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SOME PRACTICAL INSURANCE PROBLEMS SOLVED BY 
MATHEMATICAL THEORY AND CREDIBILITY THEORY 

Virginia ATANASIU1 
 
În acest articol introducem modelul original al lui Bühlmann, ce implică 

doar un singur contract izolat. Vom prezenta cei mai buni estimatori liniari de 
credibilitate pentru acest model şi vom considera următoarele aplicaţii ale 
estimatorului optim de credibilitate al lui Bühlmann: 

1) câteva probleme practice de asigurări, rezolvate în cazul în care soluţia 
de credibilitate a lui Bühlmann conţine parametrii cunoscuţi pentru funcţia de 
structură, ceea ce va face posibilă o cuantificare statistică din observaţii a acestui 
rezultat; 2) estimarea parametrilor de structură din modelul clasical al lui 
Bühlman, pentru a putea folosi primele de credibilitate ale acestui model. 

 
In this article we introduce the original Bühlmann model, which involves 

only one isolated contract. We will present the best linear credibility estimators for 
this model and we will consider the following applications of the optimal credibility 
estimator of Bühlmann:  

1) some practical insurance problems solved, when the credibility solution of 
Bühlmann contains known parameters of the structure function, which will make 
possible a statistic computable from the observations for this result; 2) estimation 
of the structural parameters in the classical Bühlmann model, to be able to use the 
credibility premiums of this model. 

 
Key - words: the credibility calculations, the risk premium, Bühlmann’s original 

model, Bühlmann’s classical model, the credibility model 
incorporating risk volumes. 

Mathematics Subject Classifications: 62P05. 
 

1. Introduction 
 

In Section 2 we present Bühlmann’s original model, which implies only 
one isolated contract. The original Bühlmann model gives the optimal linear 
credibility estimate for the risk premium of this case (see Subsection 2.1.). We end 
Section 2, giving five applications of the optimal credibility estimator of 
Bühlmann (see Subsection 2.2.), solved when the credibility solution of 
Bühlmann contains known parameters of the structure function, which will 
make possible a statistic computable from the observations for this result. In 
Section 3 we present Bühlmann’s classical model, which consists of a portfolio of 
contracts satisfying the constraints of the original Bühlmann model. Just as in 
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Subsection 2.1., we will give the best linearized credibility estimators for this 
model (see Subsection 3.1.). To be able to use the credibility premiums of this 
model, in Subsection 3.2 we give unbiased estimators for the structure 
parameters, such that if the structure parameters in the optimal linearized 
credibility premium are replaced by these estimators, a homogeneous estimator 
results. This last estimator can also be shown to be optimal. For proof see [1] of 
the references, pages 148 to 154. 
 

2. The original credibility model of Bühlmann 
 

In the original credibility model of Bühlmann, we consider one contract 
with unknown and fixed risk parameter Θ, during a period of t years. The yearly 
claim amounts are noted by X1,…,Xt. The risk parameter Θ is supposed to be 
taken from some structure distribution U(·). It is assumed that, for given Θ θ= , 
the claims are conditionally independent and identically distributed with known 
common distribution function FX|Θ(x,θ ). For this model we want to estimate the 
net premium μ(θ ) = E[Xr|Θ θ= ], r t,1=  as well as Xt+1 for a contract with risk 
parameter θ . 
 

2.1. Bühlmann’s optimal credibility estimator 
 

Suppose that X1,…,Xt are random variables with finite variation, which 
are, for given Θ θ= , conditionally independent and identically distributed with 
already known common distribution function FX|Θ(x, θ ). The structure 
distribution function is U(θ ) = P[Θ θ≤ ]. Let D represent the set of non-
homogeneous linear combinations g(·) of the observable random variables X1, X2, 
…, Xt: 

g( 'X ) = c0 + c1X1 + c2X2 + … + ctXt                                                    (2.1). 
Then the solution of the problem: 

