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CONVERGENCE OF AN IMPLICIT NET FOR SOLVING EQUILIBRIUM

PROBLEMS AND QUASI-VARIATIONAL INCLUSIONS

Lu Zheng1, Youli Yu2, Tzu-Chien Yin3

In this article, we discuss iterative methods for finding a common solution of

equilibrium problems and quasi-variational inclusion problems in Hilbert spaces. We

introduce an implicit method which defines a net consisting of projection method and
resolvent method. Convergence result of the proposed net is proved provided some addi-

tional conditions are fulfilled.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C

a nonempty closed convex subset of H. Let ϕ : C × C → R be a bifunction. In this article,
we concern the following equilibrium problem which aims to find a point u† ∈ C such that

ϕ(u†, u) ≥ 0, ∀u ∈ C. (1)

Let the solution set of the equilibrium problem (1) be denoted by Sol(C, ϕ).
As a powerful tool, the equilibrium problem has been continuously concerned and

studied by many scholars, see e.g. [3, 5, 14, 15, 24]). Now, it is well-known ([2, 17]) that the
formulation (1) includes variational inequality problems ([32, 34, 37]), optimization problems
([12, 21, 22]), split problems ([8]), as well as fixed point problems ([1, 9, 11, 23, 26–30, 33, 38]).

Note that solving equilibrium problem (1) can be translated into a fixed point problem
by using the resolvent technique. In fact, the resolvent of a bifunction ϕ : C× C→ R is the
set-valued operator ([2])

F (u†) := {w† ∈ C : ϕ(w†, v†) + 〈v† − w†, w† − u†〉 ≥ 0, ∀v† ∈ C}.

Under some conditions, we have Sol(C, ϕ) = Fix(F ), where Fix(F ) stands for the set of fixed
points of F . By utilizing the resolvent method, Combettes and Hirstoaga [6] proposed an
iterative algorithm of finding a point in Sol(C, ϕ).

Now, we consider the following generalized equilibrium problem of finding a point
u† ∈ C such that

ϕ(u†, u) + 〈f(u†), u− u†〉 ≥ 0, ∀u ∈ C. (2)

Let the solution set of the generalized equilibrium problem (2) be denoted by Sol(C, ϕ, f).
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With the help of the resolvent technique, Takahashi and Takahashi [25] introduced
the following iterative algorithm for finding a common point in Sol(C, ϕ, f) ∩ Fix(T ){

ϕ(un, u) + 1
ςn
〈u− un, un − (xn − ςnf(xn))〉 ≥ 0, ∀u ∈ C,

xn+1 = τnxn + (1− τn)T [µnû+ (1− µn)un], ∀n ≥ 0,

where T : C→ C is a nonexpansive operator.
Consequently, various methods and techniques are proposed for solving a common

problem associated with equilibrium problems, please see [4, 13, 18, 19] and the references
therein. Let ψ : C → H and Ψ: H ⇒ 2H be two nonlinear operators. In this article, we
investigate the following quasi-variational inclusion problem of finding a point u† ∈ H such
that

0 ∈ Ψ(u†) + ψ(u†). (3)

The solution set of (3) is denoted by Sol(C,Ψ, ψ).
The quasi-variational inclusion and the relevant iterative algorithms have been inves-

tigated and proposed in the literature, see [7, 20, 31, 35, 36]. A basic algorithm for finding
a point in Sol(C,Ψ, ψ) is the following resolvent algorithm which generates a sequence {xn}
iteratively by

x0 ∈ C, xn+1 = (I + τΨ)−1
α (xn − τψ(xn)), ∀n ≥ 0.

In this paper, our main purpose is to investigate the common problem of the generalized
equilibrium problem (2) and the quasi-variational inclusion (3). We construct an implicit
algorithm which defines a net for finding a common solution of the generalized equilibrium
problem (2) and the quasi-variational inclusion (3). Under some conditions, we show that
the proposed net converges weakly to a point in Sol(C, ϕ, f) ∩ Sol(C,Ψ, ψ).

