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STABILITY IN p-TH MOMENT FOR UNCERTAIN NONLINEAR

SWITCHED SYSTEMS WITH INFINITE-TIME DOMAIN

Zhifu Jia1 and Cunlin Li2

The uncertain nonlinear switched system, characterized by its susceptibility
to subjective uncertainties, can be described through uncertain differential equations.

While investigations have covered mean stability, measure stability, and almost sure
stability in the context of uncertain nonlinear switched systems, these forms of stability

may not be suitable for every situation. This paper seeks to present the concept of

stability in the p-th moment for nonlinear switched systems, offering it as an additional
form of stability. The paper also introduces a stability theorem for uncertain nonlinear

switched systems that exhibit stability in the p-th moment. Moreover, it explores the

connections between stability in measure and stability in the p-th moment within the
framework of uncertain nonlinear switched systems. An example is offered to validate

the applicability of our outcomes.
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1. Introduction

Differential equations are an important means of characterizing nonlinear dynamical
systems [1, 2, 3, 4]. Nonlinear switched systems represent a fascinating intersection of sta-
bility [5], stabilization [6] and applications [7, 8, 9, 10], reflecting the intricate dynamics
of real-world processes. These systems encompass an array of subsystems, each delineat-
ed by distinct nonlinear dynamics, with the added complexity of switching between these
subsystems based on certain rules or triggers. In practice, nonlinear switched systems are
omnipresent in technology and nature, from electric power system [7], Robotic system [8],
the automatic transmission in vehicles [9] to the intricate patterns of gene expression in
biological cells [10]. The ongoing research in this domain is geared towards refining control
strategies to be resilient to uncertainties and perturbations, often leveraging computational
techniques like machine learning for adaptive control. Stochastic nonlinear switched systems
are a natural extension of classical switched system theory, integrating the unpredictabil-
ity of stochastic processes with the complexity of nonlinear dynamics. These systems are
characterized by their ability to switch between a collection of nonlinear subsystems in a
way that is not entirely predictable, often due to random disturbances, noise, or inherent
uncertainties in the system or the environment. Unlike stochastic switched systems [11], the
uncertain nonlinear switched system is a nonlinear switched system disturbed by subjective
uncertainties, which can be illustrated by uncertain differential equations associated with
belief degrees. This type of uncertainty associated with belief degrees is a distinct type of
indeterminate phenomenon that can be described using uncertainty theory [12, 13] as the
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opposite of probability theory. Today, uncertainty theory is widely applied in various field-
s,such as uncertain variational inequalities [14, 15], stability analysis of uncertain systems
[16, 17], Liu inequalities and numerical method of uncertain systems [18, 19]and so on.

Stability analysis [20] for the uncertain differential systems is fundamental and impor-
tant. For example, Su et al. [21] presented the concept of stability for the multidimensional
uncertain differential equation in the sense of uncertain measure, and subsequent stable in
p-th moment [22], stability in mean [23], almost sure stability [24] were investigated one
after another. In 2022, Su et al. [25] investigated three types of stabilities for an uncertain
nonlinear switched systems. However, these cannot be applied to all cases, so this paper
aims to supplement the existing research by presenting a concept of stability in p-th moment
for uncertain nonlinear switched systems. Besides theoretical research, uncertain differential
equations have numerous applications in dynamical systems, one of which is in nonlinear
switched systems, as explored in this paper and previous works [26, 27, 28].

The paper is organized as follows: Section 2 will provide a review of some basic
concepts, lemmas, and theorems. Section 3 presents the concept of p-th moment stability
and proves the stability theorem. In Section 4, we provide an example to demonstrate the
effectiveness of the results. Finally, a brief summary will be given in Section 5.

2. Preliminaries

Theorem 2.1. [18] Let Uk and Uαk be the solution and α-path of the uncertain differential
equation(UDE)

dUk = f(k, Uk)dk + g(k, Uk)dCk

Then

M{Uk ≤ Uαk ,∀k} = α,M{Uk > Uαk ,∀k} = 1− α.

Theorem 2.2. [20] Let Ck be a Liu process on uncertainty space. Then there exists an
uncertain variable K such that K(γ) is a Lipschitz constant of the sample path Ck(γ) for
each γ, uncertain measure M, and uncertain distribution function Φ(x),

lim
x→+∞

M{γ ∈ Γ|K(γ) ≤ x} = 1

and

M{γ ∈ Γ|K(γ) ≤ x} ≥ 2Φ(x)− 1.

