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STRUCTURE FUNCTIONS AND MULTIFRACTAL
DETRENDED FLUCTUATION ANALYSIS APPLIED TO THE
CODING SEQUENCES: CASE STUDY - ESCHERICHIA COLI

Cristina STAN?, Teofil MINEA?, Teodora-Maria CRISTESCU?, Luiza
BUIMAGA-IARINCA? Constantin P. CRISTESCU®

In aceastd lucrare prezentam analiza multifractald a secventelor de codare
ale seriilor genomice si aplicam metodele studiate pe Escherichia Coli. Programele
de calcul au fost realizate prin implementarea in Mathematica a algoritmilor pentru
Sfunctiile de structura si analiza multifractald bazatd pe eliminarea tendintelor.

In this paper we present the multifractal analysis for the genomic coding
sequences and apply the method to Escherichia Coli. The computer programs were
implemented in Mathematica for two specific algorithms: structure functions (SF)
and multifractal detrended fluctuation analysis (MF-DFA).
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1. Introduction

A wide range of experimental signals (time-series or data sequences) from
physics, biology, medicine, econophysics, etc. can be well modeled by
multifractal processes [1-5]. The essence of multifractal analysis is to identify
fractal dimensions of self-similar structures with varying regularities and to
produce the distribution of indices of singularity, which constitutes the
multifractal spectrum.

The multifractal formalism has been implemented using different
algorithms, such as rescaled range analysis [6], wavelets analysis [7], detrended
fluctuation analysis [8], fluctuation measurement by structure functions or
singular measures [9], etc.

In this work we apply the methods based on structure functions and MF-
DFA to the study of the multifractality of genome coding sequences, particularly
for Escherichia Coli (EColi).
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2. Theoretical considerations

Let us consider an arbitrary signal 7(z,), (i=12,---,N). If it represents a

Wiener process (fractional Brownian motion), its variance is proportional to the
time interval for which it is computed, power to the Hurst (H) exponent:

ie. <(Af)2>oc(At)Hwhere H is ranging between 0 and 1. Hurst exponent

describes the degree of the predictability of any signal and the long memory
properties involved in the signal. The value of 0.5 is characteristic for the
Brownian motion which is entirely non correlated (no memory). A value of 0 < H
< 0.5 indicates an anti-persistent signal (e.g. a decrease will more probably be
followed by an increase), and a value of 0.5 < A < 1 indicates a persistent signal
(e.g. an increase will more probably be followed by another increase).

The first technique followed by us to evaluate the Hurst exponents uses the
scaling properties of the structure functions (SF). The procedure is applicable to
nonstationary data sequences with stationary gradients.

Structure function of order ¢>0 is defined as [10]:

$,0)=(( @ +)- 7)) 6y
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Here C, can depend slightly on ¢ comparing with any power of z The log-log plot
of S,(7) versus zis a line with the slope ¢{g). For multifractal signals, ¢(g) versus
q has a nonlinear dependence and A is not constant as in the case of monofractals
and is a function of ¢: 8
¢lq
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The main Hurst exponent is computed for g =1.

The concept of multifractality refers to the fact that different sections of
the series (different zones of the fractal object) are characterized by different
values of the fractal dimension. The multifractal spectrum D(%) can be computed
using the Legendre transform of the structure function exponents ¢ (q):

D, (h)=min, (gh~¢(q)+1) @
The condition of minimum dD, (7)/dg =0 implies:
d¢(g)/dg =h. )
Using relation (5), the multifractal spectrum can be determined by:
D(h)=qh—¢(q)+1. (6)

In this way, the structure functions analysis allows the computation of both the
Hurst exponent and the order-dependence of the fractal dimension.
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The second technique used by us to evaluate the Hurst exponents is MF-
DFA analysis. In the first step we determine the “profile” as follows:

YD) =S 12N @)

where <f> is the mean. Then, the signal is divided in 2N, nonoverlaping segments
(Ny=Int(N/s) of length s, obtained from the start to the end and reverse. The next
stage deals with the detrended procedure using the best polynomial fit of the
signal (yv) on each segment v. This procedure implies the computation of the

variances [11]:
2

FYs0)= S (o-2s -3, ()] =12, ®)
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The fluctuation function of order 2 is defined as the square root of the
relation (8) and (9). For the general case of a ¢ order fluctuation function (¢
positive or negative, nonzero value) the formula can be modified as:

Fq(s)={izﬁ[ﬁ(s,u>]“}w- (10)

2N, o
For a self-similar signal the dependence of the fluctuation function on the
“window” length s is expected to be exponential as F, (s)~ 5" The main Hurst

exponent is computed for g=2. The log-log plot of the fluctuation exponent versus
s is a line with the slope 4(g) called generalized Hurst exponents.

3. Case study: coding sequences of Escherichia Coli

The local properties of the DNA sequence prove to be more informative
than the global one in distinguishing coding and non-coding sequences. Recent
work reported the important significance of the length and distribution of proteins
(which is similar to the coding sequences) [12-15]. This is due to the fact that
there is a profound relationship between protein length distributions and the
mechanism of protein length evolution. As a result, the protein length distribution
represents a comprehensive record of the evolutionary history of a species.

Our data were taken from the National Centre for Biotechnology
Information (NCBI) website [16] and manipulated as in a signal consisting of
sequences of coding length [2]. Figure 1 shows the coding sequences length
(CDS) versus location of the Ecoli. The requirement of stationarity is fulfilled by
the genomic data as proved by Fig.2, where the structure function is plotted as
log-log graph versus the delay.
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Fig.3. The CDS profile Fig.4. The log-log plot of SF for the profile: ¢
from 0.5 to 3 with step of 0.5 (bottom to top)
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The stationarity is reflected by the fact that the slopes of the curves are
practically zero for all values of ¢. Consequently, the genomic data can be
considered as the gradient of another process obtained by integration of the
original data [10].

The main Hurst exponent will be obtained by applying the SF algorithm to
the integrated series, usually known as the profile (Fig.3).

The dependence of the SF for the profile versus the delay for the specified
values of ¢ is plotted in Fig.4.

As we can see from Fig.5, the computed structure function exponent versus
¢q is a nonlinear function showing the multifractal characteristics of the data. From
¢ (g) we compute the main value of H using (3) for g=1.

The fractal dimension versus the generalized Hurst exponent is plotted in Fig.6.
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For the MF-DFA analysis we illustrate the results of the fluctuation
functions versus s for the specified values of ¢ in Fig.7 and the multifractal
spectrum computed with in Fig.8. The lines in Fig.7 are drawn for eyes guiding.
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The computation of fractal dimension spectrum is detailed in [10].

Figures 9 and 10 present the dependence of the generalized Hurst
exponents on ¢ as computed from the SF and the MF-DFA algorithms,
respectively. We observe the very good consistency of the results. The same
conclusion can be obtained from the comparison of the fractal dimension
spectrum from SF algorithm shown in Fig.6 and from MF-DFA algorithm shown
in Fig.8.

The values of the main Hurst exponents computed using the two
algorithms are: 0.663 with SF and 0.667 with MF-DFA. The remarkable
coincidence of the two values from our analysis and the similar values reported
using the wavelet method [17] confirms the correctness of our results.

6. Conclusions

Using the implementation in Mathematica of an improved SF algorithm
and MF-DFA we demonstrate consistency of the results obtained for the EColi
genomic sequence with results obtained by considerable more elaborate methods,
such as the wavelet analysis. The good agreement encourages us to consider that
the SF algorithm can be successfully applied to any genomic sequence and at the
same time to benefit for the low computation cost of this algorithm.
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