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Existence results of three weak solutions for a Navier doubly eigenvalue bound-
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1. Introduction and Preliminaries

In this paper we are interested in ensuring the existence of at least three weak solutions

for the following Navier doubly eigenvalue boundary value system{
∆(|∆ui|pi−2∆ui) = λFui(x, u1, . . . , un) + µGui(x, u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω,
(1)

for 1 ≤ i ≤ n, where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a boundary

∂Ω of class C1, λ and µ are positive parameters and pi > max{1, N/2} for 1 ≤ i ≤ n. Here,

F,G : Ω×Rn → R are measurable functions with respect to x ∈ Ω for every (t1, . . . , tn) ∈ Rn

and are C1 with respect to (t1, . . . , tn) ∈ Rn for a.e. x ∈ Ω, and Fui and Gui denotes the

partial derivative of F and G with respect to ui, respectively.

Moreover, F and G satisfy the following additional assumptions:

(F1) for every M > 0 and every 1 ≤ i ≤ n,

sup
|(t1,...,tn)|≤M

|Fui(x, t1, . . . , tn)| ∈ L1(Ω).

(F2) F (x, 0, . . . , 0) = 0 for a.e. x ∈ Ω.

(G) for every M > 0 and every 1 ≤ i ≤ n,

sup
|(t1,...,tn)|≤M

|Gui(x, t1, . . . , tn)| ∈ L1(Ω).

Here and in what follows, we let X be the Cartesian product of the n Sobolev spaces

W 2,pi(Ω) ∩W 1,pi

0 (Ω) for 1 ≤ i ≤ n, i.e.,

X :=
(
W 2,p1(Ω) ∩W 1,p1

0 (Ω)
)
× · · · ×

(
W 2,pn(Ω) ∩W 1,pn

0 (Ω)
)
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equipped with the norm

∥u∥ :=

n∑
i=1

∥ui∥pi , u = (u1, u2, . . . , un),

where for 1 ≤ i ≤ n,

∥ui∥pi :=

[ ∫
Ω

|∆ui(x)|pidx

] 1
pi

.

Let us recall that for any positive integer k and any 1 ≤ i ≤ n, W 1,pi

0 (Ω) is compactly

embedded in C0(Ω) if pi > N/k, and that for 1 ≤ i ≤ n, W 2,pi(Ω) is compactly embedded

in C0(Ω) if pi > max{1, N/2} (see [22, page 1026]). So, if pi > max{1, N/2} for 1 ≤ i ≤ n,

the embedding X ↪→ (C0(Ω))n is compact.

Let

c := max

{
sup

ui∈W 2,pi (Ω)∩W
1,pi
0 (Ω)\{0}

maxx∈Ω |ui(x)|pi

∥ui∥pi
pi

: for 1 ≤ i ≤ n

}
. (2)

In the case pi > max{1, N/2} for 1 ≤ i ≤ n, since the embedding X ↪→ (C0(Ω))n is compact,

one has c < +∞.

As usual, a weak solution of system (1) is any u = (u1, u2, . . . , un) ∈ X such that∫
Ω

n∑
i=1

|∆ui(x)|pi−2∆ui(x)∆vi(x)dx− λ

∫
Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx

−µ

∫
Ω

n∑
i=1

Gui(x, u1(x), . . . , un(x))vi(x)dx = 0

for every v = (v1, v2, . . . , vn) ∈ X (see [17, 21]).

Moreover, let

D := sup
x∈Ω

dist(x, ∂Ω).

Simple calculations show that there is x0 ∈ Ω such that B(x0, D) ⊆ Ω, where B(x, r) stands

for the open ball in RN of radius r centered at x.

Put

σi :=
144(N + 2)2

D2

(
cDNπN/2

(
2N − 1

)
2NΓ(1 +N/2)

)1/pi

, (3)

κi :=


4N
D2

(
cDNπN/2(3N−2N )

22NΓ(1+N/2)

)1/pi

, N < 4,

16
D2

(
cDNπN/2(3N−2N )

22NΓ(1+N/2)

)1/pi

, N ≥ 4,

(4)

for 1 ≤ i ≤ n, where Γ denotes the Gamma function defined by

Γ(t) :=

∫ +∞

0

zt−1e−zdz

for all t > 0.