Dg
Min
∈

E{[μ(Θ) – g(X1,…,Xt)]2}         (2.2) 

is: g(X1,…,Xt) = z ( )mzX −+ 1                                                                          (2.3), 
where ( )tXXX ,...,' 1=  is the vector of observations, z = at / (s2+at), is the 

resulting credibility factor, ∑
=

=
t

i
iX

t
X

1

1 is the individual estimator, and a, s2 and 

m are the structural parameters as defined in (2.4): m [ ] == rXE E[μ(Θ)], r t,1= , a 
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=  =Var{E[Xr|Θ]}=Var[μ(Θ)], r t,1= , ( ) =θσ 2 Var[Xr|Θ θ= ], r t,1= , s2 = 
=E{Var[Xr|Θ]} = E[ 2σ (Θ)], r t,1=                                                                   (2.4). 

For proof see [1] of the references, pages 7 to 20. 
 

2.2. Applications of the optimal credibility estimator of Bühlmann 
 

These applications are solved when the credibility solution of Bühlmann 
contains known parameters of the structure function, which will make possible 
a statistic computable from the observations for this result. 

Application 1 
We suppose that the claims are Poisson (θ ) distributed, as bellow: 
dFX|Θ(x,θ ) = !/ xex θθ − , x = 0, 1                                                           (2.5), 

and suppose that the structure distribution of Θ has a Gamma distribution: 
u(θ ) = ( )βαθ βαθβ Γ−− /1e , θ  > 0                                                         (2.6). 

In this case the best linear credibility estimator for μ(Θ) (see (2.3)) can be 

written as : z ( )mzX −+ 1  = (∑
=

t

i
iX

1
 + β) / (t + α)                                             (2.7). 

Since here m = E[X] = E{E[X|Θ]} = E[Θ] = β / α, and for the ratio of the 
structure parameters s2 and a, that is “s2 / a“, we have: s2 / a = E{Var[X|Θ]} / 
/Var{E[X|Θ]} = E[Θ] / Var[Θ] = (β /α) / (β / α2) = α, we find z = at / (s2+at) = at / 
/{a[(s2 / a) + t]} = t /(t + α), so the best linear credibility estimator for μ(Θ) can be 
written under the form (2.7), where α, β > 0 are the parameters of Gamma 
distribution. 

Application 2 
We suppose that the claims are Negative Binomial (θ ) distributed, so: 
dFX|Θ(x,θ ) = θ x (1-θ )1-x, x { }1,0∈                                                          (2.8) 

and suppose that the structure distribution of Θ has a Beta distribution: 
u(θ ) ( ) ( )βαβθθ βα ,/1 11 −− −= , θ ( )1,0∈                                               (2.9). 

In this case the best linear credibility estimator for μ(Θ) (see (2.3)) can be 
written as: z ( )mzX −+ 1  = [t /(t + α + β) +]X [α / (t + α + β)]                      (2.10). 

Since here m = E[X] = E{E[X|Θ]} = E[Θ] = α / (α + β), and for the ratio 
of the structure parameters s2 and a, that is “s2 / a”, we have: s2 / a = E{Var[X|Θ]} 
/ /Var{E[X|Θ]} = E[Θ(1 - Θ] / Var[Θ] = [E(Θ) - E(Θ2)] / Var(Θ) = {[α /(α + β)] –  
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- [α(α + 1) / (α + β) (α + β + 1)]} / {[(αβ) / (α + +β)2(α + β + 1)]}=[αβ / (α + β)(α 
+ +β + 1)] / [αβ / (α + β)2 (α + β + 1)] = α + β, we find z = =at/ (s2 + at) = at / 
{a[(s2 / /a) + t]} = t / (t + α + β), so the best linear credibility estimator for μ(Θ) 
can be written under the form (2.10), where α, β > 0 are the parameters of Beta 
distribution. 

Application 3 
We suppose that the claims are Exponential (θ) distributed, so: 
dFX|Θ(x,θ ) = θ e-θ x, x>0                                                                     (2.11) 

and suppose that the structure distribution of Θ has a Gamma distribution: 
u(θ ) = ( )βαθ βαθβ Γ−− /1e , θ >0                                                         (2.12). 