Theorem 2.3. [18] Suppose that Ck is a canonical Liu process, and Uk is an integrable
uncertain process on [a, b]. Then the inequality

|
∫ b

a

Uk(γ)dCk| ≤ Kγ

∫ b

a

|Uk(γ)|dk

holds, where Kγ is the Lipschitz constant of the sample path Uk(γ).

Definition 2.1. [19]Let α be a real number with 0 < α < 1. An UDE

dUk = f(Uk, k)dk + g(Uk, k)dCk

is said to have an α-path Uαk if it solves the corresponding ordinary differential equation
(ODE)

dUαk = f(Uαk , k)dk+ | g(Uαk , k) | Φ−1(α)dk

where Φ−1(α)is the inverse standard normal uncertainty distribution, i.e.,

Φ−1(α) =

√
3

π
ln

1− α
α

.
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Theorem 2.4. [20] Let Ck be a canonical Liu process. Then there exists an uncertain
variable K such that for each γ, Kγ is a Lipschitz constant of the sample path Ck(γ), and

M{K ≤ x} ≥ 2

(
1 + exp

(
− πx√

3

))−1

− 1.

Theorem 2.5. [20]Let Ck be a canonical process. Then there exists a nonnegative uncertain
variable K such that Kγ is a Lipschitz constant of the sample path Ck(γ) for each γ, and

lim
x→+∞

M{K ≤ x} = 1.

A nonlinear uncertain switched system with infinite-time domain and countable switch-
es written as the following UDEs will be considered:

dUk = fi(k)

(
k,Uk

)
dk + gi(k)

(
k,Uk

)
dCk, k ∈ [0,+∞)

i(k) ∈ I =
{

1, 2, . . . ,M
}
,

U
∣∣
k=0

= U0,
(1)

where Uk ∈ Rn represents the state vector of the system, vector functions fi(k)(k,u) :
[0,+∞)×Rn → Rn and gi(k)(k,u) : [0,+∞)×Rn → Rn are both bounded for any i(k) ∈ I,
and Ck is a canonical process defined on an uncertainty space, representing the noise of the
system. Throughout this paper, for a vector u = (u1, u2, · · · , un)T , L1-norm is employed to
measure it as the following:

‖u‖ =

n∑
i=1

∣∣ui∣∣. (2)

The switching law of uncertain switched system (1) defined on the interval [0,+∞) is

Λ =
((
k0, i(0)

)
,
(
k1, i(1)

)
, . . . ,

(
kN , i(N)

)
, . . .

)
,

where kτ (τ = 0, 1, . . . , N, . . .) stand for the switching instants whose number is countable,
and 0 = k0 ≤ k1 ≤ · · · ≤ kN ≤ · · · < +∞. The tuple

(
kτ , i(τ)

)
means that at the

instant kτ the system switches to sub-system i(τ) from sub-system i(τ − 1), that is, sub-
system i(τ) alone keeps active in time interval [kτ , kτ+1) for each τ ∈

{
0, 1, . . . , N, . . .

}
. In

order to analyze the stability of system (1) more concisely, assumption 2.1 about the vector
functions in the system is presented in the following.
Assumption 2.1 It is assumed that the vector functions fi(τ)(k,u) and gi(τ)(k,u) satisfy
the strong Lipschitz conditions∥∥fi(τ)(k,u)− fi(τ)(k,v)

∥∥+
∥∥gi(τ)(k,u)− gi(τ)(k,v)

∥∥ ≤ Li(τ)(k)‖u− v‖,
∀u,v ∈ Rn, k ≥ 0

for each i(τ) = 1, 2, . . . ,M, where Li(τ)(k) are positive functions with∫ +∞

0

Li(τ)(k)dk < +∞.

