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RESEARCH ON SEMANTIC SLAM SYSTEM TECHNOLOGY
FOR DRIVERLESS VEHICLES
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In response to the problem of a single sensor being unable to complete
localization and map construction in large-scale scenarios, as well as dynamic
obstacles reducing the accuracy of positioning and mapping, a framework called
LIS_SLAM for simultaneous localization and map construction framework that
combines image semantic segmentation and laser inertial odometer is proposed. First,
the efficiency and performance of the image segmentation model are improved by
replacing the backbone network and introducing an attention mechanism. Second,
spatio-temporal synchronization between sensors is established, enabling semantic
segmentation of single-frame point clouds. The framework also includes the
establishment of a semantic SLAM system and the construction of a three-dimensional
semantic map. Finally, the algorithm is verified in campus and urban environment
roads. The experimental results show that LIS _ SLAM can achieve simultaneous
localization and mapping in large-scale scenes.

Keywords: multi-sensor fusion; semantic segmentation; simultaneous localization
and mapping; dynamic scenarios

1. Introduction

The rapid growth of China’s motor vehicle industry resulted in a sharply
increased traffic volume, providing convenience to people but also leading to more
frequent traffic accidents. Unmanned driving technology has emerged as a potential
solution to address these challenges. SLAM technology, as a fundamental
component of autonomous driving, enables vehicles to map their surroundings and
accurately position themselves, thereby reducing accidents caused by human
factors and propelling the automotive industry towards intelligence.

SLAM refers to a carrier equipped with sensors (such as camera, lidar, and
IMU), which enable the perception of environmental information and the
construction of an environment map without prior environmental information to
achieve autonomous localization. There are two main types of SLAM: laser SLAM
and visual SLAM. Visual SLAM can collect a wealth of characteristic
environmental information at a low cost, but it is easy to be affected by light and
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prone to errors and drift. The advantage of laser SLAM is that it is not affected by
light changes and can provide accurate depth information, but it is expensive and
may have accuracy issues. In the case of fast movement and missing features, it
may lead to low accuracy or even failure of the map. Based on the above analysis,
it is difficult for a single sensor SLAM system to adapt the construction of three-
dimensional maps in large-scale scenarios such as urban environments. To
overcome these limitations, sensor fusion, such as using lidar and cameras, has
become a future trend in SLAM development. Traditional SLAM assumes
stationary objects in the environment to collect information for map construction
and localization. At present, map construction in static environments has met the
requirements of practical applications. However, most objects in the real
environment are moving, and dynamic objects will affect the positioning accuracy
of unmanned vehicles, resulting in errors in the constructed maps. In view of the
above problems, this paper introduces advanced semantic information to realize the
detection and elimination of dynamic objects, thereby improving the localization
accuracy of semantic SLAM systems based on LIDAR in dynamic environments.
To this end, a semantic SLAM system that integrates advanced semantic
information is proposed to detect and eliminate dynamic objects. The integration of
sensors such as LIDAR, camera, and IMU in this semantic SLAM system is
important for building a high-precision and robust 3D environmental semantic map.

The original data collected by the lidar is preprocessed by distortion
correction and ground segmentation, and the image information collected by the
camera is semantically segmented using the Dv3p-RS algorithm. Spatio-temporal
synchronization is performed on the point cloud data of lidar key frames to realize
semantic segmentation. Then a surface element map is established to detect and
eliminate dynamic obstacles, extract edge and plane features from the dynamically
eliminated point cloud and reduce the time-consuming feature extraction. The
semantic information is used to correct the mismatch of features, and improve the
inertia of LIDAR. The efficiency and accuracy of the odometer can improve the
overall localization accuracy of the algorithm. This, in turn, enables the calculation
of the pose transformation relationship through inter-frame matching. After
achieving the motion trajectory of the lidar a local semantic map is established. This
local semantic map can be added to the global semantic map to create a 3D semantic
point cloud map. Fig. 1 shows the semantic SLAM framework. The main work
includes the following aspects:

(1) An improved image segmentation algorithm named Dv3p-RS is
proposed, which improves the performance of the algorithm by replacing the
backbone network and adding the attention module.

(2) A three-dimensional semantic slam framework is proposed. Through
adding image semantic information to the LIDAR inertial SLAM system and
eliminating dynamic obstacles based on the surface element model, autonomous
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localization and mapping in large-scale scenes are realized.

