
U.P.B. Sci. Bull., Series C, Vol. 80, Iss. 1, 2018 ISSN 2286-3540

RESEARCH ON THE COMPLEXITY MEASUREMENT

TECHNOLOGY OF SOFTWARE STRUCTURE BASED ON

AST

Qiao LIPING1, Li JING2, Song YAQING3

With the increasing scale and complexity of software, people are demanding

more and more analysis and measurement of software complexity, on this basis, this

paper proposes an approach to measure software structure complexity based on

abstract syntax tree (AST). The method firstly removes the redundant code

information by preprocessing and carries out lexical semantic analysis to generate

the corresponding AST; On the AST traversal basis, secondly records the frequency

of the program key, and gets the sequence of program attributes and method calls by

the information marking algorithm, finally, obtains the measurement results by the

methods of the Line Count metric calculation, McCabe metric calculation and

Halsted metric calculation. The experimental results show that this method can

effectively measure the complexity of software structure.

Keywords: Abstract Syntax Tree, Software Complexity, Complexity Measure,

Program Structure

1. Introduction

Now society has entered the era of big data information，Computer

software has changed enormously in terms of size and complexity. According to

authoritative statistics, software complexity is the main cause of software errors.

When software complexity exceeds a certain limit, errors and failures in the

software will rise rapidly and even cause failure in software development. At

present, the research on software complexity analysis technology is not yet mature

interiorly, and it is even on the traditional method of traversing pile. In this

context, this paper puts forward a research on the complexity measurement

technology of program structure based on AST, which is the most stable analysis

result of the program codes, this method can be more effective and more accurate

to analyze the structure complexity of the target program, especially for national

defense, military industry, and aerospace software which require high accuracy

and stability of the software [1-2].

1 Department of Information Engineering, Xingtai Polytechnic College, Xingtai, Hebei, China,

e-mail: cheast@163.com
2 Department of Information Engineering, Xingtai Polytechnic College, Xingtai, Hebei, China
3 Department of Information Engineering, Xingtai Polytechnic College, Xingtai, Hebei, China

40 Qiao Liping , Li Jing, Song Yaqing

It is of great significance to analyze and research the Software complexity

analysis technology which is a key point and a difficult point, during the software

process. Today, the domain, scale, and cost of computer software have increased

dramatically, but the stability and reliability of software have not improved [3]. In

order to change this situation, people begin to study and analyze the software

complexity which is a measure of resource depletion in software development,

software maintenance, and software usage process [4].

At present, the research on the complexity analysis of program structure is

not mature. Some technologies are also in the second stage of source code

analysis, which is a centralized analysis phase; they mainly use code piling and

path traversal to get the analysis data. This method can reflect the complexity of

the program structure to a certain extent, but it does not get the most direct

information from the code structure, so it is not timely to deal with errors

introduced by developers in the program. However, the technology based on the

AST proposed by this paper, directly established the static analysis basis of code,

and got the code structure information in time, which can comprehensively and

accurately analyze the complexity of program structure.

This paper firstly introduces the parameters of the software structure

complexity measure, and gives the simulation function of the complexity gradient,

then obtains the program control flow by analyzing the structure of the AST, and

designs a program analysis algorithm to record all the analysis data. On the basis

of the algorithm, this paper uses McCabe metric, Halstead metric and code line

metric calculation methods to measure the complexity of program code, finally,

compares the similarity between the real results of the code complexity and the

measurement results used by complexity measurement technology based on AST

2. Software Structure Complexity

Software structure complexity which is the inherent attribute of software

mainly refers to the complexity of program code. Software product is an invisible

logic product, and its development process is the complex thinking process of

human brain. During the software development process, the complexity changes

gradually, and the mutation occurs after reaching a certain value gradually. In this

process, there are stable and unstable states. The complexity of software, from

user's demand to the final product, is actually the process of function

transformation. Set this function as:

)x...xf(xy n2,1, (1)

Among the formula (1), y is a function of time t; in this transformation

process, it is affected by many conditions)x...(x n1, effect. Among the

conditions, 1x represents the size of the program, 2x represents the difficulty of

Research on the complexity measurement technology of software structure based on AST 41

the development program, 3x stands for program structure, 4x stands for program

intelligence, 5x stands for the change in requirements, and 6x stands for other

factors, then (1) is equivalent to (2).

