

CONVERGENCE OF AN IMPLICIT NET FOR SOLVING EQUILIBRIUM PROBLEMS AND QUASI-VARIATIONAL INCLUSIONS

Lu Zheng¹, Youli Yu², Tzu-Chien Yin³

In this article, we discuss iterative methods for finding a common solution of equilibrium problems and quasi-variational inclusion problems in Hilbert spaces. We introduce an implicit method which defines a net consisting of projection method and resolvent method. Convergence result of the proposed net is proved provided some additional conditions are fulfilled.

Keywords: equilibrium problem, quasi-variational inclusion, net, firmly nonexpansive, resolvent.

MSC2020: 47J05, 47J25, 47H09, 65J15.

1. Introduction

Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$. Let \mathcal{C} a nonempty closed convex subset of \mathcal{H} . Let $\varphi: \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ be a bifunction. In this article, we concern the following equilibrium problem which aims to find a point $u^\dagger \in \mathcal{C}$ such that

$$\varphi(u^\dagger, u) \geq 0, \quad \forall u \in \mathcal{C}. \quad (1)$$

Let the solution set of the equilibrium problem (1) be denoted by $\text{Sol}(\mathcal{C}, \varphi)$.

As a powerful tool, the equilibrium problem has been continuously concerned and studied by many scholars, see e.g. [3, 5, 14, 15, 24]). Now, it is well-known ([2, 17]) that the formulation (1) includes variational inequality problems ([32, 34, 37]), optimization problems ([12, 21, 22]), split problems ([8]), as well as fixed point problems ([1, 9, 11, 23, 26–30, 33, 38]).

Note that solving equilibrium problem (1) can be translated into a fixed point problem by using the resolvent technique. In fact, the resolvent of a bifunction $\varphi: \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ is the set-valued operator ([2])

$$F(u^\dagger) := \{w^\dagger \in \mathcal{C} : \varphi(w^\dagger, v^\dagger) + \langle v^\dagger - w^\dagger, w^\dagger - u^\dagger \rangle \geq 0, \quad \forall v^\dagger \in \mathcal{C}\}.$$

Under some conditions, we have $\text{Sol}(\mathcal{C}, \varphi) = \text{Fix}(F)$, where $\text{Fix}(F)$ stands for the set of fixed points of F . By utilizing the resolvent method, Combettes and Hirstoaga [6] proposed an iterative algorithm of finding a point in $\text{Sol}(\mathcal{C}, \varphi)$.

Now, we consider the following generalized equilibrium problem of finding a point $u^\dagger \in \mathcal{C}$ such that

$$\varphi(u^\dagger, u) + \langle f(u^\dagger), u - u^\dagger \rangle \geq 0, \quad \forall u \in \mathcal{C}. \quad (2)$$

Let the solution set of the generalized equilibrium problem (2) be denoted by $\text{Sol}(\mathcal{C}, \varphi, f)$.

¹School of Business, Trinity Western University, Vancouver V2Y 1Y1, Canada; MBA Center of Tianjin University of Finance and Economics, Tianjin 300387, China, e-mail: Loriluz@163.com

²School of Electronics and Information Engineering, Taizhou University, Linhai 317000, China, e-mail: yuyouli@tzc.edu.cn

³Corresponding author. Research Center for Interneuronal Computing, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, e-mail: yintzuchien@mail.cmuh.org.tw

With the help of the resolvent technique, Takahashi and Takahashi [25] introduced the following iterative algorithm for finding a common point in $\text{Sol}(\mathcal{C}, \varphi, f) \cap \text{Fix}(T)$

$$\begin{cases} \varphi(u_n, u) + \frac{1}{\varsigma_n} \langle u - u_n, u_n - (x_n - \varsigma_n f(x_n)) \rangle \geq 0, \forall u \in \mathcal{C}, \\ x_{n+1} = \tau_n x_n + (1 - \tau_n) T[\mu_n \hat{u} + (1 - \mu_n) u_n], \forall n \geq 0, \end{cases}$$

where $T : \mathcal{C} \rightarrow \mathcal{C}$ is a nonexpansive operator.

Consequently, various methods and techniques are proposed for solving a common problem associated with equilibrium problems, please see [4, 13, 18, 19] and the references therein. Let $\psi : \mathcal{C} \rightarrow \mathcal{H}$ and $\Psi : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ be two nonlinear operators. In this article, we investigate the following quasi-variational inclusion problem of finding a point $u^\dagger \in \mathcal{H}$ such that

$$0 \in \Psi(u^\dagger) + \psi(u^\dagger). \quad (3)$$

The solution set of (3) is denoted by $\text{Sol}(\mathcal{C}, \Psi, \psi)$.

