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MODELISATION DU COMPORTEMENT DYNAMIQUE
D'UNE POUTRE AVEC UNE FISSURE FINE

Dana Codruta VISAN', loan PARAUSANU?

From the point of view of the dynamic behaviour, the appearance of a
breathing crack in a bar leads to the change of its natural frequencies. From the
relationships, well known in the literature of speciality, that corresponds to the
movement in the first natural mode of vibration of a simple supported beam, we
chose a modelling with a single degree of freedom system. If there is a breathing
crack in the beam, the elastic constant of the model is a time function which makes
that the differential equation of the movement is of Mathieu type, the vibration being
nonlineaire. In contrast to the numerical solutions of this type of equation, which
are presented in the literature of specialty, and which does not take into account the
damping factor, in this case there has been written a code, which is based on the
Runge-Kutta integration method, but, in which there has been added a term
corresponding to the damping forces. The influence of the parameters of the crack
on the natural frequencies of the beam has been studied and diagrams have been
drawn, in the future, they may be used for the identification of these parameters.

Du point de vue du comportement dynamique, l'apparition d'une fissure dans
une poutre conduit au changement des fréquences naturelles de celle-ci. 4 partir des
relations, bien connues de la littérature de spécialité, qui correspondent au
mouvement dans le premier mode naturel de vibration d'une poutre simplement
appuyée, on a choisi un systeme de modélisation avec un seul degré de liberté. Au
cas ou dans la poutre il y a une fissure fine, la constante élastique du modeéle est une
fonction de temps et l'équation différentielle du mouvement est de type Mathieu, la
vibration étant nonlinéaire. A la différence des solutions numériques de ce type
d'équation, qui sont présentées dans la littérature de spécialité, et qui ne tiennent
pas compte de l'amortissement du systeme aussi, dans ce cas on a écrit un logiciel,
qui a a la base la méthode d'intégration de Runge-Kutta, mais ou on a ajouté le
terme correspondant aux forces d'amortissement. On a étudié l'influence des
parametres de la fissure sur les fréquences naturelles de la poutre et on a tracé des
diagrammes qui, a l'avenir, pourraient étre utilisés pour l'identification de ces
parameétres.
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1. Introduction

La réponse dynamique d'une structure, les fréquences naturelles et les
formes des modes naturels des vibrations, dépendent de la maniére dont on
répartit les masses, les rigidités et les amortissements le long de la structure. La
présence d'une fissure, qui peut se produire suite a une sollicitation a la fatigue,
conduisant a l'apparition des vibrations non-lin€aires dans le comportement
dynamique de la structure. Pendant le mouvement de vibration, la rigidité¢ de la
zone de la fissure se modifie en permanence au fil du temps, le niveau de la non-
linéarité est sensible aux changements des paramétres de la fissure, I'emplacement
et la profondeur. Dans la littérature de spécialité, le probléme du comportement
dynamique d'une poutre fissurée a été résolu tant par sa simplification et le
traitement dans le domaine linéaire [1-4], que par une approche non-linéaire [6]. 11
y eu des solutions moyennes, dans lesquelles, a 1'aide de la méthode des ¢léments
finis, on a mis en place une matrice de rigidité supplémentaire dans la zone de la
fissure, qui modélisait les deux positions extrémes de celle-ci: complétement
ouverte ou complétement fermée, son influence se produisant a chaque moitié¢ de
la période du mouvement de vibration [7]. Une bonne modélisation détaillée de la
zone fissurée a été faite par Dimarogonas [17, 18]. Les idées présentées dans son
travail, ont contribué a la réalisation du modéle proposé, un modéle dynamique
avec un seul degré de liberté, dont la rigidité varie harmoniquement dans le temps.
L'équation du mouvement qui en résulte est de type Mathieu et elle a été résolue
numériquement en fonction du temps, par la méthode de Runge-Kutta.