The symbol L(k) is employed to denote the supremum of positive functions Li(τ)(k)
(
i(τ) =

0, 1, . . . ,M
)
, so the following equality is established for k ∈ [0,+∞) :

L(k) = sup
k

{
Li(τ)(k)

∣∣∣ τ = 0, 1, . . . , N, . . .
}

= sup
j

{
Lj(k)

∣∣∣ j = 1, 2, . . . ,M
}
. (3)

Lemma 2.1. If a vector function f(k) =
(
f1(k), f2(k), . . . , fn(k)

)
is differentiable when k >

0, then ‖f(k)‖ is differentiable almost everywhere in the interval (0,+∞).
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3. Stability Theorem

Inspired by the work in Gao et al. [22], we now consider stability in p-th moment of
uncertain nonlinear switched systems (1).

Definition 3.1. A multidimensional UDEs for uncertain nonlinear switched systems is said
to be stable in p-th moment if for any solutions Uk and Vk with initial values U0 and V0,
respectively, we have

lim
‖U0−V0‖→0

E[sup
k≥0
‖Uk −Vk‖p] = 0. (4)

Theorem 3.1. System (1) is stable in p-th moment if Assumption 2.1 is true, and the inte-
gral of the supremum of

{
Li(τ)(k)

∣∣ i(τ) = 0, 1, . . . ,M
}

on [0,+∞) is smaller than π√
3p

(p >

1), and ∫ +∞

0

L(k)dk <
π√
3p
.

Proof In the framework of system (1), we observe that the difference Uk(γ) −
Vk(γ) proves to be differentiable for each γ within the set Γ. This holds true for all values of
k in the range (0,+∞), excluding the specific instances {k1, k2, . . . , kN , . . .

}
. Given that the

Lebesgue measure of this set of switching instants is zero, it follows that ‖Uk(γ)−Vk(γ)‖ is
differentiable almost everywhere within the interval (0,+∞), in accordance with Lemma
2.1.

Define Aγ as the set comprising those values of k within (0,+∞) for which ‖Uk(γ)−
Vk(γ)‖ is differentiable. That is, Aγ =

{
k ∈ (0,+∞)

∣∣ ‖Uk(γ)−Vk(γ)‖ is differentiable.
}
.

On the other hand, Bγ represents the residual set in (0,+∞) outside of Aγ , it’s straight-
forward to deduce that the Lebesgue measure m(Bγ) = 0. Further, let’s express Uk(γ) =(
u1(γ), u2(γ), . . . , un(γ)

)T
and Vk(γ) =

(
v1(γ), v2(γ), . . . , vn(γ)

)T
. For any k within Aγ ,

there is always an interval [kτ , kτ+1) that encompasses the moment k. This implies that
the sub-system i(τ) is operational during that interval. Based on the criteria set forth in
Assumption 2.1, we can deduce that

d‖Uk(γ)−Vk(γ)‖

= d

n∑
i=1

∣∣ui(γ)− vi(γ)
∣∣ = d

n∑
i=1

±
(
ui(γ)− vi(γ)

)
=

n∑
i=1

±
(
dui(γ)− dvi(γ)

)
≤

n∑
i=1

∣∣dui(γ)− dvi(γ)
∣∣

=
∥∥dUk(γ)− dVk(γ)

∥∥
≤
∥∥[fi(τ)

(
k,Uk(γ)

)
− fi(τ)

(
k,Vk(γ)

)]
dk +

[
gi(τ)

(
k,Uk(γ)

)
− gi(τ)

(
k,Vk(γ)

)]
dCk(γ)

∥∥
≤
∥∥fi(τ)

(
k,Uk(γ)

)
− fi(τ)

(
k,Vk(γ)

)∥∥dk +
∥∥gi(τ)

(
k,Uk(γ)

)
− gi(τ)

(
k,Vk(γ)

)∥∥dCk(γ)

≤ Li(τ)(k) · ‖Uk(γ)−Vk(γ)‖dk + Li(τ)(k) · ‖Uk(γ)−Vk(γ)‖dCk(γ)

≤ Li(τ)(k) · ‖Uk(γ)−Vk(γ)‖dk +KγLi(τ)(k) · ‖Uk(γ)−Vk(γ)‖dk
=
(
1 +Kγ

)
Li(τ)(k) · ‖Uk(γ)−Vk(γ)‖dk,

Here, Kγ represents the Lipschitz constant associated with the sample path Ck(γ), as out-
lined in Theorem 2.2. Thus,

‖Uk(γ)−Vk(γ)‖ ≤ ‖Ukτ (γ)−Vkτ (γ)‖ · exp

((
1 +Kγ

) ∫ k

kτ

Li(τ)(s)ds

)
.
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For each k ∈ Bγ , we can pick k′1 from the interval
((