The quasi-variational inclusion and the relevant iterative algorithms have been investigated and proposed in the literature, see [7, 20, 31, 35, 36]. A basic algorithm for finding a point in $\text{Sol}(\mathcal{C}, \Psi, \psi)$ is the following resolvent algorithm which generates a sequence $\{x_n\}$ iteratively by

$$x_0 \in \mathcal{C}, x_{n+1} = (I + \tau \Psi)_\alpha^{-1}(x_n - \tau \psi(x_n)), \forall n \geq 0.$$

In this paper, our main purpose is to investigate the common problem of the generalized equilibrium problem (2) and the quasi-variational inclusion (3). We construct an implicit algorithm which defines a net for finding a common solution of the generalized equilibrium problem (2) and the quasi-variational inclusion (3). Under some conditions, we show that the proposed net converges weakly to a point in $\text{Sol}(\mathcal{C}, \varphi, f) \cap \text{Sol}(\mathcal{C}, \Psi, \psi)$.

2. Preliminaries

Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Recall that an operator $g : \mathcal{C} \rightarrow \mathcal{H}$ is said to be κ -Lipschitz continuous if there is a positive constant κ such that

$$\|g(u^\dagger) - g(u)\| \leq \kappa \|x - y\|, \forall u^\dagger, u \in \mathcal{C}.$$

- (i) g is said to be nonexpansive if $\kappa = 1$.
- (ii) g is said to be contractive if $\kappa < 1$.

An operator $g : \mathcal{C} \rightarrow \mathcal{H}$ is said to be firmly nonexpansive if

$$\|g(u) - g(u^\dagger)\|^2 \leq \langle u - u^\dagger, g(u) - g(u^\dagger) \rangle$$

for all $u, u^\dagger \in \mathcal{C}$.

An operator $f : \mathcal{C} \rightarrow \mathcal{H}$ is said to be α -inverse strongly monotone if for some $\alpha > 0$, the following inequality holds

$$\langle f(u^\dagger) - f(u), u^\dagger - u \rangle \geq \alpha \|f(u^\dagger) - f(u)\|^2, \forall u^\dagger, u \in \mathcal{C}.$$

In this case, we call f α -inverse strongly monotone. It is easy to show that α -inverse-strongly monotone operator f is $\frac{1}{\alpha}$ -Lipschitz continuous.

Let $\varphi : \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ be a bifunction. Suppose that the following four conditions are fulfilled

- ($\varphi 1$) : $\varphi(u^\dagger, u^\dagger) = 0, \forall u^\dagger \in \mathcal{C}$;
- ($\varphi 2$) : $\varphi(u^\dagger, v^\dagger) + \varphi(v^\dagger, u^\dagger) \leq 0, \forall u^\dagger, v^\dagger \in \mathcal{C}$;
- ($\varphi 3$) : $\lim_{t \downarrow 0} \varphi(tw^\dagger + (1 - t)u^\dagger, v^\dagger) \leq \varphi(u^\dagger, v^\dagger), \forall u^\dagger, v^\dagger, w^\dagger \in \mathcal{C}$;
- ($\varphi 4$) : for each $u^\dagger \in \mathcal{C}$, $v^\dagger \mapsto \varphi(u^\dagger, v^\dagger)$ is convex and lower semicontinuous.

Recall that a linear bounded operator $\phi : \mathcal{H} \rightarrow \mathcal{H}$ is said to be σ strongly positive if there exists a constant $\sigma > 0$ such that

$$\langle \phi(u^\dagger), u^\dagger \rangle \geq \sigma \|u^\dagger\|^2, \forall u^\dagger \in \mathcal{H}.$$

Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Recall that the well-known metric projection $\text{proj}_{\mathcal{C}} : \mathcal{H} \rightarrow \mathcal{C}$ is defined by

$$\text{proj}_{\mathcal{C}}(u^\dagger) := \arg \min_{u \in \mathcal{C}} \|u - u^\dagger\|, u^\dagger \in \mathcal{H}.$$

$\text{proj}_{\mathcal{C}}$ is firmly nonexpansive and satisfies

$$u^\dagger \in \mathcal{H}, \langle u^\dagger - \text{proj}_{\mathcal{C}}(u^\dagger), u - \text{proj}_{\mathcal{C}}(u^\dagger) \rangle \leq 0, \forall u \in \mathcal{C}. \quad (4)$$

Assume that $\Psi : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ is a multi-valued operator. Write $\text{dom}(\Psi) = \{u^\dagger \in \mathcal{H} : \Psi(u^\dagger) \neq \emptyset\}$ and $\Psi^{-1}(0) := \{u^\dagger \in \mathcal{H} : 0 \in \Psi(u^\dagger)\}$.

Recall that an operator $\Psi : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ is said to be monotone if and only if

$$\langle u - u^\dagger, p - q \rangle \geq 0, \forall u, u^\dagger \in \text{dom}(\Psi)$$

where $p \in \Psi(u)$ and $q \in \Psi(u^\dagger)$.

A monotone operator $\Psi : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ is maximal monotone if and only if the graph of Ψ is not strictly contained in the graph of any other monotone operator.

Assume that $\Psi : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ is a maximal monotone operator. Define an operator $J_\alpha^\Psi : \mathcal{H} \rightarrow \text{dom}(\Psi)$ by the following way

$$J_\tau^\Psi := (I + \tau \Psi)^{-1}$$

where $\tau > 0$ is a constant.