There seems to be increasing interest in studying fourth-order boundary value prob-

lems, because the static form change of beam or the sport of rigid body can be described

by a fourth-order equation, and specially a model to study travelling waves in suspension

bridges can be furnished by the fourth-order equation of nonlinearity, so it is important to

Physics (see [14]). More general nonlinear fourth-order elliptic boundary value problems
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have been studied in recent years. Several results are known concerning the existence of

multiple solutions for fourth-order boundary value problems, and we refer the reader to

[2, 3, 4, 5, 6, 8, 11, 12, 15, 16] and references therein.

For example in [12], based on a recent three critical points theorem, the authors proved

the existence of at least three weak solutions for the following (p1, . . . , pn)-biharmonic system

with Navier boundary condition{
∆(|∆ui|pi−2∆ui) = λFui(x, u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω,
(5)

for 1 ≤ i ≤ n, where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a boundary

∂Ω of class C1, λ is a positive parameter, pi > max{1, N/2} for 1 ≤ i ≤ n, F : Ω×Rn → R
is a measurable function with respect to x ∈ Ω for every (t1, . . . , tn) ∈ Rn and is C1 with

respect to (t1, . . . , tn) ∈ Rn for a.e. x ∈ Ω, satisfying the condition

sup
|(t1,...,tn)|≤M

|Fui(x, t1, . . . , tn)| ∈ L1(Ω)

for every M > 0 and every 1 ≤ i ≤ n, and F (x, 0, . . . , 0) = 0 for a.e. x ∈ Ω.

In [15], Li and Tang considered the following p-biharmonic equation with Navier

boundary condition {
∆(|∆u|p−2∆u) = λf(x, u) + µg(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(6)

where λ, µ ∈ [0,+∞[ , Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a boundary

∂Ω of class C1, p > max{1, N/2}, f : Ω×R → R is a continuous function, and g : Ω×R → R
is a Carathéodory function. Using the modified three critical points theorem of Ricceri [18],

they established the existence of an open interval Λ ⊆ [0,+∞[ and a positive real number

ρ such that, for each λ ∈ Λ, problem (6) admits at least three weak solutions whose norms

in W 2,p(Ω) ∩W 1,p
0 (Ω) are less than ρ. Also in [16], the authors unified and generalized Li

and Tang’s problem and established the existence of at least three solutions to a Navier

boundary problem involving the (p, q)-biharmonic systems.

The goal of this work is to establish some new criteria for system (1) to have at

least three weak solutions in X, by means of a very recent abstract critical point result of

Ricceri [19]. We first recall the following three critical points theorem that follows from a

combination of [7, Theorem 3.6] and [19, Theorem 1]. We also refer the reader to the recent

papers [1] and [10] where an analogous variational approach has been developed on studying

elliptic problems.

Lemma 1.1. Let X be a reflexive real Banach space; Φ : X → R be a continuously Gâteaux

differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux deriv-

ative admits a continuous inverse on X∗, bounded on bounded subsets of X; Ψ : X → R
a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such

that

Φ(0) = Ψ(0) = 0.

Assume that there exists r > 0 and x ∈ X, with r < Φ(x), such that

(a1)
supΦ(x)≤r Ψ(x)

r < Ψ(x)
Φ(x) ;

(a2) for each λ ∈ Λr :=
]
Φ(x)
Ψ(x) ,

r
supΦ(x)≤r Ψ(x)

[
, the functional Φ− λΨ is coercive.
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Then, for each compact interval [a, b] ⊆ Λr, there exists ρ > 0 with the following property:

for every λ ∈ [a, b] and every C1 functional J : X → R with compact derivative, there exists

δ > 0 such that, for each µ ∈ [0, δ], the equation

Φ′(x)− λΨ′(x)− µJ ′(x) = 0

has at least three solutions in X whose norms are less than ρ.

For other basic notations and definitions, we refer the reader to [9, 13, 22].

2. Main results

In the present section we discuss the existence of multiple solutions for system (1).

For any γ > 0, we denote by K(γ) the set{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti|pi

pi
≤ γ

}
.