2. Modéle mathématique d'une poutre fissurée simplement appuyée

La poutre simplement appuyée de la Figure 1, avec la longueur L et la
section bxh, présente une fissure, avec la profondeur a a la distance L. Notant
avec U l'énergie spécifique de déformation et tenant compte du théoréme de
Castigliano, ainsi que du fait que la rotation ¢ de la section, dans la zone de la
fissure, est directement proportionnelle avec le moment de flexion, il en résulte:
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Fig. 1. La poutre fissurée et son modéle.
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L'énergie spécifique de déformation causée par la fissure, a la forme [8]:

(1
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a U a
Uzjoada:bjlo Jdh 2)
ou J représente l'énergie spécifique de déformation repartie a la hauteur de la
fissure et elle est obtenue par la formule suivante:
1-v?
E

ou £ et v sont le module de Young et le coefficient de Poisson. Compte tenant de
I'état plane des contraintes, le facteur K est donné par la relation [8]:

J= K> 3)

K=0~F(a)-\/7za “4)
ou la contrainte o est:
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et F(a) est une fonction sans dimension [8], exprimée en fonction du rapport
o=alh:
Fla)=1.12-14a +7.33a* —13.1a° +14a’ (6)
En remplacant I'équation (3) dans 1'équation (2) et en intégrant de 0 a a,
nous obtenons :
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ou

g(a)=0.6272a —1.04533a° + 4.5948a* —9.9736a”

+20.2948c° —33.0351a” +47.1063c* —40.7556a” +19.6a"°
En revanche, la variation de 1'¢lasticité de la poutre simplement appuyée, a
la raison de l'existence de la fissure, peut étre obtenue de I'équation de
Dimarogonas et Paipatis [9] :

2 2
ac - 8l=v") o) ©9)
Ebh
Considérant que la vibration de la poutre de la Figure 1 a lieu dans le
premier mode naturel de vibrations, elle peut étre modelée comme celle de la
Figure 1, sous la forme d'un systéme avec un seul degré de liberté. C'est parce que
la rigidité du bar varie harmoniquement pendant la vibration, se situant entre deux
valeurs extrémes: correspondant a la position fermée de la fissure et l'autre a la
position ouverte, que le modéle obtenu a un comportement non-linéaire. Compte
tenant de la forme déformée de la poutre dans le premier mode naturel de
vibration, 1'équation (10),

®)

. T-X
Y(x)= sm(Tj (10)
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on peut obtenir la masse et la rigidité équivalentes au systéme initial [10], pour
qu'apres elles soient utilisées dans le mode¢le:

m= [ m(x)-¥*(x)- dx = 0.5mL (11)

ou m est la masse de la poutre par unité de longueur.
La rigidité équivalente, qui correspond a la position ou la fissure est
complétement fermée, est calculée en utilisant la relation:
1 r*El

k= [ EL-(v(x)) dx = > (12)

ou EI est la rigidité en flexion de la poutre et C représente 1'¢lasticité équivalente.
De méme, lorsque la fissure est complétement ouverte, la rigidité équivalente est
k,=1/C, ,ou C, représente I'élasticité équivalente correspondant a cette position:
C,=C+AC (13)

La rigidité équivalente du systeme avec un seul degré de liberté varie
périodiquement dans le temps, entre les deux valeurs extrémes &, et k,, sous la

forme:
k(t)=k, + k,[1+cos(wt)] (14)
ou k, estl'amplitude de la variation harmonique de la rigidité:
1
kA=E(kf—kn) (15)

Par conséquent, de [I'équation ci-dessus résulte que la rigidité
correspondente a la position de I'équilibre est ¢gale a la moyenne arithmétique des
deux rigidités, l'une correspondente a la position dans laquelle la fissure est
fermée et I'autre quand elle est ouverte. Ainsi, le mouvement harmonique, effectué
d'un c6té et de l'autre de la position de 1'équilibre, peut étre considéré comme étant
effectué avec la vitesse angulaire w, dont la valeur est entre les valeurs wy et w,,
valeurs correspondantes aux positions complétement fermée et respectivement
totalement ouverte:

200,
0=—" (16)
o, +0,

Notant avec ¢ le coefficient équivalent d'amortissement du systéme avec
un seul degré de liberté et tenant compte des paramétres concentrés, la masse
équivalente et la rigidité équivalente, qui est une fonction du temps, 1'équation du
mouvement du systéme, illustré a la Figure 1, est:

my +cy + {k, + k,[1+cos(et )]}y =0 (17)

On préfere une forme sans dimension pour I'équation (17). Pour réaliser

cela, on fait le suivant changement de variable:
wt =2z (18)
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dt 2dz
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> 4 d7°
En remplagant les relations (18) et (19) dans 1'équation (17) on obtiendra:
d’y  , dv
—=+4{—+|a+2qgcos(2z)]y=0 20
ot +lar2gcos(2z)ly (20)
ou
4k, +k 2k c
a:—(" QA); q=—"; §=— 21
ma mw c,,

et { représente la fraction de l'amortissement critique du systéme, correspondant a

la relation (16).
Graphique de stabilité pour I'équation Mathieu
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Fig. 2. Graphique de stabilité.