)x,x,x,x,x,f(xy 654321 (2)

Since y is a function of the time t variable, after the derivative of the time t,

we get the formula (3):

)xxxxx(xf 6,5,4,32,1,
'
t

dt

dy
 (3)

The formula (3) represents the rate at which the function

)x,x,x,x,x,f(x 654321 varies from time t. When the function y has a mutation,

the function curve will have an inflection point. As a result, we know that

software complexity varies from development time and even changes. Therefore,

the measurement of software complexity is definitely not evaluated after the

completion of software development, but is constantly carried out in the entire

development process [5-6]

3. Program Analysis Algorithm Based on AST

The measurement of software complexity is based on the analysis of

program structure. The more thorough we analyze the procedure, the more

accurate the result of complexity measurement will be. In the Program parsing

algorithm based on AST, we first study the formation and structure of the abstract

syntax tree and the information contained in the nodes of the tree. Then, we use

the Information Mark Parsing algorithm to traverse all the nodes, and form the

hash table data model, the model records complex parameters of program

structure, which is used as a data base for subsequent measurements [7].

3.1 The Abstract Syntax Tree

Abstract syntax tree is the product of parse tree after lexical analysis and

syntax analysis of program understanding. The static analysis will translate the

abstract syntax tree according to the actual needs and generate the data which the

static analysis needs finally, such as, the program control flow chart, the data flow

diagram, the function call diagram and so on. Thus, the abstract syntax tree can be

used either as and output of intermediate results or as an input to other data forms

[8-10], the abstract syntax tree is a graphical representation of a program's syntax

structure, and the nodes in the syntax tree are derived directly from the rules of the

grammar. Fig. 1 provides an abstract syntax tree for some test code.

42 Qiao Liping , Li Jing, Song Yaqing

getVa

l()

return
+

elsereturn>

if

getNu

m1()

num1

gets()val2val1sum

getNu

m1()

num2

num1 1000

num1 num2

Fig.1. The Sketch map of abstract syntax tree

As seen in Fig.1, the operands in program codes usually are leaf nodes,

and their operators are used as parent nodes. The information about the nodes of

an abstract syntax tree can be roughly divided into three categories: 1. the name of

a word code represented by a node, also known as the label of a node; 2. attribute

of label which can be stored in the nodes or stored in the symbol table; 3. several

pointers to their child nodes. The abstract syntax tree consists of leaf nodes that

represent a non - reserved word terminator and intermediate nodes that represent a

syntax structure.

3.2. Information Mark Parsing Algorithm

The abstract syntax tree resolves the key information in the program into a

tree structure, and clearly describes how many branches and how many loops are

in the program control structure. According to the above analysis, it is easy to

obtain the measurable data basis of the program structure complexity, by using the

information mark parsing algorithm.

Procedural language, like human language, is the most important way to

obtain the key information in a language if you want to know the complexity of

the language. For example, a book written in human language is compared to

software developed in Procedural language, the language structure and the key

information between the two are almost similar, details are shown in Table 1:

Table 1

Comparison of human language and procedural language

Term Human Language procedural language

Product book software

Product Structure
chapter sub-system

paragraph modular

Research on the complexity measurement technology of software structure based on AST 43

section assembly

Product composition

Sentences, phrases Operator, expression

subject object

Predicate Event

noun variable

verb Method

Modifiers attribute

We know that the information rules of human language conform to the law

of Zipf. For example, there is an article containing n words. We sort and classify

these words according to the frequency of their occurrence, and use the letter r to

indicate the vocabulary number, we will get the formula:





s

1r
rnn (4)

Among them, s is the total number of lexical categories, rn is the number

of category r words, if we use the rf to indicate the frequency of the category r

words, so:

n

n
f r
r  (5)

We know that rf and r are linear, by the law of Zipf, then:

Cr.fr  (6)

According to formulas (5) and (6), we can obtain:

r

n.C
nr  (7)

If we interpret frequency rf as the probability of the occurrence of words,

we can see from the definition of probability:

1
n

n
f

s

1r

r
s

1r
r  



 (8)

According to formulas (7), we get:





s

1r

s

1r
r

r

1
n.Cn (9)

We expand the formula (9), then:

....
1)s(s2

1

s2

1
lnt0.5772

r

1s

1r 




 (10)

lns0.5772

1
C


 (11)

44 Qiao Liping , Li Jing, Song Yaqing

Now we suppose that we already knew the total number of lexical

categories, and we can estimate the value C, srmax  . In addition, we

suppose 1n
maxr
 . It means that the smallest probability word occurs only once.

