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COMPUTATIONAL ASPECTS ON SERIAL CORRELATIONS
IN COHERENT TIME SERIES

Eugen I. SCARLAT', Mona MIHAILESCU?

The paper presents the extent to which the temporal gap between processes
represented by finite time series can be accurately determined from the analysis of
the relative phase function of the complex cross coherence function. The numerical
simulations show that the existence of serial correlations lead to significant
deviations compared to the theoretical values.
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1. Introduction

Detecting correlations among processes evidenced by synchronously
sampled quantities in the form of time series is of ultimate importance to
disclosing deterministic relationships in flocking clusters [1], measuring
propagation delays [2], predicting the evolution of economic and financial
phenomena [3], or to explain the sensitivity to local, regional or global crises
[4,5]. Particularly the short run forecasting could be significantly improved if
detecting time shifts below the sampling rates [6].

Such time shifts could be detected by studying the phase synchronization
revealed by the relative phase function (RPF) of the complex cross coherence
function (CCCF) [7] between pairs of series. The accuracy of the calculi depends
on a calibration procedure that involves the computing of the RPF between the
series and its time shifted replica. The time shift theorem is known as introducing
a phase shift in the Fourier image of a time series [8]. The property can be
exploited to calibrating the measurement of time gaps between narrowband
processes embedded in discrete time series, provided that the series present
significant coherence in the frequency range of interest [9]. However the
measuring of time shifts using coherence based techniques is influenced by many
factors like the shortness of the series, non-stationarities, or computing
shortcomings that hinder the confidence in the final results. If the use of returns is
an elegant technique of stationarizing the financial series by preserving the
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economic meaningfulness, in many other cases the study of brute non-stationary
series is preferred. For example the gross domestic product time series are
correlated and even their variations still exhibit persistence as measured by the
Hurst exponent [10].

2. Theory

By denoting x(#) and y(¢) two numeric time series, Su(f), S),(f) their auto-
spectra and S,(f) the cross spectrum at frequency f, then CCCF is the ratio of the
cross-spectrum to the product of the square roots of the auto-spectra [11]:
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To be more specific, if the complex Fourier images are
XPEXQL- expliog (1), YNAYO) explio, (1), )

and if the phase difference is denoted A¢(f)=¢«(f)—¢,(f), then the modulus of
CCCF is the coherence function (CF)
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The average “<>_” is computed according to the principles given in [12] using
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the moving average technique of a window of width 7 over the full length 7 of the
numeric series [13], and £ is the running index of the window.

Hereafter the theoretically results are discussed in the case y(f)=x(z+Af)
where At is a constant time shift. According to the time shift theorem one has

x(AH)yX(f): exp[— i(27r£ . Atﬂ . (&)
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By denoting a)xay(f) the RPF of the pair consisting in the genuine and the
shifted series given by Eq.(4) becomes

2 .
0t0),80(f) :Afg{ (0 'exp{— '(27? { At j}kr } (6)
Since the exponential is the same whatever the window, the argument is:

At
le(o),x(m)(f): —272'7 . f for FO, ceey 2/t (7)

The theoretical conclusion is the RPF scales linearly with frequency with the
slope:

b=—27r£, 7~0,...,2/z. ®)
T

Therefore the RPF of any pair of series could be regressed over the investigated
frequency range and assuming the estimated slope b would be statistically
significant, the value of the time shift A/ can be computed as:

AP =——b. 9)

In the particular case of Ar=1 Eq.(9) takes the form:

AP =—" B
27 At=1

")

Since it should be unity A |At=1 =1, Eq.(9’) can be used to calibrate Eq.(9) [14].

The computational results are in disagreement with theory when the serial
correlations are present in the series. The following section is presenting such
results using synthesized series.

3. Synthesized series

The series where synthesized using MatLab facilities as described in [15].
In Table 1 are presented the main characteristics of the synthesized series. The
computed results are estimations over ten samples of 2"2=4096 points each
extracted at random from synthesized series of 2'*=16384 points with a designed
Hurst exponent ranging from 0 to 1. Since the resulting series are not rigorously
monofractal, in the rightmost column is indicated the deviation from
monofractality as the difference between the generalized Hurst exponents 4(0) and
h(2)=H [16].
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Table 1
Hurst exponent in synthesized series
H (designed) H (estimated) Multifractality |2(0)—H |
0.0 0.011+0.004 0.334
0.1 0.045+0.001 0.337
0.2 0.165+0.018 0.260
0.3 0.283+0.019 0.195
0.4 0.392+0.039 0.142
0.5 0.507+0.020 0.077
0.6 0.615+0.024 0.043
0.7 0.72340.024 0.002
0.8 0.829+0.030 0.048
0.9 0.929+0.033 0.075
1.0 1.020£0.041 irrelevant