In this case the best linear credibility estimator for μ(Θ) (see (2.3)) can be 
written as follows: z ( )mzX −+ 1  = (v + α) / (t + β - 1), if β > 2                    (2.13). 

Since here m = E[X] = E{E[X|Θ]} = E[1 / Θ] = α / (β - 1), if β > 1, and for 
the ratio of the structure parameters s2 and a, that is “s2 / a “, we have: s2 / a = 
=E{Var[X|Θ]} / Var{E[X|Θ]} = E[1 / Θ2] / Var(1 / Θ) = β – 1, if β > 2, we find 
z= =at / (s2 + at) = at / {a[(s2 / a) + t]} = t / (t + β – 1) , if β > 2. Therefore: 

z ( )mzX −+ 1  = [t / (t + β – 1)][∑
=

t

i
iX

1

 / t] + {1 - [t / (t + β – 1)]}[α / (β - 1)] =.... = 

=(∑
=

t

i
iX

1
 + α) / [t + β – 1], if β > 2. So the best linear credibility estimator for 

μ(Θ) can be written under the form (2.13), where α, β > 0 are the parameters of 
Gamma distribution. 

Application 4 
We suppose that the claims are Normal (θ , σ2 > 0) distributed, so: 

dFX|Θ(x,θ ) = 
2

2
1

2
1 ⎟

⎠
⎞

⎜
⎝
⎛ −

−
σ
θ

πσ

x

e , x ∈  ℝ                                                  (2.14) 

and suppose that the structure distribution of Θ has a Normal (μ0, 2
0σ  > 0)  

distribution: u(θ ) = 

2

0

0

2
1

0 2
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

σ
μθ

πσ
e , θ∈  ℝ                                                (2.15). 
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In this case the best linear credibility estimator for μ(Θ) (see (2.3)) can be 

written as follows: z ( )mzX −+ 1  = ⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
∑
=

2
0

22
0

0
2

1 1/
σσσ

μ
σ

t
X

t

i
i

                    (2.16). 

Since here m = E[X] = E{E[X|Θ]} = E(Θ) = μ0 and for the ratio of the 
structure parameters s2 and a, that is “s2 / a”, we have: s2 / a = E{Var[X|Θ]} / 
/Var{E[X|Θ]} = E(σ2) / Var(Θ) = σ2 / 2

0σ , we find z= at / (s2 + at) = at / {a[(s2 / 

/a)+ t]} = t / [(σ2 / t+)2
0σ ]. Therefore: z ( )mzX −+ 1  = {t / [(σ2 / t+)2

0σ ]}
t

X
t

i
i∑

=1  

+ {1 - [t / [(σ2 / t+)2
0σ ]]}[μ0]= = ⎥

⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
∑
=

2
0

22
0

0
2

1 1/
σσσ

μ
σ

t
X

t

i
i

. So the best linear 

credibility estimator for μ(Θ) can be written under the form (2.16). 
Application 5 (Credibility estimator which minimizes the mean 

squared error for a exponential family with natural parameterization and 
prior) 

Remark: 
The parameterization is called natural because the exponent part is a 

linear function of θ , and by taking a natural conjugate prior, the posterior 
distribution is of the same type as the prior distribution. We restrict to x > 0 and 
θ >0, and suppose furthermore that at the end point of the intervals the densities 
“f” and “u” are zero. These restrictions are not strictly necessary. 