According to formulas (11), we get:

n

s
C  (12)

Combining formulas (11) and (12), we can obtain formula (13) for

calculating the total number of words：

lns)s(0.5772n  (13)

According to the above structure comparison of human language and

procedural language, we know that the program language also accords with the

formula (13), if a program code contains 500 types of operands and operators,

then the calculation formula for the length of the program will be:

3396)500ln(0.5772500n 

Human language and programming language are similar in both ways of

expression and purpose of expression. Therefore, they have the same law of

information about the expression process. We can guide the information entropy

of the information source according to Shannon theory.





n

1i i
2i

n

1i
i2ii2

p

1
logpplogp]plogE[H(U) (14)

ip is the probability of the occurrence of information, If the program to be

measured is a sequence of symbols that are randomly taken out of the alphabet

consisting of 1η operators and 2η operands, and the probability that each symbol is

taken out of the alphabet is equal, it is
21 ηη

1



, according to formulas (13), we get:

)ηη(log
p

1
logpH(U) 212

N

1i ij

s

1j
2ij   

 

N (15)

According to Zipf's law, the probability that each symbol is taken out of

the alphabet of operands and operators is not equal. According to the formula (12),

the formula (15) can be converted to

















 12)/7ln(lns

12)/72(lns

(lns)

2ln

N
H(U)

2

 (16)

If s>100, we can omit the 7/12, and slog2.lnlns 2 , thus the formula

(16 can be reduced to:

lns)s(NlogH(U)H 2  (17)

Research on the complexity measurement technology of software structure based on AST 45

If the program code is long and the S is large, then slog2.lnlns 2 , we

can obtain the formula:

)η(ηlog
2

N
slog

2

N
H 2122  (18)

According to the information theory, when the probability of each

message in the information source appears, H is the largest. From the formula (18),

we know that the complexity of the program code is directly related to the times

of operands and the operators appear in the code. As a result, the program markup

parsing algorithm traverses the abstract syntax tree in a quantized way, during the

traversal [11-13]; we use the key value pairs at hash table to record the frequency

of the operands and the operators. The storage structure of AST nodes is attached

to the appendix.

In the traversal of the above algorithm, we set up the variable infoMark to

mark the program information about the software complexity statistics. The leaf

nodes of an abstract syntax tree are generally operands, and branch nodes are

generally operators that connect leaf nodes. Through this parsing algorithm, we

obtain a hash table containing complex parameters of the program.

4. Complexity Measurement of Software Structure

The research of software complexity analysis technology should be

applied to the research of one or more software complexity measurement

algorithms, so the most important problem is the data measurement metrics.

Based on program comprehension, these metrics are directly or indirectly from the

abstract syntax tree, according to the results of the information mark parsing

algorithm, we can measure the structure complexity of the program by using two

kinds of methods: the McCabe structure complexity measurement method and the

Halstead software science measurement method, the McCabe complexity is

mainly a measure of the complexity of software program structure. It needs to

analyze the program control flow chart of software, so it belongs to the indirect

call from the abstract syntax tree. The Halstead complexity uses the operands and

operators in the program as a statistical object. It belongs to the direct call from

the abstract syntax tree. In addition, we can statistic the number of code lines, the

blank lines, and the commented lines of a comprehensive analysis [14-15].

4.1. McCabe Metric Calculation Method

McCabe complexity is essentially a measure of the complexity of the

program topology. It needs to analyze the software program control flow chart, so

it belongs to the indirect call to the abstract syntax tree. Fig. 2 illustrates the

function call relationship based on the McCabe metric of AST.

46 Qiao Liping , Li Jing, Song Yaqing

CFGprint cp.go()

Start

dfg(root)

edgnum nodenum

sendResult()

printCircle()

countGraph()

Fig. 2 Function Call Relations

When the McCabe complexity measuring, the object cp of the type

CFGprint is firstly generated, we initialize some data by the function go of the

object cp. Then we call the dfg (root) function, which implements recursive

traversal of the program control flow, so that, we can analyze the number of arcs

and the number of nodes in the control flow graph, we mark these two values with

variables edgnum and nodenum, and then we call the function printCircle and the

function countGraph to calculate the complexity by the variables edgnum and

nodenum. Finally, the output is computed by using the function sendResult.