J_α^Ψ is said to be the resolvent of ψ , which has the following properties

- (i) J_α^Ψ is single-valued and firmly nonexpansive.
- (ii) For any $\tau > 0$, $\Psi^{-1}(0) = \text{Fix}(J_\tau^\Psi) := \{u^\dagger \in \mathcal{H} : J_\tau^\Psi(u^\dagger) = u^\dagger\}$.

Lemma 2.1 ([6]). *Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Let $\varphi : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{R}$ be a bifunction fulfilling conditions (φ1)-(φ4) above. Then, for $\varsigma > 0$ and $u^\dagger \in \mathcal{C}$, there exists a point $w^\dagger \in \mathcal{C}$ satisfying*

$$\varphi(w^\dagger, v^\dagger) + \frac{1}{\varsigma} \langle v^\dagger - w^\dagger, w^\dagger - u^\dagger \rangle \geq 0, \forall v^\dagger \in \mathcal{C}.$$

Write

$$F_\varsigma(u^\dagger) := \{w^\dagger \in \mathcal{C} : \varphi(w^\dagger, v^\dagger) + \frac{1}{\varsigma} \langle v^\dagger - w^\dagger, w^\dagger - u^\dagger \rangle \geq 0, \forall v^\dagger \in \mathcal{C}\}.$$

Then, we have

- (i) F_ς is single-valued and firmly nonexpansive;
- (ii) $\text{Sol}(\mathcal{C}, \varphi)$ is closed convex and $\text{Sol}(\mathcal{C}, \varphi) = \text{Fix}(F_\varsigma)$.

Lemma 2.2 ([16]). *Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Let $f : \mathcal{C} \rightarrow \mathcal{H}$ be an α -inverse strongly monotone operator. Then, the following result holds*

$$\|(I - \varsigma f)u^\dagger - (I - \varsigma f)u\|^2 \leq \|u^\dagger - u\|^2 + \varsigma(\varsigma - 2\alpha)\|f(u^\dagger) - f(u)\|^2, \forall u^\dagger, u \in \mathcal{C},$$

where ς is a positive constant.

It is obviously that $I - \varsigma f$ is nonexpansive if $0 \leq \varsigma \leq 2\alpha$.

Lemma 2.3 ([10]). *Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Let $T : \mathcal{C} \rightarrow \mathcal{H}$ be a nonexpansive operator. Let $\{u_n\} \subset \mathcal{C}$ be a sequence. If $u_n \rightharpoonup u^\dagger \in \mathcal{C}$ and $u_n - Tu_n \rightarrow \hat{u}$, then we have $(I - T)u^\dagger = \hat{u}$.*

3. Main results

In this section, we propose an implicit net and show that it converges weakly to a common solution of the generalized equilibrium problem (2) and the quasi-variational inclusion (3).

Let \mathcal{C} be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Let $\varphi : \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ be a bifunction satisfying conditions $(\varphi 1)$ - $(\varphi 4)$. Let $g : \mathcal{C} \rightarrow \mathcal{H}$ be a κ contractive operator. Let $\Psi : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ be a maximal monotone operator fulfilling $\text{dom}(\Psi) \subset \mathcal{C}$. Let $f : \mathcal{C} \rightarrow \mathcal{H}$ be an α -inverse strongly monotone operator and $\psi : \mathcal{C} \rightarrow \mathcal{H}$ be a β -inverse strongly monotone operator. Let $\phi : \mathcal{H} \rightarrow \mathcal{H}$ be a σ strongly positive bounded linear operator. Let τ, γ, ς and μ be four constants such that $\varsigma \in (0, 2\alpha)$, $\tau \in (0, 2\beta)$, $\gamma \in (0, \frac{\sigma}{\kappa})$ and $\mu \in (0, 1)$.

Algorithm 3.1. For each $t \in (0, \frac{1}{(1-\mu)(\sigma-\gamma\kappa)})$, define a net $\{x_t\}$ by the following implicit manner

$$\begin{cases} \varphi(u_t, x) + \frac{1}{\varsigma} \langle x - u_t, u_t - \text{proj}_{\mathcal{C}}[t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] \rangle \geq 0, \quad \forall x \in \mathcal{C}, \\ x_t = \mu J_{\tau}^{\Psi}(I - \tau\psi)x_t + (1 - \mu)u_t, \quad \forall t \in (0, \frac{1}{(1-\mu)(\sigma-\gamma\kappa)}). \end{cases} \quad (5)$$

Theorem 3.1. Suppose that $\Gamma := \text{Sol}(\mathcal{C}, \varphi, f) \cap \text{Sol}(\mathcal{C}, \Psi, \psi) \neq \emptyset$. Then, as $t \rightarrow 0+$, the net $\{x_t\}$ defined by Algorithm 3.1 converges weakly to a point in Γ .

Proof. We divide our proof into several steps.

Step 1. The net $\{x_t\}$ defined by Algorithm 3.1 is well-defined.