4. Computational results

In Table 2 are presented the results of the computed time shift Af|m:1

according to Eq.(9”). Where not shown in the cells, the standard errors are less
than 5-107*. The statistical significance of the estimated slope given by Eq.(8) is
analyzed using the variance table for the fitted model (ANOVA); the subsequent
p-values and R” coefficients are indicated in the table. For the scope of the present
study the statistical significance is fulfilled for the usually accepted thresholds

p<1%, R*>0.750.
Table 2
Computed time shift as function of Hurst exponent and window size for Ar=1
H 0.0 0.1 0.2 0.3 0.4 0.5 H>0.6
Window size T
8 0921 0.934+| 0.939+| 0.919+| 0.811% 0.380+ Not
0.008 0.025 0.055 0.084 0.035| significant
16 0.963| 0.971+| 0.975+| 0961+ 0.880+| 0376+ Not
0.005 0.015 0.035 0.064 0.047| significant
32 0.983] 0.989+| 0.994+| 0.987+| 0.929+| 0.438+ Not
0.004 0.009 0.019 0.039 0.021| significant
64 0.994] 0.998+| 1.003+| 1.000+| 0.957+| 0.617+ Not
0.002 0.004 0.010 0.024 0.041| significant
128 0.998| 1.001+| 1.005+| 1.006+| 0.981+| 0.625+ Not
0.001 0.002 0.005 0.014 0.031| significant
256 1.000 1.002| 1.005£| 1.007+| 0.991% 0.727+ Not
0.001 0.003 0.008 0.028| significant
p<0.1%, p<1%, p<1%,
R*>0.990 R*>>0.960 R*>>0.830 |p, R’ irrelevant
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One should remark three cases:

1) For 0<H<0.5 (white columns in Table 2), RPF scales linearly

across the whole frequency range

and the estimated time shift

approach the theoretical value Af |At_1 =1;

i) For H=0.5 (light gray column) the estimated time shift is still
statistically significant but it differs from the theoretical value;
i) For H>0.5 (dark gray columns), the estimations are not significant
and the RPF does not scale with frequency across the entire band.
When significant — in cases i) and ii) —, the values of the estimated time
shift are more accurate for larger sizes of the windows. In the case H=0.5 Eq.(9’)

can be used with corrective factors [14].

5. Discussion

To explain this behavior, the implementation of fast Fourier transforms
(FFT) in Mathematica package should be considered. If the k; is the running index
of the window with step P, then the FFT of the series is given by:

-1
X(H)= < Zx(krP+t)-exp(—i2nftj >p . f=0,..2/T. (10)
T T

t=0

The RPF between the genuine series and its one-step shifted replica becomes:
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By comparing Eq.(11) to Eq.(6) one should remark they would be the
same if all averages cancel out excepting the one containing the quadratic sum i.e.

f

the one associated with the argument of interest exp[—iZ;z—-l]. If the fully
T

cancellation does not occur then Egs.(7-8) do not hold and the result deviates from
theory. The coefficients of the exponentials are the autocorrelation function (ACF)
r(0) in the interval —(7—1) to +7z. One should note the averages operate only on
ACF, not on the exponentials.

Because of the existence of conjugated exponentials in Eq.(11) the
cancellations of the imaginary parts would be complete in the case of infinite

f

series; for finite series the cancellations of the imaginary parts of exp [J_r 127 t]
T

are not complete. However the main reason of non-complying of the results with
theory emerges from the real part of the terms in Eq.(11) so that the further focus
is on their contributions to the total real part while the residuals of the imaginary
part is of little importance.

ACF is strongly depending on the serial correlations in the series.
Assuming the truncated series in the window as particular realizations of a
fractional Brownian motion [17], the two point ACF between 0-spaced past and

future increments normalized to the variance GTZ_ o of length 7—0 is the same at all
time and depends only on the H parameter [18]:

1

r(@) =<2

HQH -1)0*772. 012,9 for large 6.

2H _ Hp2H _RH). 2
((19+1) 2077+ 160 -1 )0'7_9 for small &, (12)

According to Eq.(12) ACF is negative for 0<H<0.5 and positive for
H>0.5; in the case H=0.5 the autocorrelation is zero. Since the series are not
strictly monofractal (see Table 1) and therefore there is not a unique H value
along the series, the cases presented in Sec.4 are explained only in a semi-
quantitative approach as follows.

i) The case 0<H<O0.5, the series is anti-persistent. The numbers of
positive and negative terms in any serial summation are comparable
and consequently the total real component is small (positive or
negative) such as the quadratic sum highly dominates in Eq.(11) and
RPF behaves linearly with frequency.

i1) The case H=0.5, the series is of a pure random walk type such that the
total real component in Eq.(11) is moderate as compared to the
quadratic sum. Adding a pure real number to the complex number
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exp (— i27zi . 1] reduces the absolute value of the argument. The
T
higher the frequency, the greater the influence (see Fig.1).
3f RPF (rad)} ) 3f RPF (rad)
2 2
1 1
t 1 2 3 4 5 6 7 &8 ' 20 4[]_ 60 80 100 120
MNumeric frequency Numeric frequency

Fig.1. Relative phase function vs. frequency for H=0.6 and window sizes =16 (left)
and =256 (right); the straight lines represent the theoretical scaling for H=0.

iii) The case H>0.5, the series is serially correlated. The terms in any
summation are more likely to be positive and consequently the total
real component is positive and of the same order of magnitude with the
quadratics. The effect at higher frequency is enough to repeal the
statistical significance because the RPF scaling is no more linear (see

Fig.2).

3f RPF (rad) 3JRPF (rad}

2 2
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Fig.2. Relative phase function vs. frequency for F=0.6 and window sizes =16 (left)
and =256 (right); the straight lines represent the theoretical scaling for H=0.

6. Conclusions

The temporal gaps between processes represented by finite time series can
be determined by analyzing the relative phase function of the complex cross
coherence function. The determination depends on a calibration procedure that
involves the computing of the relative phase of the complex cross coherence
function between the series and its time shifted replica.

The computational results are fully compliant with theory in the case of
anti-persistent series characterized by the Hurst exponent H<1/2, can be
cautiously accepted with corrective factors in the case of pure random walk series
with H=1/2, and deviate from the theory in the case of persistent series with
H>1/2.
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When significant, the values of the estimated time shift are more accurate
as the size of the window increases.
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