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STRUCTURE FUNCTIONS AND MULTIFRACTAL 
DETRENDED FLUCTUATION ANALYSIS APPLIED TO THE 
CODING SEQUENCES: CASE STUDY - ESCHERICHIA COLI 

Cristina STAN1, Teofil MINEA2, Teodora-Maria CRISTESCU3, Luiza 
BUIMAGA-IARINCA4, Constantin P. CRISTESCU5  

În această lucrare prezentăm analiza multifractală a secvenţelor de codare 
ale seriilor genomice şi aplicăm metodele studiate pe Escherichia Coli. Programele 
de calcul au fost realizate prin implementarea în Mathematica a algoritmilor pentru 
funcţiile de structură şi analiza multifractală bazată pe eliminarea tendinţelor. 

 
In this paper we present the multifractal analysis for the genomic coding 

sequences and apply the method to Escherichia Coli. The computer programs were 
implemented in Mathematica for two specific algorithms: structure functions (SF) 
and multifractal detrended fluctuation analysis (MF-DFA). 
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1. Introduction 

A wide range of experimental signals (time-series or data sequences) from 
physics, biology, medicine, econophysics, etc. can be well modeled by 
multifractal processes [1-5]. The essence of multifractal analysis is to identify 
fractal dimensions of self-similar structures with varying regularities and to 
produce the distribution of indices of singularity, which constitutes the 
multifractal spectrum.  

The multifractal formalism has been implemented using different 
algorithms, such as rescaled range analysis [6], wavelets analysis [7], detrended 
fluctuation analysis [8], fluctuation measurement by structure functions or 
singular measures [9], etc. 

In this work we apply the methods based on structure functions and MF-
DFA to the study of the multifractality of genome coding sequences, particularly 
for Escherichia Coli (EColi). 
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2. Theoretical considerations  

Let us consider an arbitrary signal ( ) ( )Nitf i ,,2,1, = . If it represents a 
Wiener process (fractional Brownian motion), its variance is proportional to the 
time interval for which it is computed, power to the Hurst (H) exponent: 

i.e. ( ) ( )Htf Δ∝Δ 2 where H is ranging between 0 and 1. Hurst exponent 

describes the degree of the predictability of any signal and the long memory 
properties involved in the signal. The value of 0.5 is characteristic for the 
Brownian motion which is entirely non correlated (no memory). A value of 0 < H 
< 0.5 indicates an anti-persistent signal (e.g. a decrease will more probably be 
followed by an increase), and a value of 0.5 < H < 1 indicates a persistent signal 
(e.g. an increase will more probably be followed by another increase).  

The first technique followed by us to evaluate the Hurst exponents uses the 
scaling properties of the structure functions (SF). The procedure is applicable to 
nonstationary data sequences with stationary gradients. 

Structure function of order q>0 is defined as [10]: 
 ( ) ( ) ( )( )qiiq tftfS −+= ττ     (1) 

( ) )()( qqH
q

q
qq CCS τττ ζ == .    (2) 

Here Cq can depend slightly on q comparing with any power of τ. The log-log plot 
of Sq(τ) versus τ is a line with the slope ζ(q). For multifractal signals, ζ(q) versus 
q has a nonlinear dependence and H is not constant as in the case of monofractals 
and is a function of q: 

( ) ( ) .
q
qqH ζ

=                                                         (3) 

The main Hurst exponent is computed for 1=q . 
The concept of multifractality refers to the fact that different sections of 

the series (different zones of the fractal object) are characterized by different 
values of the fractal dimension. The multifractal spectrum D(h) can be computed 
using the Legendre transform of the structure function exponents ( )qζ :  

( ) ( )( ).1min +−= qqhhD qq ζ     (4) 
The condition of minimum ( ) 0d/d =qhDq  implies: 

( ) hqq =d/dζ .    (5) 
Using relation (5), the multifractal spectrum can be determined by: 

( ) ( ) 1+−= qqhhD ζ .    (6) 
In this way, the structure functions analysis allows the computation of both the 
Hurst exponent and the order-dependence of the fractal dimension.  
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 The second technique used by us to evaluate the Hurst exponents is MF-
DFA analysis. In the first step we determine the “profile” as follows: 

NjffjY
j

i
i ,...,2,1;)()(

1

=−=∑
=

   (7) 

where <f> is the mean. Then, the signal is divided in 2Ns nonoverlaping segments 
(Ns=Int(N/s) of length s, obtained from the start to the end and reverse. The next 
stage deals with the detrended procedure using the best polynomial fit of the 
signal (yυ) on each segment υ. This procedure implies the computation of the 
variances [11]: 
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The fluctuation function of order 2 is defined as the square root of the 
relation (8) and (9). For the general case of a q order fluctuation function (q 
positive or negative, nonzero value) the formula can be modified as: 
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For a self-similar signal the dependence of the fluctuation function on the 
“window” length s is expected to be exponential as ( ) ( )qh

q ssF ~ . The main Hurst 
exponent is computed for q=2. The log-log plot of the fluctuation exponent versus 
s is a line with the slope h(q) called generalized Hurst exponents. 