For each $t > 0$, set

$$\Phi_t := F_{\varsigma} \text{proj}_{\mathcal{C}}[t\gamma g + (I - t\phi)(I - \varsigma f)]$$

and

$$G_t := \mu J_{\tau}^{\Psi}(I - \tau\psi) + (1 - \mu)\Phi_t.$$

Based on Lemma 2.1, we have $u_t = \Phi_t(x_t)$ and F_{ς} is firmly nonexpansive. By Lemma 2.2, $I - \varsigma f$ is nonexpansive for all $\varsigma \in (0, 2\alpha)$. Then, for any $x, y \in \mathcal{C}$, we have

$$\begin{aligned} \|\Phi_t(x) - \Phi_t(y)\| &= \|F_{\varsigma} \text{proj}_{\mathcal{C}}[t\gamma g + (I - t\phi)(I - \varsigma f)]x - F_{\varsigma} \text{proj}_{\mathcal{C}}[t\gamma g + (I - t\phi)(I - \varsigma f)]y\| \\ &\leq t\gamma\|g(x) - g(y)\| + |I - t\phi|\|(I - \varsigma f)x - (I - \varsigma f)y\| \\ &\leq t\gamma\kappa\|x - y\| + (1 - \sigma t)\|x - y\| \\ &= [1 - (\sigma - \gamma\kappa)t]\|x - y\|. \end{aligned} \quad (6)$$

Since $J_{\tau}^{\Psi}(I - \tau\psi)$ is nonexpansive, from (6), we obtain

$$\begin{aligned} \|G_t x - G_t y\| &= \|\mu J_{\tau}^{\Psi}(I - \tau\psi)x + (1 - \mu)\Phi_t(x) - \mu J_{\tau}^{\Psi}(I - \tau\psi)y - (1 - \mu)\Phi_t(y)\| \\ &\leq \mu\|J_{\tau}^{\Psi}(I - \tau\psi)x - J_{\tau}^{\Psi}(I - \tau\psi)y\| + (1 - \mu)\|\Phi_t(x) - \Phi_t(y)\| \\ &\leq \mu\|x - y\| + (1 - \mu)[1 - (\sigma - \gamma\kappa)t]\|x - y\| \\ &= [1 - (1 - \mu)(\sigma - \gamma\kappa)t]\|x - y\|. \end{aligned}$$

If $t \in (0, \frac{1}{(1-\mu)(\sigma-\gamma\kappa)})$, then G_t is a contractive operator. Hence, for each $t \in (0, \frac{1}{(1-\mu)(\sigma-\gamma\kappa)})$, G_t has a unique fixed point in \mathcal{C} , denoted by x_t . Namely, $x_t = G_t(x_t)$. Therefore, (5) is well-defined.

Step 2. The net $\{x_t\}$ generated by (5) is bounded.

Let $p^\dagger \in \Gamma$. Then, we have $J_\tau^\Psi(p^\dagger - \tau\psi(p^\dagger)) = F_\zeta \text{proj}_{\mathcal{C}}[p^\dagger - \zeta f(p^\dagger)] = p^\dagger$. Hence,

$$\begin{aligned}
\|u_t - p^\dagger\| &= \|F_\zeta \text{proj}_{\mathcal{C}}[t\gamma g(x_t) + (I - t\phi)(x_t - \zeta f(x_t))] - F_\zeta \text{proj}_{\mathcal{C}}[(p^\dagger - \zeta f(p^\dagger))]\| \\
&\leq \|t\gamma g(x_t) + (I - t\phi)(x_t - \zeta f(x_t)) - (p^\dagger - \zeta f(p^\dagger))\| \\
&= \|t\gamma(g(x_t) - g(p^\dagger)) + (I - t\phi)[x_t - \zeta f(x_t) - (p^\dagger - \zeta f(p^\dagger))]\| \\
&\quad + t[\gamma g(p^\dagger) - \phi(p^\dagger - \zeta f(p^\dagger))]\| \\
&\leq t\gamma\|g(x_t) - g(p^\dagger)\| + |I - t\phi|\|x_t - \zeta f(x_t) - (p^\dagger - \zeta f(p^\dagger))\| \\
&\quad + t\|\gamma g(p^\dagger) - \phi(p^\dagger - \zeta f(p^\dagger))\| \\
&\leq [1 - (\sigma - \gamma\kappa)t]\|x_t - p^\dagger\| + t\|\gamma g(p^\dagger) - \phi(p^\dagger - \zeta f(p^\dagger))\|.
\end{aligned} \tag{7}$$

According to (5) and (7), we have

$$\begin{aligned}
\|x_t - p^\dagger\| &= \|\mu J_\tau^\Psi(I - \tau\psi)x_t + (1 - \mu)u_t - p^\dagger\| \\
&\leq \mu\|J_\tau^\Psi(I - \tau\psi)x_t - J_\tau^\Psi(p^\dagger - \tau\psi(p^\dagger))\| + (1 - \mu)\|u_t - p^\dagger\| \\
&\leq \mu\|x_t - p^\dagger\| + (1 - \mu)\|u_t - p^\dagger\|.
\end{aligned}$$

It follows that

$$\begin{aligned}
\|x_t - p^\dagger\| &\leq \|u_t - p^\dagger\| \\
&\leq [1 - (\sigma - \gamma\kappa)t]\|x_t - p^\dagger\| + t\|\gamma g(p^\dagger) - \phi(p^\dagger - \zeta f(p^\dagger))\|,
\end{aligned} \tag{8}$$

which implies that

$$\|x_t - p^\dagger\| \leq \frac{\|\gamma g(p^\dagger) - \phi(p^\dagger - \zeta f(p^\dagger))\|}{\sigma - \gamma\kappa}.$$

So, $\{x_t\}$ is bounded.