The remaining part is organized as follows: Section 2 presents the related
work; Section 3 introduces the Lidar inertial odometer, image semantic
segmentation, single-frame point cloud segmentation, and dynamic obstacle
removal; Section 4 carries out experimental verification, and Section 5 draws the
conclusion.
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Fig. 1. Semantic SLAM system framework

2. Previous Work

Lidar SLAM: The lidar is divided into two-dimensional lidar and three-
dimensional lidar based on the number of lines. Two-dimensional laser SLAM can
be classified into two types: filter-based method and optimization-based method.
Thrun et al. [1] put forward a Fast SLAM based on particle filters, which combines
Monte Carlo positioning with low-dimensional Kalman filtering to realize
localization and map construction. Grisetti et al. [2] proposed Gmapping, which can
effectively overcome the shortcomings of particle filter and use the Maximum
Likelihood Estimation Method to improve the quality of sampling, while reducing
the number of particles to alleviate the problem of memory explosion. The
Cartographer proposed by Google uses correlation scanning matching for violent
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search at the rough level to avoid local extrema and uses gradient optimization for
fine searches and find the optimal solution for linear interpolation. Additionally, it
incorporates branch and bound method for loop-closing optimization, effectively
eliminating cumulative error caused by frame-to-local sub-image matching [3].
According to the fusion of Lidar and IMU, 3D laser SLAM is divided into two
categories: loose coupling and tight coupling. The laser load [4] and [5] belong to
the loosely coupled methods. LIO mapping proposed by Ye et al. [6] and LIO-SAM
proposed by Shan et al. [7] are both tightly coupled methods. LOAM proposes a
novel feature extraction method, which divides feature points into plane points and
edge points based on the smoothness of the plane. It narrows the range of feature
extraction and proposes an accurate and fast matching method between frames and
sub-images. The disadvantage is that there is no loopback detection, which will
inevitably cause drift. LeGO-LOAM uses ground for feature point segmentation
and point cloud clustering to eliminate noise points, improve the extraction
accuracy of feature points, and introduce loop detection to improve the accuracy of
localization and mapping. The LIO mapping algorithm proposes a rotation-
constrained thinning algorithm, which optimizes all measurements but lacks real-
time performance. The LIO-SAM algorithm constructs the odometry, pre-
integration, GPS, and loop-closing factors, and uses the factor map to realize tight
coupling and global optimization of lidar and IMU. Qi and Guan [8] proposed a
real-time 3D positioning method for mechanical working surfaces based on laser
SLAM to address the issue of difficulty in meeting the accuracy of the odometer
for underground coal mine movement survey. This method uses inertial navigation
to eliminate the motion distortion of Lidar and adopts the feature extraction method
of principal component analysis. The LM method is used to solve the attitude
transformation relationship and realize the attitude estimation.

Image Semantic Segmentation: Long et al. [9] proposed the fully
convolutional network (FCN). This method replaces all fully connected layers in
the traditional convolutional neural network (CNN) with convolution and restores
the image dimension by upsampling. FCN cannot perform real-time reasoning and
cannot utilize global context information. Chen [10] proposed the Deeplabvl
algorithm that combines deep learning convolutional neural network (DCNN) with
conditional random field (CRF). It can effectively solve the problem of defect
location and improve the accuracy of boundary segmentation. Chen et al. [11]
proposed the Deeplabv2, which introduced the hollow pyramid pooling (ASPP)
based on Deeplabvl. It can improve the segmentation of the network for different
scales of targets, but still relies on fully connected conditional random fields [12].
Deeplabv3 introduced the Multi-Grid strategy and optimized ASPP structure, no
longer relying on fully connected conditional random fields [13]. Deeplabv3
introduced a multi-grid strategy and optimizes the ASPP structure, no longer relying
on fully connected conditional random fields [13].The Deeplabv3+ adopts an
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encoder-decoder structure. Using the Deeplabv3 network structure as the encoder,
the decoder is introduced to obtain clearer segmentation boundaries [14]