Specific algorithm codes are attached to the appendix

4.2. Halstead Metric Calculation Method

The Halstead complexity uses the operands and operators in the program

as a statistical object. The Information Mark Parsing Algorithm described earlier

in this article has parsed the parameters of the operators and operands in the

program [16-18]. We know that all the analysis results from the AST are stored in

the hash table, on this basis, we can carry out the calculation of Halstead

complexity, and its specific algorithm is attached to the appendix.

4.3 Experimental Analysis of the Complexity Measurement

Technology

We see that, our measurement of the complexity of software structures is

primarily the complexity of program code. According to the AST and the

Information Mark Parsing Algorithm, we design the experimental test flow, as

shown in Fig. 3

Research on the complexity measurement technology of software structure based on AST 47

Load code

Build
AST

Program control
structure analysis

Information mark
parsing algorithm

McCabe metric LineCount metric Halstead metric

Generate results

validation

Code
preprocessing

Fig. 3 Experiment flow design

During this experimental process, we first load the test code named test.c,

and generate the AST; then on the basis of the AST, we obtain metadata for the

program complexity analysis, by the Information Mark Parsing Algorithm and

program control structure analysis. According to these metadata, we get the

McCabe metric results, the Line Count metric results, and the Halstead metric

results of the test code. Finally, we compare the measurement results with the

actual complex metrics of the test code, the results are as shown in Table 2.

Table 2

Comparison table of experimental data with actual data

Code Lines Experiment Data Real Data Accuracy Rate Result

Total Lines 327 327 100% Accurate

Blank Lines 13 13 100% Accurate

Comment lines 21 21 100% Accurate

McCabe 7 7 100% Accurate

Halstead 97.26 97.33 99.92% Accurate

Normalization 2.53 2.534 99.84% Accurate

From the table, we can see that the results of the calculation using the

software architecture complexity metric technology are almost identical with the

actual data. Especially, in aspects of Line Count Metrics and McCabe metrics,

they are exactly the same; and in aspects of Halstead metrics and Normalization

metrics, the accuracy is close to 99.9%. To clarify the consistency of the two

48 Qiao Liping , Li Jing, Song Yaqing

kinds of data, we draw their histogram comparison and line chart comparison, as

shown in Fig. 4:

Fig.4.The histogram between experimental data and real data

In the histogram, we see that the experimental data are almost identical to

the actual data onto the Y axis, which is also the numerical axis. These results

furtherly prove the rationality and accuracy of the techniques under study.

5. Conclusion

The technology of Software complexity measurement technique based on

AST used the abstract syntax tree which is a key factor as the main source of the

program code complexity analysis. After the preprocessing of the irrelevant

information about the program code, the efficiency of the abstract syntax tree

analysis will be further improved. We use the information mark parsing algorithm

to get the operands and operators from the program code and use the hash table

structure to save the analysis result by key value pairs. This data storage method

will greatly improve the speed of data reading, and directly affect the efficiency of

subsequent complexity computing methods.

In this paper, we extract the required parameter factors of code complexity

analysis, by abstract the syntax tree, and use the Line Count metric calculation

method, the McCabe metric calculation method and the Halstead metric

calculation method to analyze and calculate the program structure of software and

give a comprehensive analysis report finally. In the end of this paper, we establish

the environment of application tests, and design the application test flow in detail,

and then test the complexity metric for the randomly selected program code. The

analysis of the experimental results shows the consistency between the system test

results and the program complexity analysis results; therefore, from the point of

view of practical application, it proved that the technology of Software

complexity measurement technique based on AST is accurate and feasible.

Research on the complexity measurement technology of software structure based on AST 49

R E F E R E N C E S

[1]. Nalinee Sophatsathit, Complexity Measure of Software Composition Framework. Journal of

Software Engineering and Applications, (2017), No.4, pp.324-337

[2]. Jagvir Brar; Hans van der Meij, Complex software training: Harnessing and optimizing video

instruction. Computers in Human Behavior, (2015), vol.70, pp.475-485.

[3]. Einollah Pira; Vahid Rafe; Amin Nikanjam, Deadlock detection in complex software systems

specified through graph transformation using Bayesian optimization algorithm. Journal of

Systems and Software, (2017), vol.131, pp.181-200.

[4]. CherylL.Coyle; Mary Peterson, Learnability Testing of a Complex Software

Application.Design, User Experience, and Usability: Novel User Experiences, (2016),

vol.9747, pp.560-568.

[5]. José Roberto C. Piqueira, Weighting order and disorder on complexity measures. Journal of

Taibah University for Science, (2017), vol.11, No.2, pp.337-343.