This set will be used in some of our hypotheses with appropriate choices of γ.

We formulate our main result as follows.

Theorem 2.1. Assume that there exist two positive constants θ and δ with
∑n

i=1
(δκi)

pi

pi
>

θ∏n
i=1 pi

such that

(b1) F (x, t1, . . . , tn) ≥ 0 for a.e. x ∈ Ω\B(x0, D/2) and all ti ∈ [0, δ] for 1 ≤ i ≤ n;

(b2)
θ∏n

i=1 pi

∫
B(x0,D/2)

F (x, δ, . . . , δ)dx

−m(Ω)

n∑
i=1

(δσi)
pi

pi
sup

(x,t1,...,tn)∈Ω×K( θ∏n
i=1

pi
)

F (x, t1, . . . , tn) > 0,

where m(Ω) is the Lebesgue measure of the set Ω;
(b3)

lim sup
(|t1|,...,|tn|)→(+∞,...,+∞)

F (x, t1, . . . , tn)∑n
i=1

|ti|pi
pi

<

(∏n
i=1 pi

)
sup

(x,t1,...,tn)∈Ω×K( θ∏n
i=1

pi
)

F (x, t1, . . . , tn)

θ

uniformly with respect to x ∈ Ω.

Then, setting

Λ :=

] ∑n
i=1

(δσi)
pi

pi

c
∫
B(x0,D/2) F (x, δ, . . . , δ)dx

,
θ(

c
∏n

i=1 pi
)
m(Ω) sup

(x,t1,...,tn)∈Ω×K( θ∏n
i=1

pi
)

F (x, t1, . . . , tn)

[
,

for each compact interval [a, b] ⊆ Λ, there exists ρ > 0 with the following property: for every

λ ∈ [a, b], there exists δ > 0 such that, for each µ ∈ [0, δ], system (1) admits at least three

weak solutions in X whose norms are less than ρ.

Proof. Our aim is to apply Lemma 1.1 to our problem. To this end, for each u = (u1, . . . , un) ∈
X, we let the functionals Φ,Ψ : X → R be defined by

Φ(u) :=

n∑
i=1

∥ui∥pi
pi

pi
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and

Ψ(u) :=

∫
Ω

F (x, u1(x), . . . , un(x))dx.

Clearly, Φ is bounded on each bounded subset of X and it is known that Φ and Ψ are well

defined and continuously Gâteaux differentiable functionals whose derivatives at the point

u = (u1, . . . , un) ∈ X are the functionals Φ′(u) and Ψ′(u) given by

Φ′(u)(v) =

∫
Ω

n∑
i=1

|∆ui(x)|pi−2∆ui(x)∆vi(x)dx

(
since ∇( 1p |∆u|p) = φ(∆u), where φ(∆u) :=

{
|∆u|p−2∆u, ∇u ̸= 0,

0, ∇u = 0.

)
and

Ψ′(u)(v) =

∫
Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx

for every v = (v1, . . . , vn) ∈ X, as well as Φ is sequentially weakly lower semicontinuous

(see Proposition 25.20 of [22]). Also, Φ′ : X → X∗ is a uniformly monotone operator in X

(for more details, see (2.2) of [20]), and since Φ′ is coercive and hemicontinuous in X, by

applying Minty-Browder theorem (Theorem 26.A of [22]), Φ′ admits a continuous inverse

on X∗.

We claim that Ψ′ : X → X∗ is a compact operator. To this end, it is enough

to show that Ψ′ is strongly continuous on X. For this, for fixed (u1, . . . , un) ∈ X, let

(u1m, . . . , unm) → (u1, . . . , un) weakly in X as m → +∞. Then we have (u1m, . . . , unm) con-

verges uniformly to (u1, . . . , un) on Ω as m → +∞ (see [22]). Since F (x, ·, . . . , ·) is C1 in Rn

for every x ∈ Ω, the derivatives of F are continuous in Rn for every x ∈ Ω, so for 1 ≤ i ≤ n,

Fui(x, u1m, . . . , unm) → Fui(x, u1, . . . , un) strongly as m → +∞. By the Lebesgue domi-

nated convergence theorem, Ψ′(u1m, . . . , unm) → Ψ′(u1, . . . , un) strongly asm → +∞. Thus

we proved that Ψ′ is strongly continuous on X. Now, let (u1m, . . . , unm) be a bounded se-

quence inX. SinceX is reflexive, there exists a subsequence, still denoted by (u1m, . . . , unm),

such that

(u1m, . . . , unm) → (u1, . . . , un) weakly in X as m → +∞. Hence,

Ψ′(u1m, . . . , unm) → Ψ′(u1, . . . , un) strongly as m → +∞. Thus, Ψ′ is compact and the

claim is true.

