U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 1, 2013 ISSN 1454-234x

OPTIMIZING DATABASE ACCESS USING CONNECTION
POOLING IN MYSQL SERVER AND APACHE TOMCAT

Andrei MACIUCA', Ioana BRANESCU RASPOP?, Simona DUMITRESCU?,
Gelu IONESCU*, Dan POPESCU®

Articolul descrie modul in care metoda ‘“connection pooling” optimizeaza
accesul la baza de date. Pentru a demonstra faptul ca metoda intr-adevar
optimizeazd modul in care cerintele sunt prelucrate, vom realiza un experiment care
va contine doud scenarii, unul in care se foloseste “connection pooling” si un altul
in care nu se foloseste. La finalul experimentului, valorile obtinute vor demonstra ca
accesul la baza de date este imbundatatit semnificativ.Un studiu de caz este prezentat
intr-o aplicatie cu scop medical.

This paper describes how connection pooling optimizes database access. In
order to prove that connection pooling really optimizes how requests are handled,
we will make an experiment with two scenarios, one with connection pooling and
one without this method. At the end, the values obtained will show that database
access is greatly increased. A case study is presented for a medical specific
application.

Keywords: connection pooling, server, optimization, WAPT client, immune
system, biological database

1. Introduction

Connection pooling represents a technique of initiating and managing a
pool of connections. These connections are always ready for use by any thread
that needs them. The connection pooling is used in enterprise and web-based
applications [1]. Given the huge amount of user interactions, about millions for
customer facing applications, the finite server side resources need to be optimally
managed. These resources are represented by databases, message queues,

' PhD student, Faculty of Automatic Control and Computer Science, University POLITEHNICA
of Bucharest, Romania, e-mail: andrei.maciuca@gmail.com

2 PhD student, Faculty of Automatic Control and Computer Science, University POLITEHNICA
of Bucharest, Romania, e-mail: ioana.branescu@gmail.com

3 PhD student, Faculty of Automatic Control and Computer Science, University POLITEHNICA
of Bucharest, Romania, e-mail: simona_roxana robeci@yahoo.com

* Prof., GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT
MARTIN D'HERES CEDEX, email: gelu.ionescu@gipsa-lab.grenoble-inp.fr

> Prof., Faculty of Automatic Control and Computer Science, University POLITEHNICA of
Bucharest, Romania, e-mail: dan_popescu_2002@yahoo.com

80 Andrei Maciuca, Ioana Branescu Raspop, Simona Dumitrescu, Gelu Ionescu, Dan Popescu

enterprise systems, each of these being accessed by an application using a
connection object that represents the resource entry point. The way access is
managed to these shared resources is essential for meeting high performance
requirements in J2EE applications [2], [3].

At any given time, a connection object is involved in one of the following
major steps of its lifecycle: creation, initialization, ready for use, destruction and
garbage collection. Al of these steps, excepting ready for use, require a lot of
memory and processing time. As a result, if creating and holding an object in
memory requires fewer resources than creating and destroying it, holding the
object in memory and using it when needed is the optimal solution [4], [5].

There are several benefits when using connection pooling. There is a
reduced connection creation time, a simplified programming model (each
individual thread can act as it has created its own connection, allowing to use
straight-forward programming techniques. Also, the resource usage is controlled
[6]. So, connection pooling should be used to maximize the performance, while
keeping the resource utilization below the point where the application will start to
fail rather than just run slower [7].

Being normally used in web-based and enterprise applications, connection
pooling is generally handled by an application server. Any dynamic web page can
open and close it normally but in the background when a new connection is
requested, one is received from the connection pool maintained by the application
server. Similarly, when a connection is closed it is actually sent back to the
connection pool [8]. Connection pooling also eliminates java database
connectivity overhead. Further, object pooling also helps to reduce the garbage
connection load. With database connection pooling, applications can be scaled in
order to handle increased load and deliver high performance benefits. Using
recycled database connection objects cuts the time taken to re-instantiate and load
frequently used objects, reducing unnecessary overheads [9], [10].Connection
pooling is not limited to using application servers. Usual applications that need
frequent access to a database can benefit from connection pooling as well. This
was traditionally handled by manually maintaining database connections, but as
everybody expected that meant very good programming techniques as the
framework for pooling is highly complex [11].