1− 1
2

)
k, k
)

such that k′1 ∈ Aγ . Subse-

quently, we can easily find k′2 from the interval
((

1− 1
3

)
k, k
)
−{k′1} such that k′2 ∈ Aγ . Fol-

lowing the same logic, for any n ∈ N+, we can select k′n from the interval
((

1− 1
n+1

)
k, k
)
−

{k′1, k′2, . . . , k′n−1} such that k′n ∈ Aγ . It’s clear that k′n → k as n → +∞. For any n ∈ N+

and k′n ∈ Aγ , based on the previous deduction, we obtain the following inequality:

‖Uk′n
(γ)−Vk′n

(γ)‖ ≤ ‖Ukτ (γ)−Vkτ (γ)‖ · exp

((
1 +Kγ

) ∫ k′n

kτ

Li(τ)(r)dr

)

≤ ‖Ukτ (γ)−Vkτ (γ)‖ · exp

((
1 +Kγ

) ∫ k

kτ

Li(τ)(r)dr

)
.

As n approaches +∞, and since Uk is sample-continuous for the event γ, we can conclude
that

‖Uk(γ)−Vk(γ)‖ ≤ ‖Ukτ (γ)−Vkτ (γ)‖ · exp

((
1 +Kγ

) ∫ k

kτ

Li(τ)(r)dr

)
.

In conclusion, for any k ∈ (0,+∞), coupled with the fact that γ is arbitrary, the inequality

‖Uk −Vk‖ ≤ ‖Ukτ −Vkτ ‖ · exp

((
1 +K

) ∫ k

kτ

Li(τ)(r)dr

)
(5)

is almost surely satisfied, where K is a nonnegative uncertain variable such that

M
{
K(γ) ≥ x

}
= 1−M

{
K(γ) < x

}
≤ 2

(
1 + exp

(
πx√

3

))−1

(6)

according to Theorem 2.4. In order to establish links with the initial states of the uncertain
nonlinear switched system (1), it is necessary to utilize its inherent characteristics. Subse-
quently, by making use of the definition of the function L(k), we can deduce the following

‖Uk −Vk‖ ≤ ‖Ukτ −Vkτ ‖ · exp

((
1 +K

) ∫ k

kτ

Li(τ)(r)dr

)

≤ ‖Ukτ−1
−Vkτ−1

‖ · exp

((
1 +K

) ∫ kτ

kτ−1

Li(τ−1)(r)dr

)
· exp

((
1 +K

) ∫ k

kτ

Li(τ)(r)dr

)

≤ ‖Uk0 −Vk0‖ · exp

((
1 +K

) τ−1∑
j=0

∫ kj+1

kj

Li(j)(r)dr

)

· exp

((
1 +K

) ∫ k

kτ

Li(τ)(r)dr

)

≤ ‖U0 −V0‖ · exp

((
1 +K

) τ−1∑
j=0

∫ kj+1

kj

L(r)dr

)

· exp

((
1 +K

) ∫ k

kτ

L(r)dr

)

≤ ‖U0 −V0‖ · exp

((
1 +K

) ∫ +∞

0

L(r)dr

)

(7)
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holds almost surely, which implies that

sup
k>0
‖Uk −Vk‖p ≤ ‖U0 −V0‖p · exp

(
p ·
(
1 +K

) ∫ +∞

0

L(r)dr

)
(8)

almost surely. Taking expected value on both sides of (8), then the following result

E

[
sup
k>0
‖Uk −Vk‖p

]
≤ ‖U0 −V0‖p · E

[
exp

(
p ·
(
1 +K

) ∫ +∞

0

L(r)dr

)]
= ‖U0 −V0‖p · exp

(
p ·
∫ +∞

0

L(r)dr

)
· E
[
exp

(
p ·K

∫ +∞

0

L(r)dr

)]
(9)

holds. Since L(k) is integrable on [0,+∞), we obviously get

exp

(
p ·
∫ +∞

0

L(r)dr

)
< +∞.

For the expected value E
[
exp

(
p ·K

∫ +∞
0

L(r)dr
)]
, we denote that q =

∫ +∞
0

L(r)dr < π√
3p
.

