
U.P.B. Sci. Bull., Series A, Vol. 84, Iss. 1, 2022 ISSN 1223-7027

PYPARAX - PYTHON MODULE FOR OPTICAL SETUP
SIMULATION IN PARAXIAL APPROXIMATION

Victor-Cristian Palea1 and Liliana Preda2

This module is intended as an optical system simulation tool for
propagation of optical beams through optical systems using the paraxial wave
equation. The module uses three types of optical elements (free space, phase
mask, and amplitude mask) based on which various procedures are defined.
Out of the implemented procedures we name forward and backward propa-
gation, phase mask retrieval, alignment analysis, and plotting functions.

Keywords: Python module, paraxial optics, optical system design, phase
modulation, Monte-Carlo

1. Introduction

Numerical solvers and methods for the propagation of optical beams cover
a wide range of regimes, with commercial solutions from ray tracing software
such as OpticStudio[1] to FDTD based solvers such as OptiFDTD[2]. This
however does not exclude the potential need in some contexts for in-house
software solutions that are optimized strictly for the type of problem that is
investigated and the computing system in use, while also being cost-effective.

We have developed the PyParax[3] module emerged from our necessity
to study the propagation related properties of specific optical profiles[4, 5, 6],
and methods for synthesizing them using phase modulation. The topic of char-
acterizing the propagation related properties from Palea et al.[4, 5, 6] required
that two steps are to be satisfied, namely the construction of optical profiles
from the theoretical results, and the propagation of these profiles in order to
investigate their properties. The synthesis problem follows as a second topic
because it consists of identifying the methods with which these optical beams
can be obtained in the lab using phase modulation. This required the inte-
gration of the numerical solver[7] into a method through which basic optical
systems can be considered when propagating the optical beam. The imple-
mentation of such a propagator function that can handle optical systems has
enabled the use of the software for more than just solving the propagation

1Asistent, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Roma-
nia, e-mail: victor.palea@physics.pub.ro

2Lecturer, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Roma-
nia, e-mail: liliana.preda@physics.pub.ro

192 Victor-Cristian Palea, Liliana Preda

equation and computing phase masks. Since the user defines the optical sys-
tem, the possibility of optimizing it is evident.

Another aspect that is related to the synthesis of optical profiles is the
constraints that have to be satisfied. Some common algorithms that handle
the phase retrieval problem and are used in phase modulation[8, 9] impose
that the output desired profile has only the amplitude function defined by the
user, the phase being of no real interest. One exception here is the Yang-Gu
algorithm[10] which can be applied by defining the phase function instead of
the amplitude, but still one cannot choose both. A solution to having both
amplitude and phase to be defined by the user is to use two phase masks[11]
but this is more costly since two spatial light modulators are required for
experimental implementations.

This state of affairs, and the need of optical profiles with specific ampli-
tude and phase functions, implied a different approach to the problem of profile
synthesis. Since PyParax can handle the propagation through optical system,
the solution to the phase mask computation problem consisted in optimizing
the optical system in order to have a good reconstruction of the desired optical
profile. Also, since optical systems are expected to be implemented in the lab
and not just simulated, an option for including alignment tolerances has been
included in order to check qualitatively how the output profile is affected by
the positioning of the optical elements.

2. Software description

PyParax can be used as a Python 3.X module that can be accessed on
Github[3] under GNU license. The installation is done by calling the setup.py
file using
>> python3 setup.py install

in Terminal for Ubuntu, or CMD for Windows 10, from the directory where
the module is placed. After installment it can be used as any other Python
module, since its inherent structure relies on submodules and classes in order
to split the different sections of the main module as it is mentioned below.

The numerical solver is based on a Fourier Transform method[7] and the
optical elements are of three types: free space, phase masks and amplitude
masks. Due to their frequent use lenses have been implemented as a stand-
alone optical element that can be defined through its focal length, although
technically it is still a phase mask. From our point of view this classification
of the optical elements, although having only three classes of elements, is
quite general for image formation systems, thus permitting a variety of optical
systems to be simulated.

For more information regarding the implementation check the specific
submodule based on the following subsection and the documentation.

PyParax - Python module for optical setup simulation in paraxial approximation 193

3. Module structure

The structure of the PyParax module is given in figure 1. There are three
submodules that contain computational parts within PyParax, the Function
Generator (FG), the Numerical Solver (NS), and the Experimental Simulator
(ES). The FG is a collection of frequently used functions e.g. common initial
condition (Gaussian, Airy), lens phase masks, and amplitude masks for circular
apertures. The NS handles the computation of the solution for free space prop-
agation. The ES is the main submodule since it contains all the functions that
are related to the propagation through optical systems, optimization based on
some parameters of the lenses (if they exist within the optical system), plots,
Monte-Carlo calculations, and system RAM requirements estimations.

