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APPLICATION OF EEMD SINGULAR VALUE ENERGY
SPECTRUM IN GEAR FAULT IDENTIFICATION

Dewei GUO?, Yun WANG?, Libin YU?, Yasong PU?, Jie JIANG?, Jie MINY,
Wenbin ZHANG!*

In view of the non-stationary and non-linear characteristics of the vibration
signal when the gear fault occurs, a fault identification method based on ensemble
empirical mode decomposition (EEMD) and singular value energy spectrum (SVES)
is proposed. Firstly, the non-stationary acceleration vibration signal of gear is
decomposed into a finite number of stationary eigenmode functions by using the
advantage of ensemble empirical mode decomposition, and each order intrinsic
mode function (IMF) component is composed of an initial eigenvector matrix. The
advantage of EEMD is used to suppress the mode aliasing. Then, singular value
decomposition (SVD) is used to solve the problem that it is difficult to determine the
number of rows and columns of SVD phase space reconstruction matrix. The
singular value energy spectrum is defined and the distribution of singular value
energy spectrum under different working conditions is obtained. Finally, because of
the good classification effect of grey similarity correlation analysis for small sample
pattern recognition, the singular value energy spectrum is used as the element to
construct the feature vector, and the working state and fault type of gear are judged
by calculating the grey similarity correlation of different vibration signals. The
results show that the proposed method can be effectively applied to the fault
diagnosis of gear system.

Keywords: EEMD; singular value energy spectrum; grey similarity correlation;
fault identification; gear.

1. Introduction

Gear transmission is the main movement and power transmission mode of
mechanical equipment, and gear failure is an important factor inducing machine
failure. How to extract gear fault feature parameters in the environment of violent
speed fluctuation is the key to failure diagnosis of rotating machinery [1-2].
Because the gearbox works in the environment of multiple vibration sources, the
background noise is very strong, so the fault signals of gearbox collected on site
are mostly nonlinear and non-stationary. The traditional Fourier analysis is only
suitable for processing stationary signals, but it can't process multi-component
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non-stationary signals with noise effectively. In the non-stationary signal analysis
methods, STFT, WVD, wavelet transform and EMD have been widely used in
gearbox fault diagnosis, but these methods have some limitations. For example,
the time-frequency resolution of STFT is limited by Heisenberg uncertainty
principle, which can not achieve the best at the same time; WVD has cross
interference terms; wavelet transform needs to set the basis function and
decomposition scale in advance, which is lack of adaptability for the studied
signal. In recent years, empirical mode decomposition (EMD) method has been
commonly utilized to analyze the non-linear and non-stationary signals of
mechanical faults due to its adaptability [3-5]. However, EMD method still has
the problem of mode aliasing, which makes it difficult to extract fault
characterstic of non-stationary signals under strong background noise. In order to
suppress the mode aliasing, Wu et al. [6-7] proposed the ensemble empirical mode
decomposition (EEMD) method based on the EMD decomposition of white noise,
adding white noise to the signal to supplement some missing scales, which can
effectively solve the mode aliasing phenomenon. EEMD is an important
improvement of EMD because it can restore the essential characteristics of
signals.

After determining the appropriate feature extraction method, how to
effectively select the fault feature parameters is very important. At present,
singular value decomposition (SVD) is mainly used in signal denoising and
periodic component extraction. It can be seen from reference [8] that the energy of
data can use the sum of the squares of all the singular values to express.
Therefore, the sequence composed of the squares of the singular values of data
can be defined as the singular value energy spectrum, so that the relationship
between the singular values and the energy distribution of the signal can be
established. Generally speaking, the simpler the signal component is, the more
concentrated the energy is in a few components; conversely, the more complex
the signal component is, the more scattered the energy is. Therefore, the singular
value energy spectrum can be used as a measure of the nonlinearity of vibration
signal.

However, the embedding time and delay constant need to be determined
artificially in the process of singular value calculation. The conventional method
Is to reconstruct the original signal into Hankel matrix [9-10] or segment the
original signal to reconstruct the phase space [8]. In this paper, we try to introduce
EEMD into singular value decomposition (SVD). Firstly, the original data is
decomposed by EEMD, a matrix is composed of the eigenmode functions
obtained from the decomposition. In this way, we can overcome the problem that
it is difficult to determine the number of rows and columns of the reconstructed
matrix in SVD phase space. Then SVD of the matrix is carried out and the
singular value energy spectrum is obtained. When the gear fault occurs, the
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energy of the same frequency band corresponding to different fault types will be
very different, so the energy distribution of the signal represented by the singular
value energy spectrum can be obtained. Finally, the grey similarity correlation
degree of the feature vector with singular value energy spectrum as the element is
calculated for fault identification and classification. The gear is tested under
normal condition, mild wear condition, moderate wear condition and broken tooth
condition. The results express the proposed way can be effectively used in
identification of typical gear failure.