Step 3. $\{x_t\}$ is relatively norm compact as $t \rightarrow 0+$.

Taking into account (7) and Lemma 2.2, we obtain

$$\begin{aligned}
\|u_t - p^\dagger\|^2 &\leq \|t(\gamma g(x_t) - \phi(p^\dagger - \zeta f(p^\dagger))) + (I - t\phi)[x_t - \zeta f(x_t) - (p^\dagger - \zeta f(p^\dagger))]\|^2 \\
&\leq [t\|\gamma g(x_t) - \phi(p^\dagger - \zeta f(p^\dagger))\| + |I - t\phi|\|x_t - \zeta f(x_t) - (p^\dagger - \zeta f(p^\dagger))\|]^2 \\
&\leq [t\sigma\|\gamma g(x_t) - \phi(p^\dagger - \zeta f(p^\dagger))\|/\sigma + (1 - \sigma t)\|x_t - \zeta f(x_t) - (p^\dagger - \zeta f(p^\dagger))\|]^2 \\
&\leq t\|\gamma g(x_t) - \phi(p^\dagger - \zeta f(p^\dagger))\|^2/\sigma + (1 - \sigma t)\|x_t - \zeta f(x_t) - (p^\dagger - \zeta f(p^\dagger))\|^2 \\
&\leq t\|\gamma g(x_t) - \phi(p^\dagger - \zeta f(p^\dagger))\|^2/\sigma + (1 - \sigma t)\|x_t - p^\dagger\|^2 \\
&\quad - \varsigma(2\alpha - \varsigma)\|f(x_t) - f(p^\dagger)\|^2].
\end{aligned} \tag{9}$$

Combining (8) and (9), we receive

$$\begin{aligned}
\|x_t - p^\dagger\|^2 &\leq \|u_t - p^\dagger\|^2 \\
&\leq t\|\gamma g(x_t) - \phi(p^\dagger - \zeta f(p^\dagger))\|^2/\sigma + (1 - \sigma t)[\|x_t - p^\dagger\|^2 \\
&\quad - \varsigma(2\alpha - \varsigma)\|f(x_t) - f(p^\dagger)\|^2].
\end{aligned}$$

It follows that

$$(1 - \sigma t)\varsigma(2\alpha - \varsigma)\|f(x_t) - f(p^\dagger)\|^2 \leq t\|\gamma g(x_t) - \phi(p^\dagger - \zeta f(p^\dagger))\|^2/\sigma \rightarrow 0 \quad (t \rightarrow 0+).$$

Therefore,

$$\lim_{t \rightarrow 0+} \|f(x_t) - f(p^\dagger)\| = 0. \tag{10}$$

Owing to (5) and Lemma 2.1, we achieve

$$\begin{aligned}
\|u_t - p^\dagger\|^2 &= \|F_\varsigma \text{proj}_{\mathcal{C}}[t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - F_\varsigma \text{proj}_{\mathcal{C}}[(p^\dagger - \varsigma f(p^\dagger))]\|^2 \\
&\leq \langle [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - [(p^\dagger - \varsigma f(p^\dagger))], u_t - p^\dagger \rangle \\
&= \frac{1}{2} (\| [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - [(p^\dagger - \varsigma f(p^\dagger))] \|^2 \\
&\quad + \|u_t - p^\dagger\|^2 - \| [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] \\
&\quad - [(p^\dagger - \varsigma f(p^\dagger))] - u_t + p^\dagger \|^2).
\end{aligned} \tag{11}$$

So,

$$\begin{aligned}
\|u_t - p^\dagger\|^2 &\leq \| [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - [(p^\dagger - \varsigma f(p^\dagger))] \|^2 \\
&\quad - \| [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - [(p^\dagger - \varsigma f(p^\dagger))] - u_t + p^\dagger \|^2 \\
&\leq t \|\gamma g(x_t) - \phi(p^\dagger - \varsigma f(p^\dagger))\|^2 / \sigma + (1 - \sigma t) \|x_t - p^\dagger\|^2 \\
&\quad - \| [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - u_t + \varsigma f(p^\dagger) \|^2.
\end{aligned}$$

This together with (8) implies that

$$\begin{aligned}
\|x_t - p^\dagger\|^2 &\leq \|u_t - p^\dagger\|^2 \\
&\leq t \|\gamma g(x_t) - \phi(p^\dagger - \varsigma f(p^\dagger))\|^2 / \sigma + (1 - \sigma t) \|x_t - p^\dagger\|^2 \\
&\quad - \| [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - u_t + \varsigma f(p^\dagger) \|^2.
\end{aligned}$$

Hence,

$$\| [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - u_t + \varsigma f(p^\dagger) \|^2 \leq t \|\gamma g(x_t) - \phi(p^\dagger - \varsigma f(p^\dagger))\|^2 / \sigma \rightarrow 0.$$