PyParax

Numeric parameters
?

Internal imports
?
66

?
6

?

FG NS ES

666

External imports
6

External modules

Fig. 1. The structure of the PyParax module. Arrows
indicate the import logic between the submodules and with
the external modules.

All the above mentioned submodules communicate via an internal im-
ports submodule. They also import from a Numeric Parameters submodule
the default values of various parameters such as the scale of the spatial domain,
the number of points and step values on each axis, the wavelength, the refrac-
tive index of the medium and values for shifting the transverse axes. These
values can be changed according to the requirements of the user.

In order to make use of existing optimized modules for linear algebra
operations and data ploting, the three submodules FG, NS, and ES can import
via an external imports submodule the required modules.

4. Illustrative examples of functionality

Based on the features of the module, several examples are presented,
namely the propagation of a Gaussian beam through a misaligned telescope,

194 Victor-Cristian Palea, Liliana Preda

the computation of a phase mask for optical modulation of the output beam
profile and its validation, and some Monte-Carlo of both previous cases.

4.1. Gaussian beam through an optical system

A basic optical system that can easily be implemented in PyParax con-
sists of a telescope made of two lenses that are separated by a given distance.
The propagation model used here is the 1-dimensional transverse space ver-
sion, where the transverse axis is designated by an axis x and propagation
along the z axis. The optical system consists of 5 optical elements presented
in figure 2. The input Gaussian beam is propagated through free space of
distance 100 units. The first lens in the system is shifted along the x axis by
0.5 units so before the lens phase mask is applied on the profile it is shifted
for the corresponding distance. After this the resulting profile is propagated
for another 150 units where it reaches the second lens which is shifted along
the other transverse axis y by 1 unit. Since the propagation is done only with
a 1-dimensional transverse space that considered only the x axis, this shift is
not taken into account, so the phase mask of an aligned lens is applied. Next
the profile is propagated for another 100 units where it reaches the end of the
optical system marked as the output.

It should be noted that the implementation of the module sets as the
length unit of measurement the mm, which has been used in all the examples
that are to be presented in this article.

All the following code snippets start with the import of the FG and ES
submodules done using
from pyparax import f u n c t i o n g e n e r a t o r as FG
from pyparax import expe r imenta l s imu la to r as ES

so we will not repeat this step at each example.
The implementation of the optical system from figure 2 is given in the

following code snippet:
system = [100 , [” l ” , 50 , 0 . 5 , 0] , 150 , [” l ” , 80 , 0 , 1] ,

↪→ 100]
f 0 = FG. s t a n d a r d i n i t i a l c o n d i t i o n s . g ene ra t e gaus s 1d (0 ,

↪→ 0 . 2)
f = ES . expe r imenta l s imu la to r 1d . propagate (f0 , system ,

↪→ pr in t output = True)

First we import the FG and ES submodules. An optical system is defined
with a structure given by the list attributed to the variable system, which can
be interpreted as having:
(1) 100 - free space of 100 units length;
(2) [”l”, 50, 0.5, 0] - a lens with focal length of 50 units, and offsets of 0.5 units

on the x axis and 0 units on the y axis;

PyParax - Python module for optical setup simulation in paraxial approximation 195

Input 100
6

?

f = 50

150

6

?

f = 80

100 Output

Fig. 2. Optical system schematic for a misaligned telescope.

(3) 150 - free space of 150 units
(4) [”l”, 80, 0, 1] - a lens with focal length of 80 units, and offsets of 0 units

on the x axis and 1 unit on the y axis;
(5) 100 - free space of 100 units.

Next the initial condition is assigned to the variable f0. We have used a
Gaussian function of mean 0 units and standard deviation of 0.2 units. Finally
the solution is computed and stored in the f variable. If the print output
variable is True, then a plot of the beam’s amplitude profile is made at the
end of the computation which is given in figure 3. The 2 vertical lines mark
the existence of the lenses at the corresponding position in the optical system.

Fig. 3. Gaussian beam propagated through a misaligned
telescope. The cyan vertical lines indicate the position of the
lenses along the propagation axis.

An observation is required at this point. The amplitude functions from
figure 3 and the following ones have been rescaled at each point along the
propagatin axis such that the maximum amplitude is equal to 1. We consider
this to help better visualize the beam when it is focused due to the difference
in amplitude. This option can be toggled on or off via parameter norm which
can be initialized directly from the propagate function’s input parameters.