Semantic SLAM: Vineet et al. [15] proposed a method based on the
combination of hash and conditional random field models. This method evaluates
the features extracted by image semantic segmentation through random forest, and
uses a densely connected CRF model to reduce the computational burden and
construct 3D semantic maps in real time. Combined with classical surface mapping
methods, Chen et al. [16] used semantic information to improve the position and
pose estimation accuracy of lidar. By using the methods such as flood filling and
filtering, it can achieve semantic segmentation and denoising of point clouds. Bojko
et al. [17] proposed a self-supervised dynamic elimination SLAM algorithm, which
cannot only avoid the negative impact of the system caused by direct recognition,
but also eliminate dynamic objects without prior information. Eslamian et al. [18]
proposed a semantic map system based on Detectron2 and ORB-SLAM3 algorithm.
In ORB-SLAM3, the depth information of feature points is obtained through
camera movement, and dynamic points are eliminated by using the semantic
information. The results are more accurate than the method using geometric
information constraints, but this method is not suitable for outdoor and fast-moving
scenes [19].

3. Methods
3.1. Lidar inertial odometer

First, to address the issue of motion distortion in Lidar, the pose
transformation within one frame of lidar is obtained through IMU pre-integration,
and the laser point coordinates are converted to the first laser point coordinate
system to eliminate motion distortion. Second, when the laser radar collects
information, a large amount of ground point cloud information will be obtained,
which will reduce the operating efficiency of the algorithm. Through calculating
the pitch angle of the distance image, the point cloud is divided into two parts:
location and non-location, as shown in Fig. 2(a) and Fig. 2(b). Then, using the
calculated plane smoothness, these feature points are divided into edge points and
plane points, as shown in Fig. 2(c) and Fig. 2(d). Finally, the distance between two
objects is obtained through point-to-line and point-to-surface feature matching
methods, and then the pose transformation matrix is solved through levenberg-
Marquart iteration [20].
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Fig. 2. Point cloud ground segmentation and feature extraction (a) Location cloud (b) Non-
location clouds; (c) Edge feature points; (d) Planar feature points

3.2. Image semantic segmentation

Taking the Deeplabv3+ algorithm as the basic framework of image
segmentation, an improved Dv3p-RS algorithm is presented. It is optimized and
improved from the following three aspects:

(1) Due to the Xception goal of the Deeplabv3+algorithm backbone network
being to train a model that is easy to migrate, computationally efficient, and highly
accurate, the research scenario here is an urban environment, aiming to process
image information through a semantic segmentation algorithm. It is a laser radar
point cloud that provides high-level semantic information. The ResNeXt network
[21] has a higher efficiency under the same number of parameters. To this end, a
lightweight ResNeXt is used as a feature extraction network to improve model
efficiency.

(2) After extracting deep and shallow feature maps from the backbone
network, the SE attention module [22] is used to enhance channel characteristics,
thereby improving the performance of the model.

(3) The Deeplabv3+ algorithm handles the problem of different dimensions
between deep and the shallow feature maps through linear interpolation and up
sampling.

However, unmanned vehicles may experience significant scale changes
when collecting environmental image information, with many anomalies occurring
between pixels. Linear relationship, deconvolution achieves high-precision
upsampling through parameter learning. Here deconvolution instead of linear
interpolation is used to ensure the accuracy of segmentation.
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3.3. Single frame point cloud segmentation

The topic subscription mechanism of the time synchronizer under the robot
operating system (ROS) is used to achieve soft synchronization of sensor time. The
PTP network protocol synchronization method is used for clock source alignment,
thereby realizing the hard synchronization of the sensor time, and obtaining the
sensor time through external parameter calibration. Using a rotation matrix and a
translation matrix, the coordinate values of each sensor are projected into the same
coordinate system, thereby achieving realize spatio-temporal synchronization of
sensors. Under spatio-temporal synchronization, the lidar and camera establish a
mapping relationship between the point cloud and image, that is, the pixel
coordinates corresponding to each point cloud are obtained. After semantic
segmentation processing, the 2D images captured by the camera have consistent
semantic labels for the same type of objects. The pixel coordinates correspond one-
to-one with semantic labels to establish a mapping relationship between the three-
dimensional point cloud and semantic tags. Fig. 3(a) is the original point cloud, and
Fig. 3(b) is the semantic segmentation point cloud.