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that an
operator g : C→ H is said to be κ-Lipschitz continuous if there is a positive constant κ such
that

‖g(u†)− g(u)‖ ≤ κ‖x− y‖, ∀u†, u ∈ C.

(i) g is said to be nonexpansive if κ = 1.
(ii) g is said to be contractive if κ < 1.

An operator g : C→ H is said to be firmly nonexpansive if

‖g(u)− g(u†)‖2 ≤ 〈u− u†, g(u)− g(u†)〉

for all u, u† ∈ C.
An operator f : C → H is said to be α-inverse strongly monotone if for some α > 0,

the following inequality holds

〈f(u†)− f(u), u† − u〉 ≥ α‖f(u†)− f(u)‖2, ∀u†, u ∈ C.

In this case, we call f α-inverse strongly monotone. It is easy to show that α-inverse-strongly
monotone operator f is 1

α -Lipschitz continuous.
Let ϕ : C × C → R be a bifunction. Suppose that the following four conditions are

fulfilled

(ϕ1) : ϕ(u†, u†) = 0, ∀u† ∈ C;
(ϕ2) : ϕ(u†, v†) + ϕ(v†, u†) ≤ 0, ∀u†, v† ∈ C;
(ϕ3) : limt↓0 ϕ(tw† + (1− t)u†, v†) ≤ ϕ(u†, v†), ∀u†, v†, w† ∈ C;
(ϕ4) : for each u† ∈ C, v† 7→ ϕ(u†, v†) is convex and lower semicontinuous.
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Recall that a linear bounded operator φ : H → H is said to be σ strongly positive if
there exists a constant σ > 0 such that

〈φ(u†), u†〉 ≥ σ‖x‖2, ∀u† ∈ H.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the
well-known metric projection projC : H→ C is defined by

projC(u†) := arg min
u∈C
‖u− u†‖, u† ∈ H.

projC is firmly nonexpansive and satisfies

u† ∈ H, 〈u† − projC(u†), u− projC(u†)〉 ≤ 0, ∀u ∈ C. (4)

Assume that Ψ: H ⇒ 2H is a multi-valued operator. Write dom(Ψ) = {u† ∈ H : Ψ(u†) 6= ∅}
and Ψ−1(0) := {u† ∈ H : 0 ∈ Ψ(u†)}.

Recall that an operator Ψ: H ⇒ 2H is said to be monotone if and only if

〈u− u†, p− q〉 ≥ 0, ∀u, u† ∈ dom(Ψ)

where p ∈ Ψ(u) and q ∈ Ψ(u†).
A monotone operator Ψ: H ⇒ 2H is maximal monotone if and only if the graph of

Ψ is not strictly contained in the graph of any other monotone operator.
Assume that Ψ: H ⇒ 2H is a maximal monotone operator. Define an operator

JΨ
α : H→ dom(Ψ) by the following way

JΨ
τ := (I + τΨ)−1

where τ > 0 is a constant.
JΨ
α is said to be the resolvent of ψ, which has the following properties

(i) JΨ
α is single-valued and firmly nonexpansive.

(ii) For any τ > 0, Ψ−1(0) = Fix(JΨ
τ ) := {u† ∈ H : JΨ

τ (u†) = u†}.

Lemma 2.1 ([6]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
ϕ : C × C → R be a bifunction fulfilling conditions (ϕ1)-(ϕ4) above. Then, for ς > 0 and
u† ∈ C, there exists a point w† ∈ C satisfying

ϕ(w†, v†) +
1

ς
〈v† − w†, w† − u†〉 ≥ 0,∀v† ∈ C.

Write

Fς(u
†) := {w† ∈ C : ϕ(w†, v†) +

1

ς
〈v† − w†, w† − u†〉 ≥ 0, ∀v† ∈ C}.

