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MODEL ANALYSIS FOR THE TREND OF SOME TIME
SERIES WHICH ARE DESCRIBING THE ENERGY
EFFICIENCY IN THE RAILWAY SUBSTATIONS

Alexandru STEFANESCU', Claudia POPESCU?, Mihai O. POPESCU?

The original aspects of this paper consists in the presentation of the trend
model analysis of some time series which are describing the forecast calculation and
implicit the energy efficiency in the railway substations. It will be described which
method is the most exact one and gives the best results. Those calculations are
representing a very important issue in the electrical distribution networks, because
only so energy efficiency measures can be taken. The main focus will be to find the
exact calculation method in order to forecast the energy consumption in the
substations and to optimize the energy efficiency.

Keywords: trend model analysis, time series, forecast calculation, energy
efficiency

1. Introduction

The importance of the forecast in the energy efficiency issues grew in the
last period exponential because without an exact consumption forecast it not
possible to even talk about energy efficiency and optimization. The initiator of the
privatisation process of the electricity distribution, the generalization of the
dealing on the market, new mechanisms and instruments for the market risk
management and the bigger decentralization of the dealing with electric energy
are some of the most important aspects in which the forecast studies on short term
are very important. The powerful industrial developments have brought important
changes in all areas, and this were reflected in the environment and also at the
society level. The only possibility for maintain the control on the fast and
important changes is the adaptive behaviour against all those changes. This means
in the first place to establish a future development and exact appreciation of the
influencing factors and in the second place to take the right decisions based on the
forecast behalf, in order to meet the purposes goal.

It is self-understood that the forecast process and taking decisions based
on it, are processes developed in time, in conditions of aleatoric perturbation [1-
3]. Furthermore the adaptation process must be continuous, showed in forecasts
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and rehearses by corrections which will maintain the evolution on the target. Once
that we are closer to the specific targets, some other future targets will arise which
presumes new forecast horizons and new decisions [4-5].

Following this idea, the next definition for both energy consumption
forecast and power: The energy consumption and power forecast is the scientific
activity who has the purpose to predict the energy consumption and power, based
on different data calculations and analyses, so that will be realised a obvious
concordance between estimated consumption and real consumption.

2. Establishing the mathematical model of the consumption

The methodology of forecast study elaboration for the energy consumption
has few main steps:
e measurement, selection and analyse of the initial data;
e establishing the mathematical model for the consumption;
e variance analyse which has been obtained for the forecast and establishing
the final decision.
For realising a more specific forecast we must use a large data base which
should content [6-7]:
o the values for the global energy consumption with their components also
(if it is possible), for a long enough period of time (minimum 5 years).
o the developments of the economical, demographical, climatically factors
in that certain period of time.
In this forecast stage, it is realised a first data selection and processing,
which consists in graphical outputs and than their statistical conversion [9-11].

3. The components for the mathematical model of the energy
consumption curve

The consumption curve represents the energy variation in time (or taking
into consideration another parameter) and it can be split in several components.
Forecast experience of the energy consumption shows the existence of four main
components, which establishes the consumption curve (W) (fig.1):
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Fig.1. the mathematical model components for the energy consumption curve [1,11]

1. The trend (T) represents the consumptions main compound, establishing
the energy consumption behaviour.

2. The cyclic component (C) shows the fluctuant causes with slowly effect
like the demand-supply correlation on a period over a year.

3. The seasonal component (S) it is caused by certain parameters which
presents seasonal fluctuations (especially climatic changes). This
component has a few months variation period and a similar shape for all
years.

4. The aleatoric component (g) represents the stochastic elements and it is
normally previously specified.

As a conclusion, the energy consumption is the sum of all elements
specified above:
W(t)= T(t)+C(t)+S(t)+e(t) @)

As a rule, the forecast methods are elaborated for the consumption’s
components sum. For this reason it becomes a current application and it is
necessary in the first stage of the forecast calculation to bring the model at the
standard configuration (1) using functions transformations and proper chosen
variables. There are two main criteria for choosing the proper transformation:

e viewing the consumption graphics

e the statistics indicators, which can be calculated from the consumptions
curve offers relevant information for finding the correct transformations
which distinguish the consumptions components and the way they
associate.