(a) Original point cloud; (b) Semantic segmentation point cloud
Fig. 3. Point cloud semantic segmentation

3.4. Dynamic obstacle removal

A surfel is a circular plane with directions and sizes in space. Compared
with a point cloud, a surfel contains position information, normal vector
information, and area information. The point cloud data with the same normal
vectors is described by the same surfel, which cannot only reduce the data storage,
but also provide richer geometric information for the data. To be suitable for
dynamic environments, we extend the surface elements and define them as follows:

Surfel, = {ps, ﬁsr rs’ tct' tud' ls} (1)
where, t.; represents the creation time of the surfel; t,,; represents the update time
of the surfel, and [ is the probability value in logarithmic form, indicating the
stability of the surfel. The 3D point cloud scanned by a single-frame lidar is
projected into a 2D depth map, assuming a certain laser point P°(x,y,z).The
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calculation formula for the coordinate Pj(u, v) of the depth map is as follows:
1 _
(u) _ < ~[1 —arctan(y,x) - m 1w ) )
v [1 - (arcsin(z ’ r_l) + fmax)f_l] “h

f = fmax * fmin 3)
where, r = || P||, represents the range;f represents the vertical field of view of the
lidar; fi,ax and fin are the maximum and minimum values of the vertical field of
view, respectively;w and h are the width and height of the depth map, respectively.
Suppose the center of surface element s is the point P$'(x’,y’, z"), the coordinate

Pgl (u',v") in the depth map, the vectors formed by the adjacent point PBIL on the

right side of P§ and the adjacent point P3 U on the upper side of P§ are 71, and 7y
respectively. The normal vector of the panel is the outer product of 71, and 71;;, and

the normal vector 77°  is calculated as follows:

s =ity x Ay = [P3 (w+ 1,v) — P§ (w,v)] x [P3 (w,v + 1) — P§ (w,v)]

4)

The static objects and dynamic objects are distinguished by detecting the
geometric consistency of surface elements. Assuming that there are two adjacent
key frames K, and X, ,, an object detected in keyframe X, is at position S} in the
lidar coordinate system, and mapped in the global. The position in the coordinate
system is S}V, and the position of the object detected in key frame X, is SCL’ in
the lidar coordinate system. If the position mapped in the global coordinate system
is still /", it indicates that the object is stationary; otherwise, theobjects in different
positions are dynamic objects. When a dynamic object is detected, an additional
penalty will be given for updating the bin stabilityl;.The penalty function is as

follows:
© _ -1 _a _&
ls7 =1 + odds (pstable exp ( aé) exp( 05)) (5)
— 0dds(Pprior ) — 0dds(Ppenany )
odds(p) = log(p(1 —p)™1) (6)

where, Pypie 18 the measured value of the bin;pyenaiy 18 the prior probability of the
bin; a is the angle between the bin normal vector 7° and the measurement normal
vector, and d is the distance between the measurement normal vector and the bin.
After multiple observations and updates, the stability of the bins belonging to
moving objects will become very low. If it is lower than a certain threshold, it will
be removed, while the stability of the bins of stationary objects will always be
higher than the threshold. Through this method, static objects and dynamic objects
can be distinguished, and dynamic objects can be eliminated.
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4. Experimental Verification
4.1. Image segmentation network dataset test

The Cityscapes data set [23] is used to train the semantic segmentation
network. This data set records image information of 50 urban roads in different
seasons and climate environments, including 5000 finely labeled images and 2000
coarse-grained labeled images. It contains rich urban environment information,
including 19 labels such as roads, buildings, vegetation and sky.

In the data set, the Deeplabv3+ and the Dv3p-RS proposed in this paper are
used to perform image semantic segmentation, and the final segmentation results
are shown in Fig. 4. Fig. 4(a) shows the original training image of the dataset; Fig.
4(b) shows the result of semantic segmentation using the Deeplabv3+ algorithm;
Fig. 4(c) shows the result of semantic segmentation using the Dv3p-RS.

(a) Original image

(b) Image segméntation effect of Deeplabv3+

(c) Image segmentation effect of Dv3p-RS
Fig. 4. Comparison of semantic segmentation results

The places marked with the red circle in the middle indicate they are different from
the segmentation results of the Deeplabv3+ algorithm. According to the semantic
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segmentation results, the Dv3p-RS algorithm can efficiently refine the boundaries
when segmenting objects such as pedestrians, vehicles, and traffic signs under
urban roads. The segmentation network has higher precision performance.