L'équation différentielle (20) est de type Mathieu. Ce type d'équations est
souvent rencontré dans de différents domaines de la physique et de 1'ingénieurie.
Certains problémes de la physique théorique conduisent a des équations Mathieu,
en particulier la propagation des ondes ¢lectromagnétiques dans un milieu ayant
une structure périodique, le mouvement des électrons dans un réseau cristallin etc.

En fonction des valeurs des paramétres sans dimension a et g, les solutions

de I'équation (20) peuvent étre stables ou instables (fig. 2) [11].
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3. Simulation numérique

Pour étudier I'effet de la profondeur de la fissure et de la position qu'elle
occupe le long de la poutre sur la fréquence naturelle, on a considéré une poutre
en acier avec une longueur de 1 m et 30 x 12 mm? en section. On considére trois
positions de la fissure le long de la barre, & une distance de 0.15 m, 0.35 m et
respectivement 0.5 m par rapport a l'appui de gauche. Pour chaque position on a
calculé les fréquences naturelles, correspondant a trois profondeurs de la fissure: 3
mm, 6 mm et 9 mm. Le module d'élasticité du matériel est 210 GPa, le coefficient
de Poisson 0.3 et la densité 7850 Kg/m®. La solution de I'équation (20) a été
obtenue numériquement, a l'aide des fonctions MATLAB. On a choisi les
conditions initiales suivantes: y = 1 mm pour le déplacement et y = 0 pour la

vitesse.

Les graphiques obtenus sont déplacement-temps et, dans l'espace des
phases, vitesse-déplacement. Il n'y a q'une partie des graphiques obtenus qui sont
présentés dans le document, conformément au Tableau 1.

Tableau 1
Les parametres analysés
Ly/L alh ¢ a q Figure
0 Fig. 3
0.0025 Fig. 4
0.35 0.5 0.0375 | 4.0023 | 0.0550 Fig. 5
0.2250 Fig. 6
0.75 0 4.0503 | 0.2603 Fig. 7
0 Fig. 8
0.5 0.75 0.0025 | 4.1689 | 0.4823 Fig. 9

Pour a/h = 0.5, les figures 3 a 6, le mouvement du systéme est stable et il
est amorti d'autant plus rapidement que { est plus grand (des valeurs dans la plage
comprise entre 0 et 0.225). Mais, si le rapport a/h = 0.75, les valeurs de a et g sont
dans le voisinage de la zone d'instabilit¢ des solutions de I'équation (20), le
mouvement devenant apériodique, Fig. 7-9, avec une variation de l'amplitude
pareille a celle du phénoméne de battement, un phénoméne rencontré quand la
fréquence d'une force perturbatrice a des valeurs proches de celles de la fréquence
naturelle du systéme. Cette situation correspond a la réalité, si vous n'oubliez pas
que la valeur relativement élevée du rapport a/h est antérieure a la casse du
matériel dans cette section.
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Fig.3. Conformément au Tableau 1.
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Fig.8. Conformément au Tableau 1.
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Fig.9. Conformément au Tableau 1.

Notant avec fr la fréquence naturelle de la poutre fissurée et avec f la
fréquence naturelle de la poutre sans fissure, dans la Figure 10 on represente la
variation de la fréquence relative, le rapport f/f en fonction de la position de la
fissure dans la poutre, du rapport Ly/L et de la profondeur de la fissure, le rapport
alh. Les valeurs de la fréquence naturelle de la poutre fissurée sont toujours
inférieures a celles de la poutre sans fissure et elles sont d'autant plus petites que
la profondeur de la fissure est plus grande et/ou la position de la fissure est plus
proche du milieu de la barre.

4. Conclusions

A partir des relations existantes dans la littérature de spécialité, on a
contruit un modele d'une poutre simple appuyée, qui a une fissure pour laquelle
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les paramétres sont connus. Les vibrations libres de ce modéle, sont des vibrations
non-linéaires par suite du changement dans le temps de la constante élastique, qui
varie entre deux valeurs: 1'une correspondante a la position de déformation de la
barre, la situation ou la fissure est ouverte et l'autre position ou la fissure est
fermée et qui correspond a la situation dans laquelle la barre n'est pas fissurée. Le
modele mathématique a conduit a l'apparition d'une équation de type Mathieu,
dans laquelle on a introduit aussi I'amortissement existant dans le systéme. On a
résolu cette équation par une méthode numérique, a l'aide de l'intégration de
Runge-Kutta et en utilisant deux conditions initialesy=1et y =0.

