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A NONLINEAR SECOND-ORDER HYPERBOLIC DIFFUSION 
SCHEME FOR IMAGE NOISE REDUCTION 

Tudor BARBU1 

This article describes a novel nonlinear second-order PDE model for image 
filtering. The proposed denoising model is based on a second-order hyperbolic 
equation and provides effective detail-preserving image noise removal results. The 
well-posedness of this nonlinear PDE scheme is then investigated in this paper. A 
finite-difference based explicit numerical approximation scheme is constructed next 
for our continuous model. Our successfully performed denoising experiments are 
then described. 
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1. Introduction 

A high number of nonlinear partial differential equation (PDE) based 
models have been introduced in the last quarter of century to tackle some 
traditionally engineering problems, such as image denoising and restoration. They 
have important advantages over the conventional image filters and linear PDE-
based approaches [1], such as overcoming the blurring effect, preserving edges 
and other image details, and having the localization property.  

The vast majority of the nonlinear PDE schemes for image enhancement 
have a parabolic character [2]. We could mention here the anisotropic diffusion 
models inspired by the well-known Perona-Malik denoising scheme [2,3] and the 
variational PDE algorithms derived from the influential TV Denoising model [2, 
4-6]. We also provided numerous nonlinear PDE-based image restoration 
approaches in the past, which use parabolic diffusion equations [7-9]. 
Unfortunately, the second-order nonlinear parabolic generate the undesired 
staircasing, or blocky, effect [10].  

Numerous nonlinear diffusion-based denoising techniques that alleviate 
this blocky effect have been proposed in recent years. The nonlinear fourth-order 
PDE-based models, such as those inspired by You-Kaveh [11] or LLT [12] 
schemes, remove successfully the staircasing effect [13]. We also developed some 
effective fourth-order diffusion-based techniques that provide satisfactory 
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denoising results [14]. The disadvantage of the most 4th-order PDE-based 
smoothing methods is that they are usually affected by other unintended effects, 
like blurring or speckle noise. 

So, we consider hyperbolic diffusion-based denoising solutions that would 
overcome these undesired effects which destroy the image details. We developed 
linear second-order hyperbolic PDE models for image denoising, as modified 
Gaussian kernels, which were disseminated in some published papers [15] or 
papers being under consideration.  

Our linear hyperbolic PDE-based techniques provide satisfactory noise 
reduction results, execute very fast, and also have the localization property [16], 
which means the solution is propagating with finite speed. Unfortunately they are 
still affected by blurring effect, therefore we consider their improvement in that 
direction. Thus, we can non-linearize the linear hyperbolic diffusion methods to 
obtain that improvement. 

Such a nonlinear second-order hyperbolic PDE-based image noise removal 
technique is proposed in this article. Our novel PDE model is described in the 
next section, and a rigorous mathematical treatment on its well-posedness is 
performed in the third section. An explicit numerical approximation scheme based 
on the finite-difference method is proposed in the fourth section. Our successfully 
image denoising experiments and the performed method comparison are discussed 
in the fifth section. Our paper finalizes with a conclusions section and a list of 
references.    

2. Second-order hyperbolic PDE-based denoising model 

In this section we consider a PDE-based image noise reduction scheme 
that uses a second-order nonlinear hyperbolic diffusion model. The proposed PDE 
model is composed of a 2nd-order hyperbolic equation and several boundaries 
conditions: 
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where the parameters ( ]1,0, ∈ηγ , ( ]4.0,0∈α , 2R⊆Ω  and 0u  represents 
the initial noisy image.  
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The edge-stopping function uξ  of this PDE model must be properly 
modeled. We construct it in the following form that depends on the current state 
of the image u through a diffusivity conductance parameter modeled as a function, 
k (u): 
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where ( ]1,17∈β , and the function k ( ) is modeled by using some statistics of 
the gradient of the evolving image, as follows: 

 
( ) )()( uorduuk ⋅−∇⋅= νμε                                            (3) 

 
where ( ]2,3∈ε , ( )0,1∈ν , { }Nuord ,...,1)( ∈  returns the order of the current 
state of u in the evolving image sequence, and ( )μ  represents the averaging 
(mean) operator. 

The mathematical model given by (1) – (3) is constructed as an improved 
and nonlinear version of a past linear hyperbolic PDE model for image denoising 
proposed by us [15]. That linear PDE-based approach reduces successfully the 
Gaussian noise but cannot overcome completely the blurring effect. Given its 
nonlinear character, achieved by replacing a constant with a function of gradient 
magnitude ( )uu ∇ξ , the PDE-based technique described here would provide a 
much better deblurring.  