With the help of (10), we deduce

$$\lim_{t \rightarrow 0^+} \|x_t - u_t\| = 0. \tag{12}$$

Then,

$$\lim_{t \rightarrow 0^+} \|x_t - J_\tau^\Psi(I - \tau\psi)x_t\| = \lim_{t \rightarrow 0^+} (1 - \mu) \|x_t - u_t\| = 0. \tag{13}$$

Thanks to (12), we attain

$$\begin{aligned}
\|u_t - p^\dagger\|^2 &\leq \langle [t\gamma g(x_t) + (I - t\phi)(x_t - \varsigma f(x_t))] - [(p^\dagger - \varsigma f(p^\dagger))], u_t - p^\dagger \rangle \\
&\leq t\gamma \langle g(x_t) - g(p^\dagger), u_t - p^\dagger \rangle + (I - t\phi) \langle (x_t - \varsigma f(x_t)) - (p^\dagger - \varsigma f(p^\dagger)), u_t - p^\dagger \rangle \\
&\quad + t \langle \gamma g(p^\dagger) - \phi(p^\dagger - \varsigma f(p^\dagger)), u_t - p^\dagger \rangle \\
&\leq t\gamma \|g(x_t) - g(p^\dagger)\| \|u_t - p^\dagger\| + |I - t\phi| \|(x_t - \varsigma f(x_t)) - (p^\dagger - \varsigma f(p^\dagger))\| \\
&\quad \times \|u_t - p^\dagger\| + t \langle \gamma g(p^\dagger) - \phi(p^\dagger - \varsigma f(p^\dagger)), u_t - p^\dagger \rangle \\
&\leq [1 - (\sigma - \gamma\kappa)t] \|x_t - p^\dagger\| \|u_t - p^\dagger\| + t \langle \gamma g(p^\dagger) - \phi(p^\dagger - \varsigma f(p^\dagger)), u_t - p^\dagger \rangle \\
&\leq \frac{1 - (\sigma - \gamma\kappa)t}{2} \|x_t - p^\dagger\|^2 + \frac{1}{2} \|u_t - p^\dagger\|^2 \\
&\quad + t \langle \gamma g(p^\dagger) - \phi(p^\dagger - \varsigma f(p^\dagger)), u_t - p^\dagger \rangle.
\end{aligned}$$

Hence,

$$\begin{aligned}
\|x_t - p^\dagger\|^2 &\leq \|u_t - p^\dagger\|^2 \leq [1 - (\sigma - \gamma\kappa)t] \|x_t - p^\dagger\|^2 \\
&\quad + 2t \langle \gamma g(p^\dagger) - \phi(p^\dagger - \varsigma f(p^\dagger)), u_t - p^\dagger \rangle.
\end{aligned}$$

It follows that

$$\|x_t - p^\dagger\|^2 \leq \frac{2}{\sigma - \gamma\kappa} \langle \gamma g(p^\dagger) - \phi(p^\dagger - \varsigma f(p^\dagger)), u_t - p^\dagger \rangle. \quad (14)$$

Next we show that $\{x_t\}$ is relatively norm compact as $t \rightarrow 0+$. Let $\{t_n\} \subset (0, 1)$ be a sequence such that $t_n \rightarrow 0$ as $n \rightarrow \infty$. Put $x_n^{(1)} := x_{t_n}$ and $u_n^{(1)} := u_{t_n}$. From (13), we get

$$\lim_{n \rightarrow \infty} \|x_n^{(1)} - J_\tau^\Psi(I - \tau\psi)x_n^{(1)}\| = 0. \quad (15)$$

By (14), we have

$$\|x_n^{(1)} - p^\dagger\|^2 \leq \frac{2}{\sigma - \gamma\kappa} \langle \gamma g(p^\dagger) - \phi(p^\dagger - \varsigma f(p^\dagger)), u_n^{(1)} - p^\dagger \rangle. \quad (16)$$

Since $\{x_n^{(1)}\}$ is bounded, there exists a subsequence $\{x_{n_i}^{(1)}\} \subset \{x_n^{(1)}\}$ such that $x_{n_i}^{(1)} \rightharpoonup x^\dagger \in \mathcal{C}$ as $i \rightarrow \infty$. Applying Lemma 2.3, we deduce that $x^\dagger \in \text{Fix}(J_\tau^\Psi(I - \tau\psi)) = \text{Sol}(\mathcal{C}, \Psi, \psi)$.