Moreover, we have

Φ(0) = Ψ(0) = 0.

Next, put w(x) = (w1(x), . . . , wn(x)) such that for 1 ≤ i ≤ n,

wi(x) :=


0 x ∈ Ω \B(x0, D),
16δ

(
3(l4−D4)−6D(l3−D3)+3D2(l2−D2)

)
3D4 x ∈ B(x0, D) \B(x0, D/2),

δ x ∈ B(x0, D/2),

where l := dist(x, x0) =
√∑N

j=1(xj − x0
j )

2. We have

∂wi(x)

∂xj
=

{
0 x ∈ Ω \B(x0, D) ∪B(x0, D/2),
64δ
D4

(
l2(xj − x0

j )−
3D
2
l(xj − x0

j ) +
D2

2
(xj − x0

j )
)

x ∈ B(x0, D) \B(x0, D/2),

∂2wi(x)

∂x2
j

=

{
0 x ∈ Ω \B(x0, D) ∪B(x0, D/2),
64δ
D4

(
D2

2
+ (2l− 3D

2
)(xj − x0

j )
2/l− ( 3D

2
− l)l

)
x ∈ B(x0, D) \B(x0, D/2),
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N∑
j=1

∂2wi(x)

∂x2
j

=

{
0 x ∈ Ω \B(x0, D) ∪B(x0, D/2),
64δ
D4

(
(N + 2)l2 − 3D

2
(N + 1)l+ D2

2
N)
)

x ∈ B(x0, D) \B(x0, D/2).

Clearly w = (w1, . . . , wn) ∈ X and, in particular, one has for 1 ≤ i ≤ n,

∥wi∥pi
pi

=
(64δ)pi2πN/2

D4piΓ(N/2)

∫ D

D/2

|(N + 2)r2 − 3D

2
(N + 1)r +

D2

2
N |pirN−1dr. (7)

Here, we obtain from (3), (4) and (7) that for 1 ≤ i ≤ n,

(δκi)
pi

c
< ∥wi∥pi

pi
<

(δσi)
pi

c
. (8)

Put r := θ
c
∏n

i=1 pi
. By the assumption

∑n
i=1

(δκi)
pi

pi
> θ∏n

i=1 pi
, it follows from (8) that

Φ(w) > r.
Since 0 ≤ wi(x) ≤ δ for each x ∈ Ω for 1 ≤ i ≤ n, condition (b1) ensures that

∫
Ω\B(x0,D)

F (x,w1(x), . . . , wn(x))dx+

∫
B(x0,D)\B(x0,D/2)

F (x,w1(x), . . . , wn(x))dx ≥ 0.

Hence ∫
Ω

F (x,w1(x), . . . , wn(x))dx ≥
∫
B(x0,D/2)

F (x, δ, . . . , δ)dx.

Now, owing to assumption (b2) and (8), we have

m(Ω) sup
(x,t1,...,tn)∈Ω×K( θ∏n

i=1
pi

)

F (x, t1, . . . , tn)

<
θ(∑n

i=1
(δσi)pi

pi

)(∏n
i=1 pi

) ∫
B(x0,D/2)

F (x, δ, . . . , δ)dx

<
θ(∑n

i=1

∥wi∥
pi
pi

pi

)(
c
∏n

i=1 pi

) ∫
B(x0,D/2)

F (x, δ, . . . , δ)dx

≤ θ

c

∫
Ω
F (x,w1(x), . . . , wn(x))dx∑n
i=1

(∏n
j=1,j ̸=i pj

)
∥wi∥pi

pi

. (9)