2. Singular value energy spectrum based on EEMD

According to the principle of EEMD algorithm [7,11], EEMD can
decompose the discrete data x(t) (t=1,2,..., N is the observed time series, N refer
to the number of sampling points) to obtain k IMF components and a residual
component Ra. IMF components represent different frequency components from
high to low, and different frequency bands contain different fault information of
the signal. Therefore, the k IMF components can be formed into the initial
eigenvector matrix B, that is

B =[IMF, IMF,---IMF, T’ (1)

Then the SVD of matrix B is carried out, and the singular value of the

initial eigenvector matrix B is obtained

o={o,,0,L ,0,} (2)
According to reference [8], the data energy can be
K 2
E=3 o 3
2 i ©)

Because the singular value of the signal describes the fault characteristics
of the signal in each frequency band in the sampling time, the characteristics of
gear in various conditions mainly show differences of the singular values in
different frequency bands. Therefore, the size of singular value in each frequency
band can reflect the difference of various operating conditions of gears.

The SVES of the observed time series can express that

q :{quzil- ’qk} (4)
o2

In the formula, 4 = ' 5 represents the proportion of the signal energy
2. O
i=1 !

of the i component in the whole signal energy, and satisfies the requirement
k
_Zlqi =1. Therefore, the energy spectrum distribution of singular value can
I=

describe the energy distribution of signal in different fault states.
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3. Principle of gear fault identification

(1) Under the condition of normal gear system, slight wear, moderate wear
and broken gear, N samples are taken according to a certain sampling frequency,
and a total of 4N data samples are obtained.

(2) The data is decomposed by EEMD, and some IMF components are
obtained.

(3) According to equation (1), the SVD matrix is constructed for SVD, and
the SVES reflecting the fault characteristics of each sample signal is obtained by
equation (4).

(4) The mean value {; of singular value energy spectrum vector d; of N

training samples under the same state is obtained as the standard failure mode.
Among them, j =1, 2, 3 and 4 correspond to four states of gear respectively.

(5) The grey similarity correlation degree between the singular value
energy spectrum vector gx of the signal to be detected and the standard fault mode

d; in each state is calculated. The standard fault mode with the largest grey

similarity correlation degree with the sample to be identified is considered as the
fault type of the sample to be identified. The detailed process of grey similarity
correlation degree identification can be seen in the author's previous research
results [11].

4. Case analysis

To test the practical effect of the proposed way in gear fault identification,
the gear data under four different conditions of normal, mild wear, moderate wear
and broken teeth are collected. Figure 1 gives the gear test rig. We use the data
acquisition systems to measure the vibration signal. And we use Matlab software
to process the data. The rotation frequency of the tested gear is fr = 23.6Hz, the
meshing frequency is f, = 686Hz, and the fs=16384Hz [12-13]. Take 20 samples
from each conditions, and use EEMD to decompose the signal. From Figure 2 to
Figure 5, the signal is decomposed by EEMD, each can obtain 11 IMF
components and 1 residual component respectively, as shown in Fig. 2 to Fig. 5.
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Fig. 2. EEMD decomposition results of normal signal
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Fig. 3. EEMD decomposition results of mild wearing of tooth surface signal
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Fig. 5. EEMD decomposition results of tooth missing signal

We know that EEMD decomposes the non-stationary gear fault signal into
several stationary IMF components, each IMF component contains different time
characteristic scale and energy distribution. For easy comparison, Figure 6 shows
the result of adaptive decomposition of moderate wear signal of the same gear by
EMD method. In the same coordinate range, the sixth IMF component in Fig. 2
have less modal aliasing than the sixth IMF component in Fig. 6. The 7th and 8th
IMF components in Fig. 4 and Fig. 6 are similar in waveform, but their amplitude
fluctuation ranges are different, and the mode aliasing degree with small
amplitude fluctuation is obviously lighter, which fully shows that EEMD can

effectively suppress the mode aliasing phenomenon after adding white noise.
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Fig. 6. EMD decomposition results of medium-worn signal

Ten samples of each state are randomly selected as training samples.
According to the steps of fault feature extraction, the corresponding singular value
energy spectrum distribution of each state can be obtained. As shown in Figure 7.
The values in the figure are the average values of the singular value energy
spectrum of 10 training samples. After many experiments, it is found that the first
five orders of the energy spectrum vector of the singular value of the signal
account for a large proportion, which indicates that the useful signals are
concentrated in the first five singular values after the singular value
decomposition. The proportion of other singular values is small, which also
reflects that singular value decomposition can separate useful signal from noise.
Therefore, the first five orders of singular value energy spectrum vector are taken
as feature vectors for classification and recognition. From Figure 7 we know that
the singular value energy spectrum of different gear fault states has obvious
differences. Under normal conditions, the data is dominated by meshing
frequency and rotation frequency, and the energy is concentrated in few modes.
Therefore, after EEMD decomposition of the signal, the first order singular value
obtained by SVD of the matrix composed of each IMF is larger, and other orders
are smaller. With the appearance of gear fault, more frequency components
appear in the vibration signal. Besides the first order singular value, the singular
values of other orders also increase gradually. In the case of broken tooth fault,
the main vibration signals are rotation frequency, higher harmonic and meshing
frequency, but the frequency range of main vibration modes is narrower than that
of wear fault. Therefore, the energy of the first singular value is more
concentrated than that of the wear fault, and its value is between the normal state
and the wear fault. Limited to space, three samples are randomly selected from the
remaining 10 samples of each state as the samples to be tested. Table 1 shows the
singular value energy spectra of the sample to be tested.
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Table 1