Various parameters can be set in order to make connection pooling work
very good regarding the environment used for deployment, presented below:

- initialSize, the initial number of connections that are created when the pool
is started,

- maxActive, the maximum number of active connections that can be
allocated from the pool at the same time (negative for no limit),

- maxIdle, the maximum number of connections that remain idle in the pool,
without extra ones being destroyed (negative for no limit),

Optimizing database access using connection pooling in MySQL Server and Apache Tomcat 81

- maxOpenPreparedStatements, the maximum number of open statements
that can be allocated from the statement pool at the same time (negative for no
limit),

- maxWait, the maximum time in milliseconds that the pool will wait when
there are no available connections for a connection to be returned before throwing
an exception (negative to wait indefinitely),

- minldle, the minimum number of active connections that can remain idle
in the pool, without extra ones being created, or 0 to create none,

- minpool, minimum number of connections that should be held in the pool,
- maxpool, maximum number of connections that may be held in the pool,

- maxsize, maximum number of connections that can be created for use,

- idleTimeout, the idle timeout for connections (seconds).

A single pool maintains multiple open connections, where each connection
connects to the same database source using the same authentication. The pool also
manages how those connections are handed out to be used, and what happens to
them when they are closed. Both the size of the pool and the number of available
connections are changed based on user-specified properties [12].

A pool therefore has two general types of behaviour: expiring, and non-
expiring. An expiring pool is one for which any connection that is idle/unused for
a specified time (idle timeout) is "expired" (removed) from the pool. In both
situations the pool can hand out up to maxsize connections, and pool up to
maxpool connections. The difference is that a non-expiring pool will not expire
unused connections, so will generally retain a larger number of connections for
reuse as they only get removed from the pool if they become invalid. The two
pool types also differ in how they initially become populated. Immediately after
creation both types start out with no connections in the pool.

Pooling of connections establishes automatically as items are checked in
and out. Because of the additional checks that need to be done, an expiring pool
can self-populate very quickly, but a non-expiring pool will populate gradually
[13]. Picking appropriate values for the pooling properties is not always easy.
Various factors may affect decisions, not least of which could be licence
restrictions, system resources, etc. Many databases will close any unused
connections once a certain time has elapsed (e.g. MySQL) [14].

2. Connection pooling method

When creating/using a connection pool instance it is assumed that access
to the relevant java database connectivity drivers (JDBC) has already been
established. To ensure this is done the JDBC driver(s) should be appropriately
registered with java.sql.DriverManager before creation/use of any pools. Once
the appropriate JDBC drivers have been registered, a connection pool may be

82 Andrei Maciuca, Ioana Branescu Raspop, Simona Dumitrescu, Gelu Ionescu, Dan Popescu

created. Once the pool is created it is ready to hand out connections. By default
the pool doesn't open any connections until the first time one is requested, even if
minpool > 0. If there is a need for populating the pool of connections at the
initialization level, a call to the pool’s init method should be done [15].

Once the application no longer requires the pool its resources should be
released. Releasing the pool when finished is an important step and should not be
omitted. Failure to release the pool can cause an application to hold on to
resources, which often leads to unexpected results such as unexpected memory
usage, failure of applications to terminate, etc. To help with this it’s possible to
automate the release with a shut-down hook, which releases the pool when the
Java Virtual Machine exits [16].

In this article we are going to observe the impact of connection pooling on
a web application which is deployed on Apache Tomcat Server [17]. We are
going to use Web Application Performance Testing (WAPT) to realize two
scenarios. WAPT is used as software for testing web application. Its main purpose
is to show database access information in different scenarios that a regular user
does in the application. In the first scenario, the connection to the database has no
connection pooling, and in the second one we enable connection pooling. This is
the chart returned by the WAPT client for the first case, no connection pooling

(Fig. 1).

I'.II-' Vi | |

RV INTEA N AN IS A NS W A
Fig.1. No connection pooling chart

Using the same web application, the same application server (Apache
Tomcat) and the same scenario for WAPT, but enabling connection pooling with
the following parameters [18]:
<beanid="mysqglDataSource”
class="org.apache.commons.dbcp.BasicDataSource” destroy-method="close ’>

Optimizing database access using connection pooling in MySQL Server and Apache Tomcat

83

<property name=
<property name=
<property name=
<property name=
<property name=
<property name=
</bean>

“driverClassName” value="com.mysql.jdbc.Driver />
“url” value="jdbc:mysql://localhost:3306/bwsn”’/>
“maxActive” value="20"></property>

“maxldle” value="2(0"></property>

“username” value="root”’/>

“password” value="admin />

the following chart is obtained (Fig.2).