We consider a family of exponential distributions with natural 
parameterization: fX|Θ (x,θ ) = p(x)e-θx / q(θ ), x > 0, θ  > 0                         (2.17) 
together with the natural conjugate prior having the density: 

u(θ ) = q(θ ) 0t− e- 0x⋅θ  / c(t0, x0), θ  > 0                                              (2.18), 
where p(x) is a arbitrary non – negative function, t0 and x0 are positive constants, 
and c(t0, x0) is a normalization constant. For this case, the linear credibility 

estimator (2.3) is: z ( )mzX −+ 1  = )/( 0
1

0 ttXx
t

i
i +⎟
⎠

⎞
⎜
⎝

⎛
+∑

=

                              (2.19), 

where m = E[μ(Θ)] = x0 / t0, s2 / a = t0, z = t / (t +t0). Indeed: - from the 
demonstration of the result (2.3) we only have to prove that the optimal estimator: 
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E[μ(Θ)| 'X ]                                                                                            
(2.20) 
is a non-homogeneous linear combination of X1, …, Xt. First we express E[μ(Θ)] 
in the prior parameters x0 and t0, and then the result (2.19) follows because of the 
special form of the posterior distribution. Because q(θ ) is the normalizing 

constant of the distribution (2.17) we have ∫
+∞

=
0

| 1),( dxxf X θθ , that is  

)(/)(
0

θθ qdxexp x
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫
+∞

⋅−  = 1 and thus: q(θ ) ( ) dxexp x⋅−
+∞

∫= θ

0

                             (2.21). 

So: q’(θ ) −=−= ∫
+∞

⋅− dxexxp x

0

)( θ q(θ )E[X|Θ θ= ]                                      (2.22), 

since E[X|Θ θ= ] ( ) ( ) ( )θθ θ
θ qdxexxpdxxxf x

X /,
00

| ⎥
⎦

⎤
⎢
⎣

⎡
== ⋅−

+∞+∞

∫∫ . Therefore the risk 

premium when Θ θ=  equals is: μ(θ) = E[X|Θ θ= ] = -q’(θ ) / q(θ )             (2.23). 
Taking the first derivative of (2.18) with respect to θ  and using (2.23), we 

obtain: u’(θ ) = [-t0q 10)( −−tθ q’ ( )θ e-θ x
0] / c(t0, x0) + [q(θ )-t

0e-θ x
0(-x0)] / c(t0, x0) = 

= t0[-q’ ( )θ  / q(θ )]{[q(θ )-t
0e-θ x

0] / c(t0, x0)} – x0{[q(θ )-t
0e-θ x

0] / c(t0, x0)} = 
=t0μ(θ)u(θ ) – x0u(θ ) = [t0μ(θ) – x0]u(θ ). So: u’(θ ) = [t0μ(θ) – x0]u(θ )      (2.24). 

Integrating this derivative over θ  gives zero for the left side, since: 

( ) ( ) ( ) 00'
0

=−∞+=∫
+∞

uudu θθ                                                               (2.25), 

considering that at the end point of the interval the density “u(• )” is zero (see the 
above remark). So the right side of (2.24) will be: 

m = E[μ(Θ)] = ( ) ( ) 00
0

/ txdu =∫
+∞

θθθμ                                                  (2.26), 

as: (2.24)∧ (2.25) ⇒  ( )[ ] ( ) 0
0

00 =−∫
+∞

θθθμ duxt  ⇔  t0E[μ(Θ)]–x0 ( ) 0
0

=∫
+∞

θθ du  

⇔   
⇔  t0E[μ(Θ)] - x0·1 = 0 ⇔  E[μ(Θ)] = x0/t0. The conditional density of Θ, given 

'' xX =  (posterior density) is, apart from a normalizing function of x1, …, xt (first 
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apart of ( )'' xf X , after apart of ∏
=

t

i
ixp

1

)( , and finally apart of ),( 00 xtc ): 

fΘ| 'X (θ , 'x )=f '|X Θ( 'x ,θ )u(θ )/ ( )'' xf X ::u(θ )f '|X Θ( 'x ,θ )=u(θ )∏
=

t

i

f
1

iX |Θ( θ,ix )= 

=u(θ )∏
=

t

i

f
1

X |Θ( θ,ix )
)17.2(

)18.2(
= ∏

=

⋅−⋅−− t

i

x
i

xt

q
exp

xtc
eq i

100 )(
)(

),(
)( 00

θ
θ θθ

::q(θ ) )( 0 tt +− e
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+− ∑

=

t

i
ixx

1
0θ

, 

relations numbered (2.27). 
So, the distribution of (μ (Θ)| 'X ) contains on the first line the values 