When the consumptions forecast is made, it is used to estimate separately
each consumptions component variation, getting the final result by summing the
components forecast results.
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4. The description of some mathematical models, often used in
forecast studies

The models described below usually reports to the consumptions curve
trend component. An exception is made by the events when the aleatoric
component is also inserted by the uncertainty factor. In fact, it might be
considered if necessary, in same way as other models and adding the uncertainty
factor. The econometric models are characterized through the mathematical
wording that results after a technical-economical analyze and followed by a
statistic check [6-11]. The models which belong to this category are:

o the autonomous extrapolation time is the only variable, chasing the energy
consumption variation trend
e conditional adapting

4.1 The extrapolative methods principle

The direct forecast methods are supposing the assumption that the
causes[1,5,6,11], the factors and the trends which establish the energy
consumption in the past are remaining the same also in the future, without
appearing any dramatic and sudden changes during the forecast which will affect
the evolution consumption.

This assumption will justify the energy consumptions evolution trend
extrapolation from the past for the future period and bring the forecast problem to
the analysis of the energy consumption variation law from the past to the future.

The mooted forecast methods are supposing the establishment of a
mathematical model likeness a one or more variables function (generally a single
variable, time) who fairly estimates the trend on the last period [11]. The
estimation of the functions coefficients is making by solving an equations system
where the coefficients are calculating means the energy consumptions from the
last period.

4.2 The estimation for the model components

It is considered an observed value set yt, of a chronological series [1,5,6,11].

Mathematical shaping can be made using an additive model:
yt =Tt +Ct +St +Rt 2)

where: Tt represents the trend (continuous component), Ct represents
cyclical component, St represents seasonal components, Rt represents the
component due to aleatory variations.
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5. Conclusions

Data estimation and forecast can be done by applying more shaping
methods. For certain phenomenon categories bounded by season’s cyclicity, the
classic model is useful and might serve as development base.

The usage of a recursive approximation procedure gave satisfactory results
so in great variations conditions it can be developed a model which takes into
account the previous data. This techniques application is possible only trough the
programming medium MatLab.

It was analysed the possibility of a optimal model for the energy
consumption trend in the railway substations. The analysed data was daily
measured, during one calendaristic year (Table 2). For this purpose there were use
different analyse methods of the stochastic deterministic component.

In order to obtain an analytical expression of the function which describes
the temporal series trend from the Table 1, they were used calculation methods
like Fourier Sum with 1 till 8 terms, polynomial regressions, classical exponential
functions, polynomial functions, sinus sum with 1 to 8 terms, Smoothing Spline,
Interpolant-Nearest neighbour, Interpolant cubic-spline and Interpolant Shape-
preserving.

In each case were calculated the validation statistic indicators: SSE, &% |
R* RMSE and the measured data graphically depicted. The graph of the residual
series was also drawn in the Figures. In this paper there are represented only the 6
most important solutions. The calculations are made for trusted intervals of 95%
and the deliverables are presented in table 1.

Table 1
Modelling type Ecuatio SSE R2 R3 RMSE
n
Fourier k=1 (Fig.1) 3.357e+007 0.4227 0.4176 313.8
Fourier k=2 (Fig.2) 3.043e+007 0.4766 0.4689 299.6
Fourier k=8 (Fig.3) 9.825e+006 0.831 0.8222 173.3
Gaussian k=2 (Fig.4) 3.585e+007 0.3835 0.3744 325.2
Gaussian k=5 (Fig.5) 1.043e+007 0.8207 0.8131 177.8
Sum of Sinus k=8 (Fig.6) 8.643e+006 0.8514 0.8407 164.1

From all the trend adjustment methods, it was chosen the analytical
method which takes in consideration all the terms of the chronological series
(measured daily values) that we have. This method fundaments its calculation on
mathematical functions of trend adjustment and general tendency estimation.
They will be set usually in consideration with the real tendency of the electricity
consumption tendency in time. This is highlighted at the beginning by the
graphical depiction. After the adjustment function is chosen, it is necessary to
estimate the regression function parameters. The analysis of the general tendency
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estimation is a problem of statistical decision which becomes necessary when
several regressions are tested. In general, the most important statistical parameters
are: standard correlation coefficient R and/or adjusted R’, the root mean square
error RMSE and the summed square of residuals SSE. It is easily seen just from
the beginning that the adjustments “Interpolant-Nearest neighbour”, “’Interpolant
Cubic-spline” and Interpolant Shape-preserving” can be wused only for
interpolation purpose or to estimate an absolute trend (in this particular case, the
residual series is zero, which determines the impossibility of the analysis of the
other 3 factors which are characterising a dynamic series).

It was calculated that for Gaussian functions with one term and with more
than 5, the estimation parameter process is not convergent. The same issue was
demonstrated by the polynomial regressions higher than power 3.