Then, we have

(i) Fς is single-valued and firmly nonexpansive;
(ii) Sol(C, ϕ) is closed convex and Sol(C, ϕ) = Fix(Fς).

Lemma 2.2 ([16]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
f : C→ H be an α-inverse strongly monotone operator. Then, the following result holds

‖(I − ςf)u† − (I − ςf)u‖2 ≤ ‖u† − u‖2 + ς(ς − 2α)‖f(u†)− f(u)‖2, ∀u†, u ∈ C,

where ς is a positive constant.
It is obviously that I − ςf is nonexpansive if 0 ≤ ς ≤ 2α.

Lemma 2.3 ([10]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → H be a nonexpansive operator. Let {un} ⊂ C be a sequence. If un ⇀ u† ∈ C and
un − Tun → û, then we have (I − T )u† = û.
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3. Main results

In this section, we propose an implicit net and show that it converges weakly to
a common solution of the generalized equilibrium problem (2) and the quasi-variational
inclusion (3).

Let C be a nonempty closed convex subset of a real Hilbert space H. Let ϕ : C×C→ R

be a bifunction satisfying conditions (ϕ1)-(ϕ4). Let g : C→ H be a κ contractive operator.
Let Ψ: H ⇒ 2H be a maximal monotone operator fulfilling dom(Ψ) ⊂ C. Let f : C→ H be
an α-inverse strongly monotone operator and ψ : C → H be a β-inverse strongly monotone
operator. Let φ : H→ H be a σ strongly positive bounded linear operator. Let τ , γ, ς and
µ be four constants such that ς ∈ (0, 2α), τ ∈ (0, 2β), γ ∈ (0, σκ ) and µ ∈ (0, 1).

Algorithm 3.1. For each t ∈ (0, 1
(1−µ)(σ−γκ) ), define a net {xt} by the following implicit

manner{
ϕ(ut, x) + 1

ς 〈x− ut, ut − projC[tγg(xt) + (I − tφ)(xt − ςf(xt))]〉 ≥ 0, ∀x ∈ C,

xt = µJΨ
τ (I − τψ)xt + (1− µ)ut, ∀t ∈ (0, 1

(1−µ)(σ−γκ) ).
(5)

Theorem 3.1. Suppose that Γ := Sol(C, ϕ, f) ∩ Sol(C,Ψ, ψ) 6= ∅. Then, as t→ 0+, the net
{xt} defined by Algorithm 3.1 converges weakly to a point in Γ.

Proof. We divide our proof into several steps.
Step 1. The net {xt} defined by Algorithm 3.1 is well-defined.

For each t > 0, set

Φt := FςprojC[tγg + (I − tφ)(I − ςf)]

and

Gt := µJΨ
τ (I − τψ) + (1− µ)Φt.

Based on Lemma 2.1, we have ut = Φt(xt) and Fς is firmly nonexpansive. By Lemma 2.2,
I − ςf is nonexpansive for all ς ∈ (0, 2α). Then, for any x, y ∈ C, we have

‖Φt(x)− Φt(y)‖ = ‖FςprojC[tγg + (I − tφ)(I − ςf)]x− FςprojC[tγg

+ (I − tφ)(I − ςf)]y‖
≤ tγ‖g(x)− g(y)‖+ |I − tφ|‖(I − ςf)x− (I − ςf)y‖
≤ tγκ‖x− y‖+ (1− σt)‖x− y‖
= [1− (σ − γκ)t]‖x− y‖.

(6)

Since JΨ
τ (I − τψ) is nonexpansive, from (6), we obtain

‖Gtx−Gty‖ = ‖µJΨ
τ (I − τψ)x+ (1− µ)Φt(x)− µJΨ

τ (I − τψ)y − (1− µ)Φt(y)‖
≤ µ‖JΨ

τ (I − τψ)x− JΨ
τ (I − τψ)y‖+ (1− µ)‖Φt(x)− Φt(y)‖

≤ µ‖x− y‖+ (1− µ)[1− (σ − γκ)t]‖x− y‖
= [1− (1− µ)(σ − γκ)t]‖x− y‖.