Taking into account that for each ui ∈ W 2,pi(Ω) ∩W 1,pi

0 (Ω),

sup
x∈Ω

|ui(x)|pi ≤ c∥ui∥pi
pi

for 1 ≤ i ≤ n (see (2)), we have that

sup
x∈Ω

n∑
i=1

|ui(x)|pi

pi
≤ c

n∑
i=1

∥ui∥pi
pi

pi
= cΦ(u) (10)
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for every u = (u1, . . . , un) ∈ X, and taking into account (9) and (10), it follows that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
Φ(u)≤r

∫
Ω

F (x, u1(x), . . . , un(x))dx

≤ m(Ω) sup
(x,t1,...,tn)∈Ω×K( θ∏n

i=1
pi

)

F (x, t1, . . . , tn)

<
θ

c

∫
Ω
F (x,w1(x), . . . , wn(x))dx∑n
i=1

(∏n
j=1,j ̸=i pj

)
∥wi∥pi

pi

=
θ

c
∏n

i=1 pi

∫
Ω
F (x,w1(x), . . . , wn(x))dx∑n

i=1

∥wi∥
pi
pi

pi

= r
Ψ(w)

Φ(w)
.

Therefore, assumption (a1) of Lemma 1.1 is satisfied.

Now, for fixed λ ∈ Λ, due to (b3), there exist two constants γ, ϑ ∈ R with

0 < γ <

(∏n
i=1 pi

)
sup

(x,t1,...,tn)∈Ω×K( θ∏n
i=1

pi
)

F (x, t1, . . . , tn)

θ

such that

F (x, t1, . . . , tn) ≤ γ

( n∑
i=1

|ti|pi

pi

)
+ ϑ

for all x ∈ Ω and for all (t1, . . . , tn) ∈ Rn. Fix u = (u1, . . . , un) ∈ X. Then

F (x, u1(x), . . . , un(x)) ≤ γ

( n∑
i=1

|ui(x)|pi

pi

)
+ ϑ (11)

for all x ∈ Ω. So, for any fixed λ ∈ Λ, from (10) and (11) we have

Φ(u)− λΨ(u) =
n∑

i=1

∥ui∥pipi
pi

− λ

∫
Ω
F (x, u1(x), . . . , un(x))dx

≥
n∑

i=1

∥ui∥pipi
pi

− λγ

(∫
Ω

n∑
i=1

|ui(x)|pi
pi

dx

)
− λϑm(Ω)

≥
n∑

i=1

∥ui∥pipi
pi

− λγ

(
cm(Ω)

n∑
i=1

∥ui∥pipi
pi

)
− λϑm(Ω)

≥
(
1−

γθ(∏n
i=1 pi

)
sup

(x,t1,...,tn)∈Ω×K( θ∏n
i=1

pi
)

F (x, t1, . . . , tn)

)
n∑

i=1

∥ui∥pipi
pi

−
ϑθ(

c
∏n

i=1 pi
)

sup
(x,t1,...,tn)∈Ω×K( θ∏n

i=1
pi

)

F (x, t1, . . . , tn)
,

and thus

lim
∥u∥→+∞

(
Φ(u)− λΨ(u)

)
= +∞,

which means that the functional Φ − λΨ is coercive. Then, also condition (a2) of Lemma

1.1 holds.

In addition, since G : Ω×Rn → R is a measurable function with respect to x ∈ Ω for

every (t1, . . . , tn) ∈ Rn and is C1 with respect to (t1, . . . , tn) ∈ Rn for a.e. x ∈ Ω, satisfying
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condition (G), the functional

J(u) =

∫
Ω

G(x, u1(x), . . . , un(x))dx

is well defined and continuously Gâteaux differentiable on X with a compact derivative, and

J ′(u)(v) =

∫
Ω

n∑
i=1

Gui(x, u1(x), . . . , un(x))vi(x)dx

for all u = (u1, . . . , un), v = (v1, . . . , vn) ∈ X. Thus, all the hypotheses of Lemma 1.1 are

satisfied. Also note that the solutions of the equation

Φ′(u)− λΨ′(u)− µJ ′(u) = 0

are exactly the weak solutions of (1). So, the conclusion follows from Lemma 1.1. �

We now point out the following special case of Theorem 2.1 when F does not depend

on x ∈ Ω.