A mathematical treatment of this second-order hyperbolic PDE model is 
provided in the next section. The proper selection of function uξ  and the well-
posedness of this nonlinear PDE scheme will be rigorously investigated.   

 

3. Mathematical investigation of the hyperbolic scheme 

First, we analyze if the diffusivity function uξ provided by (2) is properly 
modeled for an effective restoration [2,3,8]. Thus, the considered function is 
positive, since 0,0)( ≥∀≥ ssuξ . Also, it is monotonically decreasing, because 
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This function converges to 0, because ( ) 0lim =
∞→

sus
ξ . So, uξ  

represents a good edge-stopping function for the PDE model (1), leading to 
satisfactory image denoising results. 

The well-posedness of our hyperbolic model is another problem that has to 
be investigated. Thus, the PDE given by (1) is equivalent to the next equation:     
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where ( ) ( ) .0,'~

≥∀= sss uu ξξ  
The PDE model (4) accepts solutions if some certain conditions are met. 

Thus, we must have ( ) 0~ '. ≥suξ  that leads to ( ) 0≥suξ , a condition that is 
satisfied. Also, uξ must satisfy a bounding condition, that is  
 

( ) ( ) 0,1:0 2 ≥∀++≤>∃ sssKsK uξ                       (5) 
  
If this condition is also satisfied, then there is a solution to (1) in some generalized 
sense, according to [17]. The relation given by (5) is equivalent to  
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such a K value exists for any s > 0, therefore (5) holds. In fact, in [17,18] it is 
proved the existence and uniqueness of a solution u = u (t, x), such that: 
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where 1

0H  represents the standard Sobolev space [18]. Our nonlinear hyperbolic 
diffusion-based model has also the localization property [16], its unique and weak 
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solution propagating with finite speed. Besides the past linear model, the insights 
of our PDE denoising scheme draw also from this localization property. Because 
the PDE solution propagates with finite speed, the evolving image will remain 
quite close to the initial one. This solution is numerically approximated by the 
consistent PDE discretization scheme proposed in the following section. 

4. Numerical approximation algorithm 

We develop a consistent numerical approximation algorithm for our 
continuous model given by (1) - (3), which converges fast to the unique solution 
of its nonlinear second-order hyperbolic diffusion equation. The proposed 
numerical discretization scheme is based on the well-known finite-difference 
method [19]. Thus, we use a space grid size of h and a time step tΔ . We quantize 
the space and time coordinates as follows:  
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The main equation of this nonlinear hyperbolic PDE model, 
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The equation (8) is then discretized, by using the finite differences [19], as 

following: 
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           We may consider the parameter values h = 1 and 1=Δt , therefore (9) 
leads to the following explicit numerical approximation scheme: 
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by applying (2) and (3), ( )jiujiu ,),( 0
0 =  and n > 0. 

Our iterative filtering scheme receives an initial [ ]JI ×  degraded image as 
input and applies repeatedly the procedure given by (10), for each { }Nn ,...,1∈ . 
This numerical approximation algorithm is consistent to the PDE model provided 
by (1), converging quite fast to an approximation of its solution, representing the 
optimal image denoising, 1+Nu . 

5. Experiments 

The proposed nonlinear hyperbolic PDE-based noise removal approach 
was tested on numerous degraded images. The USC-SIPI database, containing 4 
volumes, was the main collection used in our experiments. These tests were 
performed on Volume 2 (Aerials) of USC-SIPI, composed of 38 images of 
[ ]512251 ×  and [ ]10242410 ×  sizes, Volume 3 (Miscellaneous), containing 44 
images of [ ]256256× , [ ]512251 ×  and [ ]10242410 ×  sizes, and Volume 4 
(Sequences), containing 69 images of [ ]256256×  and [ ]512251 ×  sizes. The images 
were corrupted with various levels of Gaussian noise, which were generated by 
considering various values for the μ  (mean) and 2σ  (variance) parameters.  

Our denoising model not only removes successfully the image noise, but 
also preserves the important details, such as the image boundaries. It also 
overcomes the undesired image effects, like image blurring effect, staircase 
(blocky) effect and speckle noise. We have identified on a trial and error basis the 
following set of PDE model’s parameter values that provide optimal image 
denoising results: 

 
19 1,  1,t0.2,0.8,0.12,.2,15,.12.3, ===Δ====== Nhνεαβηγ  (11) 

             
One can observe that the number of iterations N is quite low, which means 

the proposed filtering scheme runs fast enough. The execution time is around 0.5 
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seconds. Our filtering results are influenced by the power of noise. If the Gaussian 
noise parameters, μ  and σ , are increased, the image will degrade much more 
and the denoising process will require a higher number of iterations, N, which 
means a greater time cost. The restoration result is also influenced by this number 
of iterations. An N value exceeding the number of steps related to the optimal 
denoising would produce a further degradation of the evolving image. 