If t ∈ (0, 1
(1−µ)(σ−γκ) ), then Gt is a contractive operator. Hence, for each t ∈ (0, 1

(1−µ)(σ−γκ) ),

Gt has a unique fixed point in C, denoted by xt. Namely, xt = Gt(xt). Therefore, (5) is
well-defined.

Step 2. The net {xt} generated by (5) is bounded.
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Let p† ∈ Γ. Then, we have JΨ
τ (p† − τψ(p†)) = FςprojC[p† − ςf(p†)] = p†. Hence,

‖ut − p†‖ = ‖FςprojC[tγg(xt) + (I − tφ)(xt − ςf(xt))]− FςprojC[(p† − ςf(p†))]‖

≤ ‖tγg(xt) + (I − tφ)(xt − ςf(xt))− (p† − ςf(p†))‖

= ‖tγ(g(xt)− g(p†)) + (I − tφ)[xt − ςf(xt)− (p† − ςf(p†))]

+ t[γg(p†)− φ(p† − ςf(p†))]‖

≤ tγ‖g(xt)− g(p†)‖+ |I − tφ|‖xt − ςf(xt)− (p† − ςf(p†))‖

+ t‖γg(p†)− φ(p† − ςf(p†))‖

≤ [1− (σ − γκ)t]‖xt − p†‖+ t‖γg(p†)− φ(p† − ςf(p†))‖.

(7)

According to (5) and (7), we have

‖xt − p†‖ = ‖µJΨ
τ (I − τψ)xt + (1− µ)ut − p†‖

≤ µ‖JΨ
τ (I − τψ)xt − JΨ

τ (p† − τψ(p†))‖+ (1− µ)‖ut − p†‖

≤ µ‖xt − p†‖+ (1− µ)‖ut − p†‖.

It follows that

‖xt − p†‖ ≤ ‖ut − p†‖

≤ [1− (σ − γκ)t]‖xt − p†‖+ t‖γg(p†)− φ(p† − ςf(p†))‖,
(8)

which implies that

‖xt − p†‖ ≤
‖γg(p†)− φ(p† − ςf(p†))‖

σ − γκ
.

So, {xt} is bounded.
Step 3. {xt} is relatively norm compact as t→ 0+.
Taking into account (7) and Lemma 2.2, we obtain

‖ut − p†‖2 ≤ ‖t(γg(xt)− φ(p† − ςf(p†))) + (I − tφ)[xt − ςf(xt)− (p† − ςf(p†))]‖2

≤ [t‖γg(xt)− φ(p† − ςf(p†))‖+ |I − tφ|‖xt − ςf(xt)− (p† − ςf(p†))‖]2

≤ [tσ‖γg(xt)− φ(p† − ςf(p†))‖/σ + (1− σt)‖xt − ςf(xt)− (p† − ςf(p†))‖]2

≤ t‖γg(xt)− φ(p† − ςf(p†))‖2/σ + (1− σt)‖xt − ςf(xt)− (p† − ςf(p†))‖2

≤ t‖γg(xt)− φ(p† − ςf(p†))‖2/σ + (1− σt)[‖xt − p†‖2

− ς(2α− ς)‖f(xt)− f(p†)‖2].

(9)

Combining (8) and (9), we receive

‖xt − p†‖2 ≤ ‖ut − p†‖2

≤ t‖γg(xt)− φ(p† − ςf(p†))‖2/σ + (1− σt)[‖xt − p†‖2

− ς(2α− ς)‖f(xt)− f(p†)‖2].

It follows that

(1− σt)ς(2α− ς)‖f(xt)− f(p†)‖2 ≤ t‖γg(xt)− φ(p† − ςf(p†))‖2/σ → 0 (t→ 0+).