] II n I. .‘l. Iy 11

WA ! LR .."; .'-_ :. LR W A l'-.l ! \l] % '.I
APV S, WP L WP L 0 ' WV O SO 0T PN | SIS | SN, NSNS TR S

Fig.2. With connection pooling chart

The following legend is associated with figures 1 and 2. Therefore, we can
see the average response time, the average processing time, average download
time, hits per second and so on:

Avg response time, sec [+ Sessions per second Al
|* Avg respanse time with page elements, sec [+ Pages per second
|= Avg processing time, sec Hits per second

| Avg dowrload time, sec | Active users

The grey line from the chart represents the number of hits. It can be
noticed that the second scenario, with connection pooling, has a higher number of
hits, therefore resulting higher performance. The red line shows the average
processing time (in seconds). Again, in the case of using connection pooling, it is
smaller than in the first scenario, so application efficiency is improved.

In order to justify the optimized performance, we are going to show the
tables that contain values resulted from the two scenarios. These values are also
generated by WAPT client, for the following scenario: five pages are accessed

84 Andrei Maciuca, Ioana Branescu Raspop, Simona Dumitrescu, Gelu Ionescu, Dan Popescu

from the application, the first one is the main menu, the second one presents a list
of recordings (a request is done to the database for a select), the third one brings
the user to an input form, where values are introduced and saved (so, another
request is done to the database for an insert). After insert the forth page is showed
with the new list of recordings (as the list has a new element, a request to the
database must be done again for a select so the list will have all the actual
elements), and the last page redirects to the main menu. There are twenty users
logging in the same application, with a step of five seconds, and the length of the
scenarios is sixty seconds.

3. Case study for a clinical medicine database

The purpose of this database is to obtain a better understanding of the
diseases through its main components (mechanisms and elements) and to find as
many relations between these components, which will lead to new investigation
threads [19]. The access to this database is done using the connection pooling
method.

In order to get this result, from the design point of view, the database has
many tables and relations.

Therefore, the main results of the interrogations will be:

«the mechanisms and elements of each disease;

*the human body systems affected by a specific disease;

ethe connections between a disease and it’s mechanisms, elements,
systems affected and the specific organs [20].

The structure of the database is represented in Fig. 3. Further explanations
about the tables, fields and the relations between the tables will be given in the
following pages.

3.1 Conventions

The fields marked with “*” are primary keys. Each table has a field named
1d (of type Integer) which is primary key.The name of the /d field will have the
following structure IdTableName. The foreign keys are marked using the /d of the
referenced table (the foreign one) in the referencing table (the current one) with
the character “ ahead the /d name. Example: in the MechanismElements table,
the IdMechanism field makes the connection with the Mechanism table through a
foreign key (_IdMechanism is the foreign key).

In the designing of this database there have been used the following types
of relations:1:N, N:N and auto-reference relations [21]. Further on, it will be
described how the last two relations were implemented.

Optimizing database access using connection pooling in MySQL Server and Apache Tomcat 85

3.2 Tables’ Classification

The tables are divided into the following categories, depending of the
information stored:

* Main tables: Disease, DiseaseCategory, Mechanism, MechanismType,
Elements, ElementsType, System, Organ.

These tables are the one which store the most important information of the
database.

* Main connection tables: DiseaseElements, DiseaseMechanism,
MechanismElements, SystemDisease, DiseaseCategoryDisease, MappingTable.
The purpose of these tables is to implement the N:N relationships between two
main tables. The name of a table follows the format
Name of the Table]Name of the Table2, meaning a N:N relation between
Table 1 and Table 2. These tables have only 3 fields: Name, IdTablel,
_IdTable2. The field Name is the primary key and this is why it must store an
unique value. Because of this rule, the name will follow the format:
_IdTablel IdTable2.

» The tables for the lists: ElementsLink, MechanismLink, SystemLink,
GeneratedDisease.

Each element/mechanism/system/disease will have a corresponding list of
elements/mechanisms/systems/diseases with which it may have a relation.

From the point of view of the implementation of the database, this means
an auto-reference relationship, while from the point of view of the programming
code this means it will be implemented using the list type [22]. These tables are
similar (from the point of view of the structure of the database) with the previous
ones, except the fact that they have two fields which points out to the same table
and will be implemented in a different way in the application.

« Secondary tables: Publication, InfluenceFactors.

4. Experimental results

Table 1 presents a summary of the experiment. It can be easily observed
the difference between the successful hits and the slight improvement in average
response time, therefore a reason for saying that optimization of database access
took place. The summary also presents the number of successful and failed
sessions, successful and failed pages, successful and failed hits and the total
kilobytes sent and received.