Il faut mentionner que, dans la littérature de spécialité, ce type d'équation a
des solutions numériques seulement pour le cas ou il n'y a pas d'amortissement
dans le systéme, { = 0 dans 1'équation (20) [12,13]. Le programme écrit dans
MATLAB [14] peut tenir compte de I'amortissement du systéme aussi, son effet
sur le systéme pouvant ainsi €tre étudié.

Les résultats de la simulation numérique, obtenus en exécutant le logiciel
écrit, ont mis en évidence des variations des fréquences naturelles de la poutre
fissurée par rapport a celles de la poutre sans fissure. Ces variations sont d'autant
plus grandes que la profondeur de la fissure est plus grande et elle est placée plus
pres du milieu de la barre.

La connaissance pour un systétme des diagrammes comme celles
présentées dans la Figure 10, des diagrammes obtenues par une simulation
numérique sur un modele mathématique validé (telle que celle illustrée dans cet
article), peut servir a identifier les parameétres inconnus d'une fissure, dans une
situation réelle dans laquelle on a fait des déterminations expérimentales et on a
obtenu les fréquences naturelles du systéme fissuré. Celui-ci est le prochain
objectif de la recherche, constituant le prolongement de celles qui sont décrites ci-
dessus.

BIBLIOGRAPHIE

[1] T.G.Chondros, "The continuous crack flexibility method for crack identification", Fatigue &
Fracture of Engineering Materials & Structures, 2001, 24, pp. 643-650

[2] JA. Loya and L.R.J. Ferna’ndez-Sa’ez, "Natural frequencies for bending vibrations of
Timoshenko cracked beams", Journal of Sound and Vibration, 2006, 290, pp. 640-653

[3] HF. Lam, C.T. Ng and M. Veidt, "Experimental characterization of multiple cracks in a
cantilever beam utilizing transient vibration data following a probabilistic approach",
Journal of Sound and Vibration, 2007, 305, pp. 34-49

[4] B. Faverjon and J. Sinou, "Identification of an open crack in a beam using an a posteriori error
estimator of the frequency response functions with noisy measurements", European Journal
of Mechanics A/Solids, 2009, 28, pp. 75-85

[5] M1 Friswell and J.E.T. Penny, "A simple nonlinear model of a cracked beam", In:
Proceedings 10th international modal analysis conference, San Diego, CA, 1992, pp. 516-
521



172 Dana Codruta Visan, Ioan Parausanu

[6] M. Kisa and J. Brandon, "The effects of closure of cracks on the dynamics of a cracked
cantilever beam", Journal of Sound and Vibration, 2000, 238(1), pp. 1-18

[7] A.D. Dimarogonas, "Vibration of cracked structures: a state of the art review", Engineering
Fracture Mechanics, 1996, 55, pp. 831-857

[8] T.G. Chondros and A.D. Dimarogonas, "A continuous cracked beam vibration theory", Journal
of Sound and Vibration, 1998, 215(1), pp. 17-34

[9] A.D. Dimarogonas and S.A. Paipetis, "Analytical Methods in Rotor Dynamics", London:
Elsevier Applied Science, 1986

[10] L. Meirovitch, Analytical Methods in Vibrations, The Macmillan Company, 1967

[111 T. Funada, J. Wang, D.D. Joseph, N. Tashiro and Y. Sonoda, "Solution of Mathieu’s
equation by Runge-Kutta integration", Department of Aerospace Engineering and
Mechanics, University of Minnesota, 110 Union St. SE, Minneapolis, MN 55455, USA

[12] E. Douka, S. Loutridis and A. Trochidis, "Crack identification in beams using wavelet
analysis", International Journal of Solids and Structures, 40 (2003), pp. 3557-3569

[13] R. Coisson, G. Vernizzi, X. Yang, "Mathieu Functions and Numerical Solutions of the Mathieu
Equation", Department of Materials Science and Engineering, Northwestern University,
2220 Campus Drive, Evanston IL 60208, USA

[14] *** MATLAB Reference Guide. Springer, 2010