[6]. Ning Cai.On quantitatively measuring controllability of complex networks. Physica A:

Statistical Mechanics and its Applications, (2017), vol.474, pp.282-292.

[7]. Il Hong Suh; Sang Hyoung Lee; Nam Jun Cho; Woo Young Kwon.Measuring motion

significance and motion complexity. Information Sciences, (2017), vol.388, pp.84-98.

[8]. Kimio Kuramitsu1). Fast, Flexible, and Declarative Construction of Abstract Syntax Trees

with PEGs. Journal of Information Processing, (2016), vol.24, No.1, pp.123-131

[9]. Hiroshi Kikuchi; Takaaki Goto; Mitsuo Wakatsuki; Tetsuro Nishino, A Source Code Plagiarism

Detecting Method Using Sequence Alignment with Abstract Syntax Tree Elements.

International Journal of Software Innovation, (2015), vol.3, No.3, pp.41-56.

[10]. Emma Söderberg; Torbjörn Ekman; Görel Hedin; Eva Magnusson, Extensible

intraprocedural flow analysis at the abstract syntax tree level. Science of Computer

Programming, (2013), vol.78, No.10 pp.1809-1827.

[11]. Deqiang Fu; Yanyan Xu; Haoran Yu; Boyang Yang, WASTK: A Weighted Abstract Syntax

Tree Kernel Method for Source Code Plagiarism Detection.Scientific Programming, (2017),

vol.2017, doi:10.1155/2017/7809047.

[12]. Wafaa S. Sayed; Hossam A. H. Fahmy, What are the Correct Results for the Special Values of

the Operands of the Power Operation?; ACM Transactions on Mathematical

Software,(2016), vol.42,No.2,doi:10.1145/2809783.

[13]. Yalin Chen; Jamie I. D. Campbell, Operator and operand preview effects in simple addition

and multiplication: A comparison of Canadian and Chinese adults. Journal of Cognitive

Psychology, (2015), vol.27, No.3 pp.326-334.

[14]. José Roberto C. Piqueira, Weighting order and disorder on complexity measures. Journal of

Taibah University for Science (2017), vol.11, No.2 pp.337-343

[15]. Mortoza LP; Piqueira JR., Measuring complexity in Brazilian economic crises...PLoS One.

(2017), Vol.12, No.3, pp e0173280

[16]. NicholasV.Sarlis. Entropy in Natural Time and the Associated Complexity Measures. Entropy.

(2017), Vol.19, No.4, pp: 177.

[17]. Measuring Pregnancy Intention: The Complexity of Comparison., Perspect Sex Reprod

Health (2017), Vol. 49, No.1, pp: 69-70.

[18]. Nalinee Sophatsathit.Complexity Measure of Software Composition Framework.Journal of

Software Engineering and Applications, (2017), No.4, pp:324-337.

APPENDIX

Code 1. The storage structure of AST nodes

50 Qiao Liping , Li Jing, Song Yaqing

 Struct Type

{ BTNode* ptr; // Pointer to node

 Enum {0, 1, 2} visitMark; // Access mode flag

 Enum {0, 1} infoMark; // Information type marker

 String key; // the key name of a hash table

 }; /* Node pointer type with mark field */

Code 2. Mccabe method algorithm codes

Int edgnum=0, nodenum=0; // the number of arcs and the number of nodes

/*dfg () is used to statistic the number of nodes and arcs*/

Void dfg (NextPtr node)

{ Nodenum++; //the number of nodes add 1

 (node.cont ()? seenCont: seen).add (node.stmt ());

 NextPtrList successors;

 node.stmt () ->getSuccessors (successors, node.cont ());

 If (! rootNodePrinted)

{ Edgnum++; // the number of arcs add 1

 Nodenum++; // the number of nodes add 1

 RootNodePrinted = true;

 }

For (int i=0; i < successors.length (); i++)

{ NextPtr succ = successors[i];

 Bool haveSeenIt = (succ.cont ()? seenCont: seen).contains (succ.stmt ());

 Edgnum++;

 If (haveSeenIt) ;

 Else

 Dfg (succ); // visit the succeeding node of this node

Code 3. Healstead method algorithm codes

Int HalStead_Calculate (int n1, int n2)

{//n1 is the number of the operands; n2 is the number of the operators

Int n;

If (n1! =0&&n2! =0) // the value of the Halstead Complexity measure

n=n1log2n1+n2log2n2;

Return n; // return the finally result

}