)(θμ  for this random variable and on the second line the conditional density of 
μ (Θ) given '' xX = , that is the below function: fμ(Θ)| 'X ( )(θμ , 'x ) = = 

fΘ| 'X (θ , 'x ):: 

::q(θ ) )( 0 tt +− e
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+− ∑

=

t

i
ixx

1
0θ

. But: μ (Θ):
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(θ

θμ
u

 ::
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−− 00)( xt eq θθ

θμ
. Density (2.27) is of 

the same type as the original structure density (2.18), with x0 replaced by (x0 + 
∑

i
ix ) and t0 by (t0 + t). So by using (2.26), the posterior mean (2.20), which is 

the mean squared error – optimal estimator for μ(Θ), is: 

E[μ(Θ)|X1, …, Xt] = (x0 + ∑
=

t

i
iX

1

) / (t0 + t)                                         (2.28),  

if we consider E[μ(Θ)] 
)26.2(

=  00 / tx  and the above statements. This (see (2.28)) is 
indeed a non – homogeneous linear combination of X1,…, Xt. By (2.26) we have 
m = x0 / t0, and comparing (2.28) with (2.3) we can observe that t0 = s2 / a and z = 

t / (t +t0). Indeed: E[μ(Θ)|X1,…, Xt] = (x0 + ∑
=

t

i
iX

1
) / (t0 + t) = 

t
tt

t

Xx
t

i
i

+

+∑
=

0

1
0

 =  

= ⎟
⎠
⎞

⎜
⎝
⎛ +

+
X

t
x

tt
t 0

0

 = z X  + (1 - z)m, whit z = t / (t0 + t) (the ratio of the structure 

parameters s2 and a, that is“s2 / a” from the definition of z “z = (at) / (s2 + at) = at / 
{a[(s2 / a) + t]} = t / [(s2 / a) + +t]” is, here, equal to t0). For this application, the 
mean squared error – optimal estimator for μ(Θ), that is E[μ(Θ)|X1,…, Xt] (which 
in statistics is called the posterior Bayes estimator of μ(Θ) with respect to the 
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quadratic loss distance, and prior belief characterized by U(θ ), or the exact 
credibility result, or the exact credibility estimate) coincides with the best 
linear credibility estimator (2.3) for μ(Θ). 
 

Comment on the solution of the linear credibility problem: 
It should be noted that the solution (2.3) of the linear credibility problem 

only yields a statistic computable from the observations, if the structure 
parameters m, s2 and a are known. Generally, however, the structure function U(·) 
is not known. Then the ‘estimator’ as it stands is not a statistic. Its interest is 
merely theoretical, but it will be the basis for further results on credibility. In 
the following section we consider different contracts, each with the same structure 
parameters a, m and s2, so we can estimate these quantities using the statistics of 
the different contracts. 
 

3. The classical credibility model of Bühlmann 
 

In this section we will introduce the classical Bühlmann model, which 
consists of a portfolio of contracts satisfying the constraints of the original 
Bühlmann model. The classical credibility model of Bühlmann, presents the best 
linear credibility estimators for this case. The contract index j is a random 
structure parameter θj and observations Xj1,…,Xjt: (Θj,Xj1,…,Xjt) = (Θj, '

jX ). The 
contracts j = 1,…,k are assumed to be i.i.d (independent and identically 
distributed). Moreover, for every contract j = 1,…,k and for Θj = jθ  fixed, the 
variables Xj1,…,Xjt are conditionally independent and identically distributed. In 
the classical model of Bühlmann, all contracts have in common the fact that their 
variances and expectations are represented by the same functions σ2(·) and μ(·) of 
the risk parameter. Also: E[Xjr|Θj] = μ(Θj), r = 1,…,t. Note that the usual 
definitions of the structure parameters apply, with Θj replacing Θ and Xjr 
replacing Xr, so: m = E[Xjr] = E[μ(Θj)], a = Var[μ(Θj)], s2 = E[σ2(Θj)]. 
 