It follows from the definition of expected value and Theorem 2.4 that

E

[
exp

(
p ·K

∫ +∞

0

L(r)dr

)]
= E

[
exp(pqK)

]
=

∫ +∞

0

M
{

exp(pqK) ≥ x
}
dx

=

∫ +∞

0

M

{
K ≥ lnx

pq

}
dx

≤ 2

∫ +∞

0

(
1 + exp

(
π lnx√

3pq

))−1

dx

= 2

∫ +∞

0

(
1 + x

π√
3pq

)−1

dx < +∞.

Combining with (9), the following equality is derived:

lim
‖U0−V0‖→0

E

[
sup
k>0
‖Uk −Vk‖p

]
= 0.

When k = 0, it is easy to know that

lim
‖U0−V0‖→0

E
[
‖U0 −V0‖p

]
= lim
‖U0−V0‖→0

‖U0 −V0‖p = 0.

Combining the above two equalities, we get

lim
‖U0−V0‖→0

E

[
sup
k≥0
‖Uk −Vk‖p

]
= 0.

In conclusion, uncertain nonlinear switched system (1) is stable in p-th moment. The theo-
rem is verified.

Theorem 3.2. If uncertain nonlinear switched system (1) is stable in p-th moment, then
it is stable in measure.

Proof From Definition 3.1, for two solutions Uk and Vk with different initial values
U0 and V0, respectively. Then it follows from the definition of stability in p-th moment that

lim
‖U0−V0‖→0

E

[
sup
k≥0
‖Uk −Vk‖p

]
= 0,∀p > 0. (10)

By Markov inequality, for any given real number ε > 0, we have

lim
‖U0−V0‖→0

M{‖Uk −Vk‖ > ε} ≤ lim
‖U0−V0‖→0

E[‖Uk −Vk‖p]
εp

≤
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lim
‖U0−V0‖→0

E

[
sup
k≥0
‖Uk −Vk‖p

]
εp

→ 0,∀k ≥ 0.

Thus, p-th moment stability implies the stability in measure. This concludes the theorem.

Remark 3.1. Nevertheless, when dealing with uncertain switched systems, it’s crucial to
note that stability in measure doesn’t necessarily guarantee stability in the p-th moment. To
illustrate this point, let’s examine the following uncertain switched system{

dUk = Uk/(k + 1)2 dCk, k ∈ [0, T )
dUk = 2Uk/(k + 1)2 dCk, k ∈ [T,+∞),

(11)

consisting of two sub-systems, where the state variable Uk ∈ R. Obviously, f1(k, u) =
f2(k, u) = 0, g1(k, u) = u/(k + 1)2 and g2(k, u) = 2u/(k + 1)2 , so we have

‖f1(k, u)− f1(k, v)‖+ ‖g1(k, u)− g1(k, v)‖ ≤ 1

(k + 1)2
· ‖u− v‖,

‖f2(k, u)− f2(k, v)‖+ ‖g2(k, u)− g2(k, v)‖ ≤ 2

(k + 1)2
· ‖u− v‖

(12)

for any k ≥ 0, u, v ∈ R. And it is easy to find that L(k) = 4/(k + 1)2 which is integrable
on [0,+∞). Therefore, system (11) is stable in measure according to Theorem 3.1. Observing
system (12), we know that it has a solution Uk ≡ 0 with the initial state U0 = 0, and it has
a solution

Uk =


U0 · exp

(∫ k

0

1

(r + 1)2
dCr

)
, 0 ≤ k < T,

U0 · exp

(∫ T

0

1

(r + 1)2
dCr

)
· exp

(∫ k

T

2

(r + 1)2
dCr

)
, k ≥ T

(13)

with an initial state U0 6= 0. Then, for p > 1, we have

sup
k≥0
‖Uk − Vk‖p = sup

k≥T
‖Uk − Vk‖p

= ‖U0‖p · exp

(
p ·
∫ T

0

1

(r + 1)2
dCr

)
· sup
k≥T

exp

(
p ·
∫ k

T

2

(r + 1)2
dCr

)

≥ ‖U0‖p · sup
k≥T

exp

(
p ·
∫ k

0

2

(r + 1)2
dCr

)
(14)

almost surely, and we obtain

E

[
sup
k≥0
‖Uk − Vk‖p

]
≥ ‖U0‖p · E

[
sup
k≥T

exp

(
p ·
∫ k

0

1

(r + 1)2
dCr

)]