The improvement of the Dv3p-RS algorithm compared with other
mainstream semantic segmentation algorithms is quantitatively verified from the
perspectives of test accuracy and average test loss, as shown in Fig. 5. Fig. 5 shows
that Dv3p-RS has higher test accuracy and lower average loss than other algorithms,
which again verifies that the Dv3p-RS algorithm has higher accuracy and efficiency.

0.8 1
>
g 0.6
=
0
o
=
Eig 0.4 1 Deeplabvl
Deeplabv2
Deeplabv3
0.2 — Deeplabv3+
-|’ ——— Dv3p-RS
0 50 100 150 200
Iterations
(a) Test accuracy
0.030 1 ——— DNeeplahvl
Deeplabv2
- Deeplabv3
W |
;g 0.025 1 —— Deeplabv3+
&0 0.020 1
&
O .
% 0.0154 Wl
g [
= 0.0104
0.005 ~
0 50 100 150 200
Iterations
(b) Test Average Loss

Fig. 5. Dataset test results
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4.2. Urban road environment test

When collecting information in urban road environment, three original
images are randomly selected from the image sequence collected by the camera, as
shown in Fig. 6. The original image information is imported into the semantic
segmentation network, and the image segmentation results are shown in Fig. 7. The
semantic information of the segmented image is mapped to the laser point cloud
under the same time stamp, and a local point cloud map with semantic labels is
constructed, as shown in Fig. 8. The constructed local 3D semantic point cloud map
is added to the global map to realize the construction of the global semantic map,
as shown in Fig. 9.

Fig. 6. Camera irhage
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Fig. 8. Semantic point clud maia
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Fig. 9. Semantic map of urban road environment construction

In order to prove that removal of dynamic obstacles can improve the
location precision of the system, the experimental verification is carried out in an
urban road environment with denser dynamic objects, and compared with the
representative algorithms LOAM and LeGo LOAM of laser SLAM. We use the
evaluation index APE (Absolute Position Error) to evaluate the system performance.
APE is the calculation of the difference between the estimated position and the
known reference position or ground truth. The lower APE indicates that the SLAM
system can accurately estimate the absolute position of the camera or robot, while
the higher APE indicates that the positioning error is large. The results of error
comparison and distribution are shown in Fig. 10. The specific values of error
results such as root mean square and standard deviation are shown in Table 1. The
error rate of the LSI_SLAM algorithm is 0.42%, which is 1.25% and 0.95% lower
than the error rates of the LOAM and the LeGo_LOAM, respectively. This indicates
that the LSI_SLAM has higher positioning accuracy and robustness.

= [OAM.csv
|| = LeGo LOAM.csv
m— LIS_SLAM.csv

APE (m)

(a) APE error comparison chart



270 Xiaojing Chen & co.

APE (m)
@
2

0
LOAM.csv LeGo_LOAM.csv LIS_SLAM.csv
estimate

(b) APE error distribution map
Fig. 10. Autonomous positioning error of urban road environment

Table 1
Error results in urban road environment
Errors LOAM LeGo_LOAM LIS_SLAM
Root mean square error 53.62 43.81 13.40
mean error 24.75 20.61 4.67
Error rate 1.67% 1.37% 0.42%

5. Conclusions

Combined image semantic segmentation technology with laser inertial
ranging technology, a high precision SLAM system in a dynamic environment is
presented. First, the laser odometer is constructed by fusing LIDAR and IMU data
to estimate the attitude change and position displacement of the mobile robot using
the scanned laser point cloud and the inertial measurement information from the
IMU. Then the image semantic segmentation algorithm Dv3p-RS with high
precision and efficiency is proposed. The single frame point cloud is spatio-
temporal synchronized to complete semantic segmentation, and dynamic obstacles
are removed through geometric consistency detection using the surface model. The
algorithm is tested under an urban traffic environment and compared with LOAM
and LeGo_LOAM. The experiment results show that the LIS SLAM algorithm can
achieve high precision in a dynamic environment. Although this study provides
some clues for SLAM systems in dynamic environments, there are also some
limitations. Specifically, the results of image segmentation will greatly affect the
removal effect of dynamic obstacles and also increase additional operation time.
Future work will focus on improving the performance of image segmentation
models to achieve better rejection results and faster running speed.
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