On the other hand, utilizing (12), we have $u_{n_i}^{(1)} \rightharpoonup x^\dagger$. Note that

$$u_{n_i}^{(1)} = \Phi_{t_{n_i}}(x_{n_i}^{(1)}) = F_\varsigma \text{proj}_{\mathcal{C}}[t_{n_i} \gamma g(x_{n_i}^{(1)}) + (I - t_{n_i} \phi)(x_{n_i}^{(1)} - \varsigma f(x_{n_i}^{(1)}))]$$

and the operator $F_\varsigma \text{proj}_{\mathcal{C}}(I - \varsigma f)$ is nonexpansive. By Lemma 2.3, we get $x^\dagger \in \text{Sol}(\mathcal{C}, \varphi, f)$. Therefore, $x^\dagger \in \Gamma$. Substituting p^\dagger with x^\dagger in (16), we obtain

$$\|x_{n_i}^{(1)} - x^\dagger\|^2 \leq \frac{2}{\sigma - \gamma\kappa} \langle \gamma g(x^\dagger) - \phi(x^\dagger - \varsigma f(x^\dagger)), u_{n_i}^{(1)} - x^\dagger \rangle. \quad (17)$$

Since $u_{n_i}^{(1)} \rightharpoonup x^\dagger \in \mathcal{C}$, it follows from (17) that $x_{n_i}^{(1)} \rightarrow x^\dagger$. This has proved the relative norm-compactness of the net $\{x_t\}$ as $t \rightarrow 0+$.

Step 4. The whole net $x_t \rightarrow x^\dagger$ as $t \rightarrow 0+$.

Since $\{x_t\}$ is relatively norm compact as $t \rightarrow 0+$. Let $\{s_n\} \subset (0, 1)$ be another sequence such that $s_n \rightarrow 0$ as $n \rightarrow \infty$. Set $x_n^{(2)} := x_{s_n}$ and $u_n^{(2)} := u_{s_n}$. Since $\{x_n^{(2)}\}$ is bounded, there is another subsequence $\{x_{n_j}^{(2)}\} \subset \{x_n^{(2)}\}$ satisfying $x_{n_j}^{(2)} \rightharpoonup y^\dagger$ as $j \rightarrow \infty$. Consequently, we deduce $y^\dagger \in \Gamma$ and

$$\|x_{n_j}^{(2)} - y^\dagger\|^2 \leq \frac{2}{\sigma - \gamma\kappa} \langle \gamma g(y^\dagger) - \phi(y^\dagger - \varsigma f(y^\dagger)), u_{n_j}^{(2)} - y^\dagger \rangle. \quad (18)$$

Since $u_{n_j}^{(2)} \rightharpoonup y^\dagger \in \mathcal{C}$, it follows from (18) that $x_{n_j}^{(2)} \rightarrow y^\dagger$. Take into account of (14), we acquire

$$\|x_{n_i}^{(1)} - y^\dagger\|^2 \leq \frac{2}{\sigma - \gamma\kappa} \langle \gamma g(y^\dagger) - \phi(y^\dagger - \varsigma f(y^\dagger)), u_{n_i}^{(1)} - y^\dagger \rangle. \quad (19)$$

and

$$\|x_{n_j}^{(2)} - x^\dagger\|^2 \leq \frac{2}{\sigma - \gamma\kappa} \langle \gamma g(x^\dagger) - \phi(x^\dagger - \varsigma f(x^\dagger)), u_{n_j}^{(2)} - x^\dagger \rangle. \quad (20)$$

Letting $i \rightarrow \infty$ in (19) and noting that $u_{n_i}^{(1)} \rightharpoonup x^\dagger$ ($i \rightarrow \infty$), we have

$$\langle \gamma g(y^\dagger) - \phi(y^\dagger - \varsigma f(y^\dagger)), x^\dagger - y^\dagger \rangle \geq 0. \quad (21)$$

Letting $j \rightarrow \infty$ in (20) and noting that $u_{n_j}^{(2)} \rightharpoonup y^\dagger$ ($j \rightarrow \infty$), we have

$$\langle \gamma g(x^\dagger) - \phi(x^\dagger - \varsigma f(x^\dagger)), y^\dagger - x^\dagger \rangle \geq 0. \quad (22)$$

Combining (21) and (22), we conclude that $x^\dagger = y^\dagger$. Therefore, the whole net $x_t \rightarrow x^\dagger$ as $t \rightarrow 0+$. The proof is completed. \square

4. Conclusions

Equilibrium problems and quasi-variational inclusion problems provide a unified frame for solving many problems arising from science and engineering. In this paper, we investigate a common problem of the generalized equilibrium problem (2) and the quasi-variational inclusion (3) in Hilbert spaces. With the help of resolvent method, we propose an implicit algorithm [Algorithm 3.1] for finding a common solution of the generalized equilibrium problem (2) and the quasi-variational inclusion (3). We show that the net $\{x_t\}$ defined by Algorithm 3.1 weakly converges to a common solution of the generalized equilibrium problem (2) provided some mild conditions are satisfied.

Acknowledgment

Youli Yu was supported by the Science and Technology Program of Taizhou [grant number 21gyb23] and the Scientific Research Fund of Zhejiang Provincial Education Department [grant number Y202147035].