≥ ‖U0‖p · E
[
exp

(
p ·
∫ +∞

0

1

(r + 1)2
dCr

)] (15)

Because ∫ +∞

0

1

(r + 1)2
dCr ∼ N

(
0,

∫ +∞

0

1

(r + 1)2
dr

)
= N

(
0, 1), (16)

by applying related conclusions in uncertainty theory, we get that

E

[
exp

(
p ·
∫ +∞

0

1

(r + 1)2
dCr

)]
= +∞. (17)
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That is to say,

E

[
sup
k≥0
‖Uk − Vk‖p

]
= +∞ (18)

is established due to that U0 6= 0. Hence, system (11) is not stable in p-th moment according
to Definition 3.1. In short, uncertain switched system (11) is stable in measure but not stable
in p-th moment. Combining such result with Theorem 3.1, it is concluded that stability in p-
th moment is a sufficient and unnecessary condition of stability in p-th moment for uncertain
switched systems.

4. Numerical example

Example 4.1. In order to illustrate the effectiveness of Theorem 3.1, a numerical example
about stability will be presented. Now we consider the following uncertain nonlinear switched
system with infinite-time domain:

dUk = fi(τ)

(
k,Uk

)
dk + gi(τ)

(
k,Uk

)
dCk, k ∈ [0,+∞)

i(τ) ∈ I =
{

1, 2, 3, 4, 5
}
,

U0 =
(
u1(0), u2(0)

)T
,

(19)

where Uk =
(
u1(k), u2(k)

)T ∈ R2 represents the state vector of the system, and

f1
(
k,u

)
= e−k · u, g1

(
k,u

)
=

1

5 + k2
· exp

(
− u

)
,

f2
(
k,u

)
= e−

k
2 · u, g2

(
k,u

)
=

2

4 + k2
· exp

(
− u

)
,

f3
(
k,u

)
= e−

k
3 · u, g3

(
k,u

)
=

3

3 + k2
· exp

(
− u

)
,

f4
(
k,u

)
= e−

k
4 · u, g4

(
k,u

)
=

4

2 + k2
· exp

(
− u

)
,

f5
(
k,u

)
= e−

k
5 · u, g5

(
k,u

)
=

5

1 + k2
· exp

(
− u

)
.

The switching law of system (19) defined on the interval [0,+∞) is

Λ =
((
k0, 4

)
,
(
k1, 1

)
,
(
k2, 3

)
,
(
k3, 2

)
,
(
k4, 5

)
,
(
k5, 3

)
,
(
k6, 4

)
,
(
k7, 2

)
,
(
k8, 1

)
,
(
k9, 5

))
, (20)

where the switching moments kτ (τ = 0, 1, . . . , 9) are given as follows:

k0 = 0, k1 = 9, k2 = 19, k3 = 29, k4 = 39, k5 = 49,

k6 = 59, k7 = 69, k6 = 79, k7 = 89, k8 = 99, k9 = 109.

For any k ≥ 0, u,v ∈ R2, we have

‖f1(k,u)− f1(k,v)‖ ≤ e−k · ‖u− v‖, ‖g1(k,u)− g1(k,v)‖ ≤ 1

5 + k2
· ‖u− v‖,

‖f2(k,u)− f2(k,v)‖ ≤ e− k2 · ‖u− v‖, ‖g2(k,u)− g2(k,v)‖ ≤ 2

4 + k2
· ‖u− v‖,

‖f3(k,u)− f3(k,v)‖ ≤ e− k3 · ‖u− v‖, ‖g3(k,u)− g3(k,v)‖ ≤ 3

3 + k2
· ‖u− v‖,

‖f4(k,u)− f4(k,v)‖ ≤ e− k4 · ‖u− v‖, ‖g4(k,u)− g4(k,v)‖ ≤ 4

2 + k2
· ‖u− v‖,

‖f5(k,u)− f5(k,v)‖ ≤ e− k5 · ‖u− v‖, ‖g5(k,u)− g5(k,v)‖ ≤ 5

1 + k2
· ‖u− v‖,
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which follows that