3.1. The best linearized credibility estimators for the classical model of 
Bühlmann 

If both assumptions (B1) and (B2) exists: (B1) E[Xjr|Θj] = μ(Θj), 
Cov[ |jX Θj] = σ2(Θj)I(t,t), j = 1,…,k and: (B2) the contracts j = 1,…,k are 

independent, the variables Θ1,…,Θk are identically distributed, and the 
observations Xjr have finite variants, then the optimal non-homogeneous linear 

estimators a
jM  for μ(Θj), j = 1,…,k, in the least squares sense read:

^
μ (Θj) = 
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= =a
jM (1 – z)m + zMj. Here Mj = ∑

=

=
t

s
jsj X

t
X

1

1  represents the individual 

estimator for μ(Θj). The resulting credibility factor z which appears in the 
credibility adjusted estimator a

jM  is found as: z = at / (s2 + at), with the structural 
parameters a and s2 as defined above. For proof see [1] of the references, pages 
145 to 147. 
 

3.2. Estimation of the structural parameters in the non-homogeneous 
linear credibility model 
 

The credibility premium for this classical Bühlmann model involves three 
parameters a, s2 and m. Now that we embedded the separate contract j in a group 
of identical contracts, it is possible to give unbiased estimators of these quantities. 
For this estimation, we assume that we have a portfolio of k identical and 
independent policies that have been observed for t (≥2) years, and let Xjr 

represent the total claim amount of policy j in year r. Let: ∑
=

=
t

s
jsj X

t
X

1
.

1 , 

∑
=

=
k

j
jX

k
X

1
...

1 . For m we propose the unbiased estimator: ..

^
Xm = . For each 

policy j, the empirical variance: ( )
2

1
.

1
1 ∑

=

−
−

t

r
jjr XX

t
 is an unbiased estimator of 

Var(Xjr|Θj), and thus: ( ) ( )
2

1 1
.

^
2

1
1 ∑∑

= =

−
−

=
k

j

t

r
jjr XX

tk
s  is an unbiased estimator of 

s2. The empirical variance: ( )∑
=

−
−

k

j
j XX

k 1

2
...

1
1  is an unbiased estimator of 

Var( .jX ), and as: Var( .jX )= a
t

s
+

2

, we introduce the unbiased estimator: 

( )
t

sXX
k

a
k

j
j

^
22

1
...

^

1
1

−−
−

= ∑
=

 for a. This estimator has the weakness that it may 

take negative values whereas a is non – negative. Therefore, we replace a by the 

estimator: a* = max(0,
^
a ), thus losing unbiasedness, but gaining admissibility. 

Note that 
^
m , 

^
2s  and 

^
a  are consistent when k +∞→ .  
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4. Conclusions 
 

The main results of the paper are: the five applications of the optimal 
credibility estimator of Bühlmann (see Subsection 2.2.), solved when the 
credibility solution of Bühlmann contains known parameters of the structure 
function, which will make possible a statistic computable from the 
observations for this result; to obtain estimations for these structure parameters, 
for Bühlmann’s classical model, we embedded the contract in a group of 
contracts, all providing independent information about the structure distribution 
(see Section 3.); since we embedded the separate contract j in a collective of 
identical contracts, has been possible to give useful estimators, more precisely 
unbiased and consistent estimators for the structural parameters in the non-
homogeneous linear credibility model; to be able to use the credibility premiums 
of the classical Bühlmann model, in Subsection 3.2 we presented unbiased 
estimators for the structure parameters, such that if the structure parameters in the 
optimal linearized credibility premium are replaced by these estimators, a 
homogeneous estimator results; this last estimator can also be shown to be 
optimal; we also demonstrated that these unbiased estimators are consistent, when 
the number of contracts in the portfolio is very big. So in this paper we gave some 
practical insurance problems solved by mathematical theory and credibility 
theory. 
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