Theorem 2.2. Let F : Rn → R be a C1-function and assume that there exist two positive

constants θ and δ with
∑n

i=1
(δκi)

pi

pi
> θ∏n

i=1 pi
such that

(b4) F (t1, . . . , tn) ≥ 0 for all ti ∈ [0, δ] for 1 ≤ i ≤ n;

(b5)

θπN/2

Γ(1 +N/2)
∏n

i=1 pi

(D
2

)N

F (δ, . . . , δ)

−m(Ω)
n∑

i=1

(δσi)
pi

pi
sup

(t1,...,tn)∈K( θ∏n
i=1

pi
)

F (t1, . . . , tn) > 0;

(b6) lim sup
(|t1|,...,|tn|)→(+∞,...,+∞)

F (t1,...,tn)∑n
i=1

|ti|
pi

pi

≤ 0.

Then, setting

Λ :=

]
Γ(1 +N/2)

∑n
i=1

(δσi)
pi

pi

cπN/2F (δ, . . . , δ)

( 2

D

)N
,

θ(
c
∏n

i=1 pi
)
m(Ω) sup

(t1,...,tn)∈K( θ∏n
i=1

pi
)

F (t1, . . . , tn)

[
,

for each compact interval [a, b] ⊆ Λ, there exists ρ > 0 with the following property: for every

λ ∈ [a, b], there exists δ > 0 such that, for each µ ∈ [0, δ], the system{
∆(|∆ui|pi−2∆ui) = λFui(u1, . . . , un) + µGui(x, u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω,
(12)

for 1 ≤ i ≤ n, admits at least three weak solutions in X whose norms are less than ρ.

Proof. Set F (x, t1, . . . , tn) = F (t1, . . . , tn) for all x ∈ Ω and ti ∈ R for 1 ≤ i ≤ n. Since∫
B(x0,D/2)

F (δ, . . . , δ)dx = πN/2

Γ(1+N/2) (
D
2 )

NF (δ, . . . , δ), Theorem 2.1 ensures the conclusion.

�

Let σ = σ1, κ = κ1 and p = p1. Then we have the following existence result.

Corollary 2.1. Let f : R → R be a continuous function and g : Ω × R → R be an L1-

Carathéodory function. Put F (t) =
∫ t

0
f(ξ)dξ for each t ∈ R and assume that there exist

two positive constants θ and δ with (δκ)p > θ such that

(b7) F (t) ≥ 0 for all t ∈ [0, δ];
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(b8)
θπN/2

Γ(1+N/2) (
D
2 )

NF (δ)−m(Ω)(δσ)p sup
t∈[− p√

θ,
p√
θ]

F (t) > 0;

(b9) lim sup
|t|→+∞

F (t)
|t|p ≤ 0.

Then, setting

Λ :=

]
Γ(1 +N/2)(δσ)p

(pc)πN/2F (δ)

( 2

D

)N

,
θ

m(Ω)(pc) sup
t∈[− p√

θ,
p√
θ]

F (t)

[
,

for each compact interval [a, b] ⊆ Λ, there exists ρ > 0 with the following property: for every

λ ∈ [a, b], there exists δ > 0 such that, for each µ ∈ [0, δ], the problem{
∆(|∆u|p−2∆u) = λf(u) + µg(x, u) in Ω,

u = ∆u = 0 on ∂Ω
(13)

admits at least three weak solutions in W 2,p(Ω) ∩W 1,p
0 (Ω) whose norms are less than ρ.

If N = 1, we can get a better result than Theorem 2.2. For simplicity, we fix Ω = (0, 1)

and Note that in this situation we have pi > 1 for 1 ≤ i ≤ n.

Theorem 2.3. Let F : Rn → R be a C1-function and assume that there exist two posi-

tive constants θ and δ with
∑n

i=1
(32δ)pi

2cpi
> θ∏n

i=1 pi
such that Assumptions (b4) and (b6) in

Theorem 2.2 holds, and

(b10)
θ∏n

i=1 pi
F (δ, . . . , δ)−

∑n
i=1

(32δ)pi

cpi
sup

(t1,...,tn)∈K( θ∏n
i=1

pi
)

F (t1, . . . , tn) > 0.