‖f1(k,u)− f1(k,v)‖+ ‖g1(k,u)− g1(k,v)‖ ≤
(
e−k +

1

5 + k2

)
· ‖u− v‖,

‖f2(k,u)− f2(k,v)‖+ ‖g2(k,u)− g2(k,v)‖ ≤
(
e−

k
2 +

2

4 + k2

)
· ‖u− v‖,

‖f3(k,u)− f3(k,v)‖+ ‖g3(k,u)− g3(k,v)‖ ≤
(
e−

k
3 +

3

3 + k2

)
· ‖u− v‖,

‖f4(k,u)− f4(k,v)‖+ ‖g4(k,u)− g4(k,v)‖ ≤
(
e−

k
4 +

4

2 + k2

)
· ‖u− v‖,

‖f5(k,u)− f5(k,v)‖+ ‖g5(k,u)− g5(k,v)‖ ≤
(
e−

k
5 +

5

1 + k2

)
· ‖u− v‖.

Therefore fj(k,u) and gj(k,u)
(
j = 1, 2, 3, 4

)
satisfy the strong Lipschitz conditions in As-

sumption 2.1. And we have

L1(k) = e−k +
1

5 + k2
, L2(k) = e−

k
2 +

2

4 + k2
, L3(k) = e−

k
3 +

3

3 + k2
,

L4(k) = e−
k
4 +

4

2 + k2
, L5(k) = e−

k
5 +

5

1 + k2
,

so according to the definition of L(k) in Eq. (3), the following expression is derived:

L(k) = sup
j

{
Lj(k)

∣∣∣ j = 1, 2, 3, 4, 5
}

= e−
k
5 +

5

1 + k2
, k ∈ [0,+∞).

Through calculating, we have∫ +∞

0

L(k)dk =

∫ +∞

0

(
e−

k
5 +

5

1 + k2

)
dk = 5 +

5

2
π < +∞,

which means that L(k) is integrable on [0,+∞). To sum up, uncertain nonlinear switched
system (19) is stable in p-th moment based on Theorem 3.1. Obviously, there exist four sub-
systems in uncertain nonlinear switched system (19), which can be written by the following
UDEs with initial state

(
u1(0), u2(0)

)
according to the switching law Λ provided in (20):

sub-system 1:


du1(k) = e−k · u1(k)dk + 1

5+k2 · exp
(
− u1(k)

)
dCk,

du2(k) = e−k · u2(k)dk + 1
5+k2 · exp

(
− u2(k)

)
dCk,

k ∈ [19, 29) ∪ [89, 99),

sub-system 2:


du1(k) = e−

k
2 · u1(k)dk + 2

4+k2 · exp
(
− u1(k)

)
dCk,

du2(k) = e−
k
2 · u2(k)dk + 2

4+k2 · exp
(
− u2(k)

)
dCk,

k ∈ [0, 9) ∪ [39, 49) ∪ [79, 89) ∪ [109,+∞),

sub-system 3:


du1(k) = e−

k
3 · u1(k)dk + 3

3+k2 · exp
(
− u1(k)

)
dCk,

du2(k) = e−
k
3 · u2(k)dk + 3

3+k2 · exp
(
− u2(k)

)
dCk,

k ∈ [29, 39) ∪ [59, 69),

sub-system 4:


du1(k) = e−

k
5 · u1(k)dk + 4

2+k2 · exp
(
− u1(k)

)
dCk,

du2(k) = e−
k
5 · u2(k)dk + 4

2+k2 · exp
(
− u2(k)

)
dCk,

k ∈ [9, 19) ∪ [69, 79),

sub-system 5:


du1(k) = e−

k
5 · u1(k)dk + 5

1+k2 · exp
(
− u1(k)

)
dCk,

du2(k) = e−
k
5 · u2(k)dk + 5

1+k2 · exp
(
− u2(k)

)
dCk,

k ∈ [49, 59) ∪ [99, 109).
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On the basis of Definition 2.1, the corresponding ODEs of the above uncertain sub-systems
are listed as follows:


duα1 (k) = e−k · uα1 (k)dk + 1

5+k2 · exp
(
− uα1 (k)

)
·
√

3
π ln α

1−αdk,

duα2 (k) = e−k · uα2 (k)dk + 1
5+k2 · exp

(
− uα2 (k)

)
·
√

3
π ln α

1−αdk,

k ∈ [19, 29) ∪ [89, 99),
duα1 (k) = e−

k
2 · uα1 (k)dk + 2

4+k2 · exp
(
− uα1 (k)