Therefore,

lim
t→0+

‖f(xt)− f(p†)‖ = 0. (10)
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Owing to (5) and Lemma 2.1, we achieve

‖ut − p†‖2 = ‖FςprojC[tγg(xt) + (I − tφ)(xt − ςf(xt))]− FςprojC[(p† − ςf(p†))]‖2

≤ 〈[tγg(xt) + (I − tφ)(xt − ςf(xt))]− [(p† − ςf(p†))], ut − p†〉

=
1

2

(∥∥[tγg(xt) + (I − tφ)(xt − ςf(xt))]− [(p† − ςf(p†))]
∥∥2

+ ‖ut − p†‖2 −
∥∥[tγg(xt) + (I − tφ)(xt − ςf(xt))]

− [(p† − ςf(p†))]− ut + p†
∥∥2)

.

(11)

So,

‖ut − p†‖2 ≤
∥∥[tγg(xt) + (I − tφ)(xt − ςf(xt))]− [(p† − ςf(p†))]

∥∥2

−
∥∥[tγg(xt) + (I − tφ)(xt − ςf(xt))]− [(p† − ςf(p†))]− ut + p†

∥∥2

≤ t‖γg(xt)− φ(p† − ςf(p†))‖2/σ + (1− σt)‖xt − p†‖2

−
∥∥[tγg(xt) + (I − tφ)(xt − ςf(xt))]− ut + ςf(p†)

∥∥2
.

This together with (8) implies that

‖xt − p†‖2 ≤ ‖ut − p†‖2

≤ t‖γg(xt)− φ(p† − ςf(p†))‖2/σ + (1− σt)‖xt − p†‖2

−
∥∥[tγg(xt) + (I − tφ)(xt − ςf(xt))]− ut + ςf(p†)

∥∥2
.

Hence,∥∥[tγg(xt) + (I − tφ)(xt − ςf(xt))]− ut + ςf(p†)
∥∥2 ≤ t‖γg(xt)− φ(p† − ςf(p†))‖2/σ → 0.

With the help of (10), we deduce

lim
t→0+

∥∥xt − ut∥∥ = 0. (12)

Then,

lim
t→0+

‖xt − JΨ
τ (I − τψ)xt‖ = lim

t→0+
(1− µ)‖xt − ut‖ = 0. (13)

Thanks to (12), we attain

‖ut − p†‖2 ≤ 〈[tγg(xt) + (I − tφ)(xt − ςf(xt))]− [(p† − ςf(p†))], ut − p†〉

≤ tγ〈g(xt)− g(p†), ut − p†〉+ (I − tφ)〈(xt − ςf(xt))− (p† − ςf(p†)), ut − p†〉

+ t〈γg(p†)− φ(p† − ςf(p†)), ut − p†〉

≤ tγ‖g(xt)− g(p†)‖‖ut − p†‖+ |I − tφ|‖(xt − ςf(xt))− (p† − ςf(p†))‖

× ‖ut − p†‖+ t〈γg(p†)− φ(p† − ςf(p†)), ut − p†〉

≤ [1− (σ − γκ)t]‖xt − p†‖‖ut − p†‖+ t〈γg(p†)− φ(p† − ςf(p†)), ut − p†〉

≤ 1− (σ − γκ)t

2
‖xt − p†‖2 +

1

2
‖ut − p†‖2

+ t〈γg(p†)− φ(p† − ςf(p†)), ut − p†〉.

Hence,

‖xt − p†‖2 ≤ ‖ut − p†‖2 ≤ [1− (σ − γκ)t]‖xt − p†‖2

+ 2t〈γg(p†)− φ(p† − ςf(p†)), ut − p†〉.
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It follows that

‖xt − p†‖2 ≤
2

σ − γκ
〈γg(p†)− φ(p† − ςf(p†)), ut − p†〉. (14)

Next we show that {xt} is relatively norm compact as t → 0+. Let {tn} ⊂ (0, 1) be a

sequence such that tn → 0 as n→∞. Put x
(1)
n := xtn and u

(1)
n := utn . From (13), we get

lim
n→∞

‖x(1)
n − JΨ

τ (I − τψ)x(1)
n ‖ = 0. (15)

