⁿ ∈ 𝐼. Thus 𝐼 is a 𝜑-1-absorbing primary ideal of 𝑅. 
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Definition 2.4. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅 and 𝐼₁𝐼₂𝐼₃ ⊆ 𝐼 for some 

proper ideals 𝐼₁, 𝐼₂, 𝐼₃ of 𝑅. If (𝑎, 𝑏, 𝑐) is not 𝜑-1-triple zero of 𝐼 for every 𝑎 ∈
𝐼₁, 𝑏 ∈ 𝐼₂, 𝑐 ∈ 𝐼₃, then we call 𝐼 a free 𝜑-1-triple zero with respect to 𝐼₁𝐼₂𝐼₃. 
Theorem 2.14. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅 and 𝐽 a proper ideal of 

𝑅 with 𝑎𝑏𝐽 ⊆ 𝐼 for some 𝑎, 𝑏 ∈ 𝑅. If (𝑎, 𝑏, 𝑗) is not a 𝜑-1-triple zero of 𝐼 for all 𝑗 ∈

𝐽 and 𝑎𝑏 ∉ 𝐼, then 𝐽 ⊆ √𝐼. 

Proof. The proof is similar to the proof of [11, Theorem 18]. 

Corollary 2.3. Let 𝐼 be a 𝜑-1-absorbing primary ideal of 𝑅 and 𝐼₁𝐼₂𝐼₃ ⊆ 𝐼 ∖  𝜑(𝐼) 

for some proper ideals 𝐼₁, 𝐼₂, 𝐼₃ 𝑜𝑓 𝑅. If 𝐼 is free 𝜑-1-triple zero with respect to 

𝐼₁𝐼₂𝐼₃, then 𝐼₁𝐼₂ ⊆ 𝐼 or 𝐼₃ ⊆ √𝐼. 

Proof. The proof is similar to the proof of [11, Theorem 19]. 
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