)
·
√

3
π ln α

1−αdk,

duα2 (k) = e−
k
2 · uα2 (k)dk + 2

4+k2 · exp
(
− uα2 (k)

)
·
√

3
π ln α

1−αdk,

k ∈ [0, 9) ∪ [39, 49) ∪ [79, 89) ∪ [109,+∞),(
uα1 (0), uα2 (0)

)
=
(
u1(0), u2(0)

)
,

duα1 (k) = e−
k
3 · uα1 (k)dk + 3

3+k2 · exp
(
− uα1 (k)

)
·
√

3
π ln α

1−αdk,

duα2 (k) = e−
k
3 · uα2 (k)dk + 3

3+k2 · exp
(
− uα2 (k)

)
·
√

3
π ln α

1−αdk,

k ∈ [29, 39) ∪ [59, 69),
duα1 (k) = e−

k
4 · uα1 (k)dk + 4

2+k2 · exp
(
− uα1 (k)

)
·
√

3
π ln α

1−αdk,

duα2 (k) = e−
k
4 · uα2 (k)dk + 4

2+k2 · exp
(
− uα2 (k)

)
·
√

3
π ln α

1−αdk,

k ∈ [9, 19) ∪ [69, 79),
duα1 (k) = e−

k
5 · uα1 (k)dk + 5

1+k2 · exp
(
− uα1 (k)

)
·
√

3
π ln α

1−αdk,

duα2 (k) = e−
k
5 · uα2 (k)dk + 5

1+k2 · exp
(
− uα2 (k)

)
·
√

3
π ln α

1−αdk,

k ∈ [49, 59) ∪ [99, 109).

Figures 1 and 2 are both provided for above (ODEs) when α = 0.3 and α = 0.6. In
(a) of Figures 1, the lines represent the trajectories of u0.3

1 (k) with different initial val-
ues u0.3

1 (0) = (0.5, 0.6, 0.7). In (b) of Figures 1, the trajectories of u0.3
2 (k) with different

initial values u0.3
1 (0) = (1.0, 1.2, 1.4). are illustrated by three curves from top to bottom.

When α = 0.6, the trajectories of u0.6
1 (k) and u0.6

2 (k) with before-mentioned initial values
are presented in Figure 2.
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The solutions with different initial values (0.5, 0.6, 0.7)

Eq 1: 19-29, 89-99
Eq 2: 0-9, 39-49, 79-89,109-...
Eq 3: 29-39, 59-69
Eq 4: 9-19, 69-79
Eq 5: 49-59, 99-109
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Eq 1: 19-29, 89-99
Eq 2: 0-9, 39-49, 79-89,109-...
Eq 3: 29-39, 59-69
Eq 4: 9-19, 69-79
Eq 5: 49-59, 99-109

(b)

Figure 1. The trajectories of u0.3
1 (k) and u0.3

2 (3) with different initial val-
ues (0.5, 1.0), (0.6, 1.2), (0.7, 1.4).
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Eq 1: 19-29, 89-99
Eq 2: 0-9, 39-49, 79-89,109-...
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Eq 4: 9-19, 69-79
Eq 5: 49-59, 99-109
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time k
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u
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6
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14

16
The solutions with different initial values (1.0, 1.2, 1.4)

Eq 1: 19-29, 89-99
Eq 2: 0-9, 39-49, 79-89,109-...
Eq 3: 29-39, 59-69
Eq 4: 9-19, 69-79
Eq 5: 49-59, 99-109

(b)

Figure 2. The trajectories of u0.6
1 (k) and u0.6

2 (k) with different initial val-
ues (0.5, 1.0), (0.6, 1.2), (0.7, 1.4).

5. Conclusions

In this study, we delved into the analysis of stability in p-th moment for uncertain
nonlinear switched systems. By extending the concept of stability in in p-th moment, we
established sufficient conditions for determining stability in p-th moment under certain as-
sumptions. Furthermore, we explored the interaction between stability in measure and
stability in p-th moment for uncertain nonlinear switched systems. Notably, we provided
a counterexample to illustrate that stability in measure does not universally guarantee sta-
bility in p-th moment. To illustrate the findings, we further presented an example that
illustrates the system’s stability in p-th moment.
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