196 Victor-Cristian Palea, Liliana Preda

4.2. Single phase mask retrieval

The second example consists of an optical system that generates an Airy
profile from a Gaussian using a phase mask. The method consists of using an
initial system which is then optimized manually, which gives the cases from
figure (4). For this task we use the following code snippet:
system1 = [100 , [’ l ’ , −50, 0 , 0] , 30]
system2 = [1 0 0]
f i n = FG. s t a n d a r d i n i t i a l c o n d i t i o n s . g ene ra t e gaus s 1d

↪→ (0 , 0 . 6)
f o u t = FG. s t a n d a r d i n i t i a l c o n d i t i o n s . g e n e r a t e a i r y 1 d

↪→ (40 , 0 , 1)
mask = ES . mask generator 1d . compute mask dual system (

↪→ system1 , system2 , f i n , f out , check mask = True ,
↪→ pr in t output = True)

(a) Initial (b) Optimized

Fig. 4. Phase modulated Gaussian beam to generate an
Airy beam using an initial system which is then optimized.

In order to compute the phase mask the optical system is split in two
parts, namely system1 which contains all the elements upto the phase mask to
be computed, and system2 which contains the elements after the phase mask.
The syntax here is similar as in the previous example with the observation that
a negative focal length corresponds to a divergent lens. The input beam profile
is given by f in, initialized as a Gaussian beam, and the desired beam profile
is f out which in this case is an Airy function. The parameters of the Airy
function generator are, in this order, scale along the transverse axis, offset
of the main lobe, and decay by considering an exponential function that is
multiplied with the original function in order to truncate its amplitude profile.

The phase mask computation is handled by a built in function im-
plemented in mask generator 1d, namely compute mask dual system.

PyParax - Python module for optical setup simulation in paraxial approximation 197

This is done by a forward-backward propagation method[12] with the result-
ing phase mask being saved in the mask variable. Since not all optical systems
are optimal for a given input and desired output profiles, the quality of the re-
trieval is given by the maximum of the convolution between the desired output
profile and the one generated with the retrieved phase mask. This analysis is
toggled on via parameter check mask which gives the similarity of approx-
imately 91%. The similarity value can be improved to approximately 98.5%
by extending the transverse domain from the default 2000 to 8000 points and
changing the subsystems to

system1 = [100 , [’ l ’ , −50, 0 , 0] , 250]
system2 = [2 5 0]

4.3. Monte-Carlo tolerance test

Another PyParax functionality is related to alignment tolerance analysis.
The investigated case here is given by an optical system consisting of two lenses
out of which one has a possible alignment error of ±0.5 units perpendicular to
the propagation axis.

system = [100 , [’ l ’ , 50 , 0 . 5 , 0] , 150 , [’ l ’ , 30 , 0 , 1] ,
↪→ 100]

s y s t em er ro r s = [0 , [’ l ’ , 0 , 0 , 0] , 0 , [’ l ’ , 0 , 0 . 5 , 0] ,
↪→ 0]

f 0 = FG. s t a n d a r d i n i t i a l c o n d i t i o n s . g ene ra t e gaus s 1d (0 ,
↪→ 0 . 2)

f = ES . expe r imenta l s imu la to r 1d .
↪→ m o n t e c a r l o p r e c i s i o n t e s t (f0 , system ,
↪→ sy s t em er ro r s , 20)

Unlike the previous examples a variable system errors with identical
structure as system is initialized. It contains the tolerance for the numerical
parameters that are used to define each element in system, which implies that
the second lens’s position can be sampled from the interval [−0.5, 0.5] units.

Based on this approach, the function monte carlo precision test prop-
agates the initial condition f0 for 20 iterations, each time generating an optical
system with numerical values sampled from their corresponding tolerance in-
tervals. The amplitude profile of the resulting beams are added to a variable
that is returned to initialize f.

The plot of f is given in figure 5, where as expected, the shift of the
second lens changes the position of the spot where the beam focuses on the
x-axis, thus showcasing the Monte-Carlo function of PyParax.

198 Victor-Cristian Palea, Liliana Preda

Fig. 5. Monte-Carlo test of the telescope system.

4.4. Spiral phase plate

For this last example we consider the case of investigating the synthesis
of optical vortices using a spiral wave plate where we are interested in how the
optical vortex propagates when the system is aligned perfectly (tabel 1), how
does a misalignment affect the shape of the optical vortex amplitude profile
(tabel 2), and how does the standard deviation of the input Gaussian beam
account for a misalignment (tabel 3).

z[unit] 20 40 60 80 100

A
m

p.

m
=

2

ϕ
A

m
p.

m
=

3

ϕ
A

m
p.

m
=

4

ϕ

Table 1. Amplitude and phase functions of orbital vortices of
orders 2, 3 and 4 during propagation. The phase function is given
as a product between the phase and the amplitude functions.