Singular value energy spectrum of the first five order for gear’s four conditions

Working conditions Sample 01

]2

Js

Q4

(s

0.9232
0.9234
0.9237

normal

0.0604
0.0607
0.0598

0.0078
0.0073
0.0080

0.0032
0.0031
0.0030

0.0028
0.0025
0.0027

0.7858
0.7924
0.7897

mild wearing of tooth surface

0.1643
0.1602
0.1594

0.0227
0.0235
0.0230

0.0109
0.0093
0.0098

0.0080
0.0073
0.0081

0.7020
0.6977
0.7103

moderate wearing of tooth surface

0.2509
0.2499
0.2423

0.0207
0.0225
0.0210

0.0111
0.0139
0.0111

0.0098
0.0099
0.0090

0.7903
0.8202
0.8294

tooth missing

WNRFRPIWNRPEPIWONREPWDN P

0.1837
0.1493
0.1383

0.0153
0.0172
0.0170

0.0040
0.0052
0.0053

0.0032
0.0038
0.0040

Finally, according to equation (6), the grey similarity correlation degree
between the singular value energy spectrum of the sample to be detected and the
standard eigenvector in each state is calculated. According to the value of
similarity correlation degree, the fault identification is carried out. Table 2 shows

the results.



40 Dewei Guo, Yun Wang, Libin Yu, Yasong Pu, Jie Jiang, Jie Min, Wenbin Zhang

Table 2
Grey similarity correlation between fault sample and standard fault pattern
mild wearing of  moderate wearing of tooth
Sample normal A Result
tooth surface tooth surface missing
1 0.9580 0.6695 0.5700 0.6954 normal
2 0.9396 0.6514 0.5592 0.6937 normal
3 0.9460 0.6741 0.5381 0.7129 normal
4 0.8040 0.9652 0.8641 0.8063 mild wearing of
tooth surface
5 0.8095 0.9461 0.8133 0.8098 mild wearing of
tooth surface
6 0.8066 0.9410 0.8399 0.8045 mild wearing of
tooth surface
7 0.7758 0.8269 0.9517 0.8262  moderate wearing
of tooth surface
8 0.7702 0.8139 0.9718 0.8307 moderate wearing
of tooth surface
9 0.7790 0.8270 0.9665 0.8355 moderate wearing
of tooth surface
10 0.8102 0.6159 0.5447 0.9287 tooth missing
11 0.8178 0.7080 0.6633 0.9116 tooth missing
12 0.8010 0.7336 0.6747 0.8929 tooth missing

Table 2 shows that grey similarity correlation degree has achieved ideal
effect on gear fault pattern recognition, which shows that the grey similarity
correlation degree can accurately classify small sample fault recognition
problems. The correct classification results can also be obtained by identifying the
remaining 28 samples.

In order to test the advantages of grey similarity correlation analysis in
small sample classification and recognition, the recognition performance of grey
similarity correlation analysis and BP neural network is compared. Table 3 shows
the results. It can be seen that in the case of small samples, the grey similarity
correlation analysis has good classification and recognition ability.

Table 3
Recogniton performance comparison of BP neural network and grey similarity correlation
Recognition performance %

Recognition Training Test mild moderate tooth
method sample sample. normal  wearing of  wearing of o
missing
tooth surface tooth surface
BP neural network 10 10 100 70 80 100
Grey similarity 10 10 100 100 100 100

correlation
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5. Conclusions

(1) EEMD method is an adaptive signal processing method. By adding
white noise sequence, the mode aliasing phenomenon in EMD decomposition is
effectively solved, which is more conducive to signal feature extraction.

(2) Each IMF construction matrix after EEMD decomposition is
decomposed by singular value decomposition. This can solve the problem that the
number of rows and columns of SVD phase space reconstruction matrix is
difficult to determine.

(3) The singular value of the signal is closely related to the energy of the
signal. Each IMF obtained by EEMD contains frequency information of different
frequency bands. Therefore, it is reasonable and feasible to classify different fault
types by calculating the singular value energy spectrum distribution of each IMF.

(4) The method of grey similarity correlation makes up for the deficiency
of traditional grey correlation method, eliminates the influence of the value of
resolution coefficient, and can truly reflect the similarity between data series.

(5) Because EEMD singular value energy spectrum reflects the change of
signal energy. To describe this change quantitatively, information entropy theory
can be introduced to construct singular value entropy, and the gear fault types can
be classified and identified by different singular value entropy.
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