Optimizing database access using connection pooling in MySQL Server and Apache Tomcat 87

Again, the profile with connection pooling provides great improvements in
comparison with the scenario where connection pooling was not used.

Table 1
Summar
Profile NoConnPooling | WithConnPooling
Successful sessions 11 54
Failed sessions 0 0
Successful pages 73 301
Failed pages 0 0
Successful hits 73 301
Failed hits 0 0
Total Kbytes sent 33 13.9
Total Kbytes received 856 227
Avg Response time, sec (with page elements) 0.05(0.05) 0.04(0.04)
Table 2
Successful hits (Failed hits)
Profile NoConnPooling WithConnPooling
0-6s 2(0) 7(0)
6-12s 1(0) 10(0)
12-18s 1(0) 14(0)
18-24s 3(0) 23(0)
24-30s 8(0) 23(0)
30-36s 7(0) 38(0)
36-42s 10(0) 31(0)
42-48s 9(0) 42(0)
48-54s 15(0) 59(0)
54-60s 17(0) 54(0)
Total 73(0) 301(0)
Table 3
Successful hits per second/ Network errors/Timeouts
Profile | Successful hits Successful hits Network errors/ Network errors/
per second per second Timeouts Timeouts
NoConnPooling | WithConnPooling | NoConnPooling WithConnPooling
0-6s 0.33 1.17 0/0 0/0
6-12s 0.17 1.67 0/0 0/0
12-18s 0.17 2.33 0/0 0/0
18-24s 0.5 3.83 0/0 0/0
24-30s 1.33 3.83 0/0 0/0
30-36s 1.17 6.33 0/0 0/0

88 Andrei Maciuca, Ioana Branescu Raspop, Simona Dumitrescu, Gelu Ionescu, Dan Popescu

36-42s 1.67 5.17 0/0 0/0
42-48s 1.5 7 0/0 0/0
48-54s 2.5 9.83 0/0 0/0
54-60s 2.83 9 0/0 0/0
Total 1.22 5.02 0/0 0/0

In table 3 we present the successful hits per second. As it can be seen,
there is a significant difference of 3.8 seconds. Also in the same table we proved
that there were no network errors, so the scenario is not influenced by other
external parameters. Also, for the same reason, the timeout column shows that
there are no timeouts in both scenarios, with and without connection pooling. In
conclusion, there were no external factors that could influence the experiment.

In table 4 we present the actions related with every page from the scenario,
and their relation with the users think time. The application server is installed on
the locale machine and it uses the port 8080, the default port for Apache Tomcat
Server. Connection to the internet will not be needed in order to access the
application and introduce all the values received from the nodes (called users in
the experiment) if the nodes and the application server are on the same network. If
this demand is not met, the internet access is imperative in order to receive data.
On the other hand, the machine where the application server is installed needs
internet access to send various notifications to hospitals, firemen or police
stations. These notifications are the main goal of the whole application, offering
help to the elderly and all people who need medical homecare.

Table 5 strengthens the fact that it has been used the same scenario, the

same pages and the same server and port for the experiment.
Table 4

Profile “NoConnPooling”

Name Page

NoConnPooling.page 1: http://localhost:8080/disease | /disease

NoConnPooling.page 2: /disease/DiseasesList.action
http://localhost:8080/disease/DiseasesList.action

NoConnPooling.page 3: /disease/DiseaseAdd.action
http://localhost:8080/disease/Disease Add.action

NoConnPooling.page 4: /disease/Diseaselnsert.action
http://localhost:8080/disease/Diseaselnsert.action

NoConnPooling.page 5: /disease/admin.action

http://localhost:8080/disease/admin.action

Optimizing database access using connection pooling in MySQL Server and Apache Tomcat 89

Table 5

Profile "WithConnPooling”
Name Page
WithConnPooling.page 1: /disease
http://localhost:8080/disease
WithConnPooling.page 2: /disease/DiseasesList.action
http://localhost:8080/disease/DiseasesList.action
WithConnPooling.page 3: /disease/DiseaseAdd.action
http://localhost:8080/disease/DiseaseAdd.action
WithConnPooling.page 4: /disease/Diseaselnsert.action
http://localhost:8080/disease/Diseaselnsert.action
WithConnPooling.page 5: /disease/admin.action
http://localhost:8080/disease/admin.action

5. Conclusions and future development

Connection pooling is a technique used for sharing a cached set of open
database connections among several requesting clients. It doesn’t require
modifying the code significantly and it provides enhanced performance benefits.
Object pooling should be used with care. It does require additional overhead for
such tasks as managing the state of the object pool, issuing objects to the
application, and recycling used objects. Pooling is best suited for objects that have
a short lifetime. When working in a rich Java EE environment it is most likely to
use an out-of-box connection pooling facility provided by the application server,
therefore making the applications’ use of connection pooling transparent.