PyParax - Python module for optical setup simulation in paraxial approximation 199

∆x[unit]
-0.2 -0.1 0 0.1 0.2

∆
y
[u

ni
t]

-0.2

-0.1

0

0.1

0.2

Table 2. Amplitude analysis of misalignment of the spiral
phase mask for m = 4 along both transverse axes.

σ[unit] 0.1 0.2 0.3 0.4 0.5

f0

∆x = ∆y = 0[unit]

∆x = ∆y = 0.1[unit]

∆x = ∆y = 0.2[unit]

Table 3. Amplitude of optical vortices for different phase mask
alignments and spreads of the input Gaussian.

The results suggest that although a perfect alignment is desirable, having
a wider input Gaussian can compensate the existence of misalignments.

Optical vortices[13] can be generated by phase modulating a Gaussian
beam using a phase mask ϕ defined analytically by

ϕ = exp(i2πmθ) (1)
where θ is the angle in the polar representation and m is the order of optical
vortex. The optical system for synthesis implemented with PyParax is
system = [10 , [’mp ’ , mask , 0 , 0] , z]

where z is a variable that is varied and mask is the phase computed with
equation (1). The cases that we have computed are shown in table 1. Addi-
tionally for z = 100 units and m = 4 other simulations have been carried out

200 Victor-Cristian Palea, Liliana Preda

in table 2 in order to check the result in amplitude for having the phase plate
misaligned on the transverse axes by upto ±0.2 units, and how the spread of
the input Gaussian beam can compensate the misalignment in table 3.

5. Conclusion

We have developed the PyParax module as a basic tool for simulating the
propagation of optical profiles through systems made of amplitude and phase
masks separated by free space. This allows for prototyping optical setups in
the context of beam or image synthesis, testing its endurance to misalignment,
and compute masks for phase modulation.

R E F E R E N C E S
[1] https://www.zemax.com/pages/opticstudio Retrieved: July 2021
[2] https://optiwave.com/optifdtd-overview/ Retrieved: July 2021
[3] https://github.com/victorcristianpalea/PyParax
[4] V.-C. Palea, L.A. Preda, The control of intensity peak dynamics for paraxial

waves. Journal of Engineering Mathematics, 2019 Apr;115(1):89-98.
[5] V.-C. Palea, L.A. Preda, Construction of finite non-diffractive and self-

accelerating laser beams, Mathematical Methods in the Applied Sciences, 2021 May
12.

[6] V.-C. Palea, L.A. Preda, Iisotimic curves for description and control of intensity
profile dynamics of solutions to the paraxial wave equation, University POLITEHNICA
of Bucharest, Scientific Bulletin-Series A-Applied Mathematics and Physics, 2019 Jan
1;81(2):287-296.

[7] A. Couairon, E. Brambilla, T. Corti, D. Majus, O.D. Ramı́rez-Góngora, M. Kolesik,
Practitioner’s guide to laser pulse propagation models and simulation, The European
Physical Journal Special Topics, 2011 Nov;199(1):5-76.

[8] R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of the phase
from image and diffraction plane pictures, Optik, 1972, 35 237–46

[9] R.G. Dorsch, A.W. Lohmann, S. Sinzinger, Fresnel ping-pong algorithm for two-plane
computer-generated hologram display, Applied optics, 1994 Feb 10;33(5):869-75.

[10] G.Z. Yang, B.Z. Dong, B.Y. Gu, J.Y. Zhuang, O.K. Ersoy, Gerchberg–Saxton and
Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a compari-
son, Applied optics. 1994 Jan 10;33(2):209-18.

[11] L. Zhu, J. Wang, Arbitrary manipulation of spatial amplitude and phase using phase-
only spatial light modulators. Scientific reports. 2014 Dec 11;4(1):1-7.

[12] P.R. Stepanishen, K.C. Benjamin, Forward and backward projection of acoustic
fields using FFT methods, The Journal of the Acoustical Society of America, 1982
Apr;71(4):803-12.

[13] L. Allen, M.W. Beijersbergen, R.J. Spreeuw, J.P. Woerdman, Orbital angular
momen-tum of light and the transformation of Laguerre-Gaussian laser modes,
Physical review 1992 Jun 1;45(11):8185.

https://github.com/victorcristianpalea/PyParax

	1. Introduction
	2. Software description
	3. Module structure
	4. Illustrative examples of functionality
	4.1. Gaussian beam through an optical system
	4.2. Single phase mask retrieval
	4.3. Monte-Carlo tolerance test
	4.4. Spiral phase plate

	5. Conclusion
	REFERENCES