Then, setting

Λ :=

]∑n
i=1

(32δ)pi

pi

F (δ, . . . , δ)
,

θ(
c
∏n

i=1 pi
)

sup
(t1,...,tn)∈K( θ∏n

i=1
pi

)

F (t1, . . . , tn)

[
,

for each compact interval [a, b] ⊆ Λ, there exists ρ > 0 with the following property: for every

λ ∈ [a, b], there exists δ > 0 such that, for each µ ∈ [0, δ], the system
(|u′′

i |pi−2u
′′

i )
′′
= λFui(u1, . . . , un) + µGui(x, u1, . . . , un) in (0, 1),

ui(0) = ui(1) = 0,

u
′′

i (0) = u
′′

i (1) = 0

(14)

for 1 ≤ i ≤ n, admits at least three weak solutions in

Y :=
(
W 2,p1(0, 1) ∩W 1,p1

0 (0, 1)
)
× · · · ×

(
W 2,pn(0, 1) ∩W 1,pn

0 (0, 1)
)

whose norms are less than ρ.

Proof. For each u = (u1, . . . , un) ∈ Y, let

Φ(u) :=
n∑

i=1

∥ui∥pi
pi

pi
,

Ψ(u) :=

∫ 1

0

F (u1(x), . . . , un(x))dx,

and

J(u) =

∫ 1

0

G(x, u1(x), . . . , un(x))dx,
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where for 1 ≤ i ≤ n,

∥ui∥pi :=

[ ∫ 1

0

|∆ui(x)|pidx

] 1
pi

.

Since the critical points of the functional Φ− λΨ− µJ on Y are exactly the weak solutions

of system (14), our aim is to apply Lemma 1.1 to Φ, Ψ and J . As observed in Theorem 2.1,

Φ, Ψ and J satisfy the regularity assumptions in Lemma 1.1. Also, thanks to (b6), for each

λ > 0, the functional Φ− λΨ is coercive.

Now, put r := θ
c
∏n

i=1 pi
and w(x) = (w1(x), . . . , wn(x)) such that for 1 ≤ i ≤ n,

wi(x) :=

{
δ − 16δ

(
1
4 − |x− 1

2 |
)2

x ∈ [0, 1
4 ] ∪ ( 34 , 1],

δ x ∈ ( 14 ,
3
4 ].

It is easy to verify that w = (w1, . . . , wn) ∈ Y, and for 1 ≤ i ≤ n,

∥wi∥pi
pi

=
(32δ)pi

2
.

Now, under the assumption of
∑n

i=1
(32δ)pi

2cpi
> θ∏n

i=1 pi
, we have

Φ(w) =
n∑

i=1

∥wi∥pi
pi

pi
>

θ

c
∏n

i=1 pi
= r > 0.

Since 0 ≤ wi(x) ≤ δ for each x ∈ (0, 1) for 1 ≤ i ≤ n, it follows from (b4) and (b10) that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
Φ(u)≤r

∫ 1

0

F (u1(x), . . . , un(x))dx

≤ sup
(t1,...,tn)∈K( θ∏n

i=1
pi

)

F (t1, . . . , tn)

<
θ

c

∫ 1

0
F (w1(x), . . . , wn(x))dx∑n

i=1

( n∏
j=1
j ̸=i

pj
)
∥wi∥pi

pi

=
θ

c
∏n

i=1 pi

∫ 1

0
F (w1(x), . . . , wn(x))dx∑n

i=1

∥wi∥
pi
pi

pi

= r
Ψ(w)

Φ(w)
.

Therefore, condition (a1) of Lemma 1.1 is satisfied, and the proof is complete. �

3. Conclusion

Based on a recent three critical points theorem obtained by Ricceri [19], we established

the existence of an open interval ]λ
′
, λ

′′
[ and δ > 0, such that for each λ ∈]λ′

, λ
′′
[ and for

each µ ∈ [0, δ], a class of Navier doubly eigenvalue boundary value system involving the

(p1, . . . , pn)-biharmonic operator and depending on parameters λ and µ admits at least

three weak solutions.
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