As a conclusion, the values presented above demonstrate what has been
said in the first part of the article. The optimized database access has been proved
with a higher number of hits per second, by a lower average response time and
user think time. The values obtained are correct and consistent, as there are no
external parameters that could influence the experiment, demonstrated by no
network errors and no timeouts. In the same time, this experiment is somehow
similar with optimizing database access by using the “join” clause [23].

As a future development, an experiment in which various connection
pooling parameters are attributed different values can be done. For example,
initialSize and maxActive parameters can receive different values in web
applications with many or few requests, in order to decide what values are suitable
for each case.

Regarding the medical database case study, the disease system is complex,
intricate and interesting. It has a large number of variables. This database model
has just a few numbers of elements. It can be expended, by adding new tables
with new elements. The model will become more complex and will offer the
possibility to store a lot of data.

90 Andrei Méciuca, loana Branescu Raspop, Simona Dumitrescu, Gelu Ionescu, Dan Popescu

Acknowledgement
This work was supported by doctoral program POSDRU/107/1.5/S/76813.

REFERENCES

[1] Julia Lerman, Programming Entity framework, February 2009, O’Reilly Publishing

[2] Todd Cock, Mastering JSP, Sybex Publishing.

[3] Rahul Sharma, Beth Stearns, Tony Ng, J2EE Connector Architecture and Enterprise
Application Integrity, January 2003.

[4] George Reese, Database Programming with JDBC and Java, 2™ Edition, August 2000,
O’Reilly Publishing.

[5] George Reese, Java Database Best Practices, May 2003, O’Reilly Publishing.

[6] Jason Hunter, William Crawford, Java Servlet Programming, Second Edition, April 2001,
O’Reilly publishing.

[7] SrinivasGuruzu, Gary Mak, Hibernate Recipes: A Problem-Solution Approach, Apress
publishing.

[8] Nick Kew, Rich Bowen, The Apache Module Book: Application Development with Apache,
January 2007, Prentice hall Publishing.

[9] Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy D. Zawodny, Arjen Lentz, Derek J.
Balling: High Performance MySQL, O’Reilly Publishing, June 2008.

[10] Matthew Moodie, Kunal Mittal: Pro Apache Tomcat 6, Apres publishing, 2007.

[11] Maydene Fisher, Jon Ellis, Jonathan Bruce, JDBC API tutorial and reference, June 2003,
Pearson Education.

[12] Ying Bai: Practical Database Programming With Java, Wiley publishing, 2011.

[13] Yuli Vasiliev. Beginning Database-Driven Application Development in Java EE using
GlassFish, Apress publishing, 2008.

[14] David Parsons: Dynamic Web Application Development using XML and Java, Cengage
Learning publishing, 2008.

[15] Art Taylor: J2EE And Beyond: Design, Develop and Deploy World-Class Java Software,
Pearson Education publishing, 2003.

[16] Mahmoud Parsian: JDBC Recipes: A Problem-Solution Approach, Apress publishing, 2005.

[17] Fl. Manea, C. Cepisca, An original way for having remote control over any type of
automation, U.P.B. Sci. Bull., Series C, Vol. 69, No. 2, 2007, ISSN 1454-234x.

[18] Chad Michael Davis, Scott Stanlick, Manning Struts 2 in Action, May 2008, Donald Brown,
Manning publishing.

[19] Denis Cosmatos, Wyeth; Shein-Chung Chow, Duke University School of medicine, Durham
NC, Translational Medicine — Strategies and Statistical Methodsm 2008.

[20] Murray Longmore, lan B.Wilkinson, Supraj Rajagopalan, Mini Oxford Handbook of Clinical
Medicine

[21] D.Carstoiu, Baze de date relationale, Printech Publishing, Bucharest, 2000.

[22] Design Patterns: Elements of Reusable Object-Oriented Software - Gamma, Erich; Richard
Helm, Ralph Johnson, and John Vlissides.

[23] L Rusu, C. Ariton, Mihaela Capatoiu, Viad Grosu, The optimization of data access using
“join” clause, U.P.B. Sci. Bull., Series C, Vol. 68, No. 4, 2006.