3. Case study: coding sequences of Escherichia Coli 

The local properties of the DNA sequence prove to be more informative 
than the global one in distinguishing coding and non-coding sequences. Recent 
work reported the important significance of the length and distribution of proteins 
(which is similar to the coding sequences) [12-15]. This is due to the fact that 
there is a profound relationship between protein length distributions and the 
mechanism of protein length evolution. As a result, the protein length distribution 
represents a comprehensive record of the evolutionary history of a species.  

Our data were taken from the National Centre for Biotechnology 
Information (NCBI) website [16] and manipulated as in a signal consisting of 
sequences of coding length [2]. Figure 1 shows the coding sequences length 
(CDS) versus location of the Ecoli. The requirement of stationarity is fulfilled by 
the genomic data as proved by Fig.2, where the structure function is plotted as 
log-log graph versus the delay. 



112           C. Stan, T. Minea, T. M. Cristescu, L. Buimaga, V. Morariu, C. P. Cristescu 

 

 

0 1 2 3 4 5 6
0

5

10

15

20

25

log���
lo

g�S q����
 

 Fig.2. The log-log plot of the SF for the 
original data: q from 0.6 to 3 with step of 0.3 

(bottom to top) 
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Fig.1. The CDS data sequences  
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Fig.5. The structure function exponent versus 
q for the profile  
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Fig.6. The fractal dimension versus the 

generalized Hurst exponent (SF) 
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Fig.3. The CDS profile  
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Fig.4. The log-log plot of SF for the profile: q 
from 0.5 to 3 with step of 0.5 (bottom to top) 



Structure functions and multifractal detrended fluctuation […] Case study Escherichia Coli    113 

The stationarity is reflected by the fact that the slopes of the curves are 
practically zero for all values of q. Consequently, the genomic data can be 
considered as the gradient of another process obtained by integration of the 
original data [10].  

The main Hurst exponent will be obtained by applying the SF algorithm to 
the integrated series, usually known as the profile (Fig.3).  

The dependence of the SF for the profile versus the delay for the specified 
values of q is plotted in Fig.4.  

As we can see from Fig.5, the computed structure function exponent versus 
q is a nonlinear function showing the multifractal characteristics of the data. From 

)(qζ we compute the main value of H using (3) for q=1. 
The fractal dimension versus the generalized Hurst exponent is plotted in Fig.6. 

For the MF-DFA analysis we illustrate the results of the fluctuation 
functions versus s for the specified values of q in Fig.7 and the multifractal 
spectrum computed with in Fig.8. The lines in Fig.7 are drawn for eyes guiding. 
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Fig.9. Generalized Hurst exponents versus q 

(SF)  
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Fig.10. Generalized Hurst exponents versus q 

(MF-DFA) 
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Fig.7. The fluctuation function in log-log 

scale for CDS profile: q from 0.6 to 3 with 
step of 0.3 (bottom to top) - (MF-DFA)  

 
  

������
�

�
�

�

�

�

�

�

�

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

h

D
�h�

Fig.8. The fractal dimension versus the 
generalized Hurst exponent (MF-DFA) 
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The computation of fractal dimension spectrum is detailed in [10]. 
Figures 9 and 10 present the dependence of the generalized Hurst 

exponents on q as computed from the SF and the MF-DFA algorithms, 
respectively. We observe the very good consistency of the results. The same 
conclusion can be obtained from the comparison of the fractal dimension 
spectrum from SF algorithm shown in Fig.6 and from MF-DFA algorithm shown 
in Fig.8.  

The values of the main Hurst exponents computed using the two 
algorithms are: 0.663 with SF and 0.667 with MF-DFA. The remarkable 
coincidence of the two values from our analysis and the similar values reported 
using the wavelet method [17] confirms the correctness of our results.  

6. Conclusions 

Using the implementation in Mathematica of an improved SF algorithm 
and MF-DFA we demonstrate consistency of the results obtained for the EColi 
genomic sequence with results obtained by considerable more elaborate methods, 
such as the wavelet analysis. The good agreement encourages us to consider that 
the SF algorithm can be successfully applied to any genomic sequence and at the 
same time to benefit for the low computation cost of this algorithm.  
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