The performance of our image enhancement method was assessed by 
using measures like Structural Similarity Image Metric (SSIM), Peak Signal-to-
Noise Ratio (PSNR) and Norm of Error (NE) Image. The performed method 
comparisons show that our nonlinear hyperbolic diffusion-based technique 
outperforms both the classic and PDE-based image enhancement approaches, 
producing higher SSIM values than those filtering solutions. This denoising 
method provides a considerably better image noise removal than well-known 2D 
conventional filters [1], such as Average, 2D Gaussian, and Wiener filters. Unlike 
these classic denoising schemes, the proposed hyperbolic model overcomes also 
the image blurring effect, preserving successfully the essential features, like image 
edges. Our nonlinear diffusion technique outperforms also the linear PDE-based 
denoising algorithms [15], providing an improved denoising and avoiding the 
undesired effects. We found it performs slighty better than the LLMMSE filter 
developed by Lee in 1980 [20]. 

Many state-of-the-art nonlinear PDE-based noise removal methods are 
also outperformed by our denoising scheme. This 2nd - order hyperbolic diffusion-
based model achieves much better denoising results than some popular second-
order anisotropic diffusion-based schemes, such as Perona-Malik model [3], TV 
Denoising [4] and Weickert diffusion [2]. Also, it executes faster than these 
methods and, unlike them, do not generate staircasing effect [10]. Also, the 
described second-order PDE noise reduction technique outperforms some 
influential nonlinear fourth-order diffusion based techniques, like You-Kaveh 
scheme [11] or LLT [12]. The hyperbolic diffusion model removes successfully 
not only the blurring effect, but also the unintended speckle noise, that are often 
generated by the fourth-order PDE denoising models. Our iterative scheme runs 
much faster than those corresponding to the 4th-order PDE-based approaches. 
Method comparisons and restoration results are described in the next table and 
figure. As one can see in Table 1, the proposed model gets higher SSIM values 
than conventional filters, second-order and fourth-order PDE-based algorithms, 
and even the LLMMSE – Lee filter with a [ ]33 ×  noise estimation window. 
  

Table 1 
The SSIM values corresponding to several image filtering techniques 

Filter This 
model 

Avg. 2D 
Gaussian 

LLMMSE 
filter 

Perona-
Malik 

TV 
Denoising 

You-
Kaveh 

SSIM 0.6342 0.5625 0.5498 0.6239 0.6183 0.5857 0.6014 
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Fig. 1. Gaussian noise removal provided by various filtering techniques 

 
The image enhancement results produced by these denoising techniques 

are displayed in Fig. 1. Original [ ]512251 ×  Lena image is displayed in (a), while 
the image affected by Gaussian noise with parameters μ  = 0.21 and 2σ  = 0.02 is 
displayed in (b). The image denoising in (c), provided by our nonlinear PDE 
model looks better than the smoothing achieved by the [ ]33 ×  2D filters from (d) 
- (f) (Average, Gaussian, LLMMSE), Perona-Malik scheme (g), TV denoising (h) 
and You-Kaveh algorithm (i). One can also see that the unintended image effects, 
which are still present in the figures (d) - (i), are completely removed in the (c) 
figure.  
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6. Conclusions 

We have proposed a novel nonlinear hyperbolic PDE-based image noise 
removal technique in this article. The effective second-order hyperbolic diffusion 
model proposed here may be viewed as a nonlinear and improved variant of our 
past linear PDE denoising scheme [15].  
            Also, besides the linear PDE methods, our approach described here 
outperforms the most popular classic two-dimensional filters [1] and both second-
order and fourth-order nonlinear diffusion-based methods [2-14]. It removes a 
greater amount of Gaussian noise and preserves better the boundaries and other 
image details. Our hyperbolic technique overcomes the blurring effect, generated 
by the conventional filters and fourth-order PDE-based models, and reduces 
considerably the staircasing effect that affects the most anisotropic diffusion 
models [10]. It also avoids successfully the speckle noise, often generated by the 
nonlinear 4th - order diffusion schemes [11-13].  
            A mathematical treatment has been also provided for this proposed PDE 
denoising scheme. The proper modeling of its diffusivity function and its well-
posedness is investigated in this paper. We have also constructed a robust and 
fast-converging finite-difference based numerical discretization scheme that is 
consistent to our nonlinear PDE model.  
            We also intend to further improve this nonlinear hyperbolic PDE image 
noise removal scheme. Thus, we are going to investigate other diffusivity 
functions for this model. We also consider transforming it into a possible more 
performant fourth-order PDE denoising scheme, as part of our future research in 
the image enhancement domain.  
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