By (14), we have

‖x(1)
n − p†‖2 ≤

2

σ − γκ
〈γg(p†)− φ(p† − ςf(p†)), u(1)

n − p†〉. (16)

Since {x(1)
n } is bounded, there exists a subsequence {x(1)

ni } ⊂ {x
(1)
n } such that x

(1)
ni ⇀ x† ∈ C

as i→∞. Applying Lemma 2.3, we deduce that x† ∈ Fix(JΨ
τ (I − τψ)) = Sol(C,Ψ, ψ).

On the other hand, utilizing (12), we have u
(1)
ni ⇀ x†. Note that

u(1)
ni

= Φtni
(x(1)
ni

) = FςprojC[tni
γg(x(1)

ni
) + (I − tni

φ)(x(1)
ni
− ςf(x(1)

ni
))]

and the operator FςprojC(I − ςf) is nonexpansive. By Lemma 2.3, we get x† ∈ Sol(C, ϕ, f).
Therefore, x† ∈ Γ. Substituting p† with x† in (16), we obtain

‖x(1)
ni
− x†‖2 ≤ 2

σ − γκ
〈γg(x†)− φ(x† − ςf(x†)), u(1)

ni
− x†〉. (17)

Since u
(1)
ni ⇀ x† ∈ C, it follows from (17) that x

(1)
ni → x†. This has proved the relative

norm-compactness of the net {xt} as t→ 0+.
Step 4. The whole net xt → x† as t→ 0+.
Since {xt} is relatively norm compact as t → 0+. Let {sn} ⊂ (0, 1) be another

sequence such that sn → 0 as n → ∞. Set x
(2)
n := xsn and u

(2)
n := usn . Since {x(2)

n }
is bounded, there is another subsequence {x(2)

nj } ⊂ {x
(2)
n } satisfying x

(2)
nj ⇀ y† as j → ∞.

Consequently, we deduce y† ∈ Γ and

‖x(2)
nj
− y†‖2 ≤ 2

σ − γκ
〈γg(y†)− φ(y† − ςf(y†)), u(2)

nj
− y†〉. (18)

Since u
(2)
nj ⇀ y† ∈ C, it follows from (18) that x

(2)
nj → y†. Take into account of (14), we

acquire

‖x(1)
ni
− y†‖2 ≤ 2

σ − γκ
〈γg(y†)− φ(y† − ςf(y†)), u(1)

ni
− y†〉. (19)

and

‖x(2)
nj
− x†‖2 ≤ 2

σ − γκ
〈γg(x†)− φ(x† − ςf(x†)), u(2)

nj
− x†〉. (20)

Letting i→∞ in (19) and noting that u
(1)
ni ⇀ x†(i→∞), we have

〈γg(y†)− φ(y† − ςf(y†)), x† − y†〉 ≥ 0. (21)

Letting j →∞ in (20) and noting that u
(2)
nj ⇀ y†(j →∞), we have

〈γg(x†)− φ(x† − ςf(x†)), y† − x†〉 ≥ 0. (22)

Combining (21) and (22), we conclude that x† = y†. Therefore, the whole net xt → x† as
t→ 0+. The proof is completed. �
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4. Conclusions

Equilibrium problems and quasi-variational inclusion problems provide a unified frame
for solving many problems arising from science and engineering. In this paper, we investigate
a common problem of the generalized equilibrium problem (2) and the quasi-variational
inclusion (3) in Hilbert spaces. With the help of resolvent method, we propose an implicit
algorithm [Algorithm 3.1] for finding a common solution of the generalized equilibrium
problem (2) and the quasi-variational inclusion (3). We show that the net {xt} defined
by Algorithm 3.1 weakly converges to a common solution of the generalized equilibrium
problem (2) provided some mild conditions are satisfied.
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