Notation:

SSE= summed square of residuals

R’= correlation coefficient

R? = adjusted correlation coefficient

RMSE= root mean square error

The calculations are made for trusted intervals of 95%

Table 2

y(t) =[ 2.0323 2.0191 2.0368 2.0480 1.9342 1.9629 1.9540 1.9627 1.9408 2.0737 2.186 2.1850
2.11022.1017 2.0813 2.0692 2.0984 2.0959 1.9836 2.0876 2.1330 2.1353 2.2134 2.2685 2.2614
2.15112.25872.2952 2.2700 2.2783 2.5423 2.3098 2.2222 2.2037 2.2540 2.3251 2.2216 2.2400
2.24552.1831 2.17882.1709 2.1761 2.1603 2.1512 2.0573 1.9661 1.8736 2.0612 2.1940 2.1453
2.16322.1290 1.9791 1.9992 2.0941 2.0824 2.1180 2.1681 2.0936 1.9415 1.9529 2.1637 2.2268
2.17862.1431 2.0836 1.8186 1.73601.8637 1.8920 1.8607 1.9058 1.8496 1.7131 1.7420 1.8984
1.9922 1.9594 1.9618 2.0025 1.8225 1.7106 1.8451 1.8689 1.9669 1.8437 1.8156 1.3311 1.4298
1.6524 1.7167 1.8932 1.8800 1.8933 1.6068 1.7287 1.7883 1.7831 1.8588 1.9280 1.7612 1.6672
1.6751 1.6635 1.8662 1.8604 1.9022 1.8435 1.6748 1.6412 1.7744 1.7683 1.9094 1.8273 1.7208
1.6324 1.6013 1.7812 1.7979 1.8327 1.8105 1.7262 1.6541 1.6207 1.7610 1.7899 1.7762
1.77711.7809 1.7249] 1.5767 1.5959 1.6482 1.7632 1.7322 1.6470 1.4662 1.3551 1.5316 1.5327
1.7137 1.7026 1.6985 1.5638 1.5676 1.5665 1.7384 1.7559 1.8328 1.7078 1.5978 1.6303 1.7045
1.8470 1.8354 1.7975 1.7750 1.6080 1.7279 1.7663 1.7918 1.7523 1.8296 1.7433 1.6463 1.6838
1.8151 1.84851.81281.8027 1.7447 1.5434 1.7683 1.9094 1.8273 1.7208 1.6324 1.6013 1.7812
1.7979 1.8327 1.8105 1.7262 1.6541 1.6207 1.7610 1.7899 1.7762 1.7771 1.7809 1.7249 2.4989
2.4859 2.43532.43952.6162 2.5473 2.5382 2.6107 2.3495 2.3958 2.6619 2.5521 2.4689 2.3310
2.43862.3617 2.4247 2.4639 2.5034 2.3616 2.6452 2.5381 2.5230 2.3396 2.3072 2.5823 2.6519
2.4862 2.5619 2.6078 2.5238 2.5994 2.5946 2.7008 2.6689 2.6883 2.5124 2.2062 2.4092 2.7727
2.6650 2.7493 2.6249 2.6079 2.5816 2.6422 2.7944 2.8334 2.5605 2.7407 2.7809 2.7014 2.6086
2.42752.5919 2.5778 2.8683 2.8489 2.6734 2.7653 2.5621 1.6756 1.5619 1.6581 1.7468 1.7164
1.7425 1.7523 1.7757 1.7204 1.6959 1.8002 1.7822 1.7963 1.8505 1.9791 1.9992 2.0941 2.0824
2.11802.1681 2.0936 1.9415 1.9529 2.1637 2.2268 2.1786 2.1431 2.0836 1.8186 1.7360 1.8637
2.5124 2.2062 2.4092 2.7727 2.6650 2.7493 2.6249 2.6079 2.5816 2.6422 2.3499 2.3822 2.2785
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2.1290 1.9791 1.9992 2.0941 2.0824 2.1180 2.1681 2.0936 1.9415 1.9529 2.1637 2.2268 2.1786

2.1431 2.0836 1.8186 1.7360 2.2315 2.6559 2
3.0270 3.1334 3.1018 2.8602 2.8311 2.8207 2

7705 2.8324 2.7943 2.7035 2.6711 2.8006 2.8712
.8806 2.9979 2.9912 2.9206 2.9038 2.8573 2.8768

2.9364 2.9996 3.0254 3.0194 2.8511 2.9811 2.9740 3.0655 3.1441]

Findings:
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