REFERENCES

- [1] *J. Baloee, M. Postolache and Y. Yao*, System of generalized nonlinear variational-like inequalities and nearly asymptotically nonexpansive mappings: graph convergence and fixed point problems, *Annals Functional Anal.*, **13**(4)(2022), Article number 68.
- [2] *E. Blum and W. Oettli*, From optimization and variational inequalities to equilibrium problems, *Math. Stud.*, **63**(1994), 123-145.
- [3] *S. S. Chang, H. W. Joseph Lee and C. K. Chan*, A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization, *Nonlinear Anal.*, **70**(2009), 3307-3319.
- [4] *V. Colao, G. L. Acedo and G. Marino*, An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings, *Nonlinear Anal.*, **71**(2009), 2708-2715.
- [5] *V. Colao, G. Marino and H. K. Xu*, An iterative method for finding common solutions of equilibrium and fixed point problems, *J. Math. Anal. Appl.*, **344**(2008), 340-352.
- [6] *P. L. Combettes and A. Hirstoaga*, Equilibrium programming in Hilbert spaces, *J. Nonlinear Convex Anal.*, **6**(2005), 117-136.
- [7] *V. Dadashi and M. Postolache*, Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators, *Arab. J. Math.*, **9**(2020), 89-99.
- [8] *Q. L. Dong, L. Liu and Y. Yao*, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem, *J. Nonlinear Convex Anal.*, **23**(2022), No. 3, 591-605.
- [9] *Q. L. Dong, Y. Peng and Y. Yao*, Alternated inertial projection methods for the split equality problem, *J. Nonlinear Convex Anal.*, **22**(2021), 53-67.
- [10] *K. Goebel and W. A. Kirk*, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge, 1990.
- [11] *R. H. Haghi, M. Postolache and Sh. Rezapour*, On T-stability of the Picard iteration for generalized φ -contraction mappings, *Abstr. Appl. Anal.*, **2012**(2012), ID 658971.
- [12] *S. He, Z. Wang, Q. Dong, Y. Yao and Y. Tang*, The dual randomized Kaczmarz algorithm, *J. Nonlinear Convex Anal.* in press.
- [13] *J. S. Jung*, Strong convergence of composite iterative methods for equilibrium problems and fixed point problems, *Appl. Math. Comput.*, **213**(2009), 498-505.
- [14] *A. Moudafi*, Weak convergence theorems for nonexpansive mappings and equilibrium problems, *J. Nonlinear Convex Anal.*, **9**(2008), 37-43.

[15] *A. Moudafi and M. Théra*, Proximal and dynamical approaches to equilibrium problems, in: Lecture Notes in Economics and Mathematical Systems, Springer, **477**(1999), 187-201.

[16] *N. Nadezhkina and W. Takahashi*, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, *J. Optim. Theory Appl.*, **128**(2006), 191-201.

[17] *W. Oettli*, A remark on vector-valued equilibria and generalized monotonicity, *Acta Math. Vietnam.*, **22**(1997), 215-221.

[18] *J. W. Peng and J. C. Yao*, A new hybrid-extragradient method for generalized mixed equilibrium problems and fixed point problems and variational inequality problems, *Taiwanese J. Math.*, **12**(2008), 1401-1433.

[19] *S. Plubtieng and R. Punpaeng*, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, *Appl. Math. Comput.*, **197**(2008), 548-558.

[20] *R. T. Rockafellar*, Monotone operators and the proximal point algorithm, *SIAM J. Control Optim.*, **14**(1976), 877-898.

[21] *D. R. Sahu, A. Pitea and M. Verma*, A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems, *Numer. Algorithms*, **83**(2020), No. 2, 421-449.

[22] *S. S. Santra, O. Bazighifan and M. Postolache*, New conditions for the oscillation of second-order differential equations with sublinear neutral terms, *Mathematics*, **9**(2021), No. 11, Art. No. 1159.

[23] *W. Sintunavarat and A. Pitea*, On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis, *J. Nonlinear Sci. Appl.*, **9**(2016), 2553-2562.

[24] *S. Takahashi and W. Takahashi*, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, *J. Math. Anal. Appl.*, **331**(2007), 506-515.

[25] *S. Takahashi and W. Takahashi*, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, *Nonlinear Anal.*, **69**(2008), 1025-1033.

[26] *B. S. Thakur, D. Thakur and M. Postolache*, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, *Appl. Math. Comput.*, **275**(2016), 147-155.

[27] *B. S. Thakur, D. Thakur and M. Postolache*, A new iteration scheme for approximating fixed points of nonexpansive mappings, *Filomat*, **30**(2016), 2711-2720.

[28] *D. Thakur, B. S. Thakur and M. Postolache*, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, *J. Inequal. Appl.*, **2014**(2014), Art. No. 328.

[29] *G. I. Usurelu, A. Bejenaru and M. Postolache*, Newton-like methods and polynomio-graphic visualization of modified Thakur processes, *Int. J. Comput. Math.*, **98**(2021), No. 5, 1049-1068.

[30] *G. I. Usurelu and M. Postolache*, Algorithm for generalized hybrid operators with numerical analysis and applications, *J. Nonlinear Var. Anal.*, **6**(2022), 255-277.

[31] *R. U. Verma*, General system of (A, η) -monotone variational inclusion problems based on generalized hybrid iterative algorithm, *Nonlinear Anal. Hybr.*, **1**(2007), 326-335.

[32] *Y. Yao, O. S. Iyiola and Y. Shehu*, Subgradient extragradient method with double inertial steps for variational inequalities, *J. Sci. Comput.*, **90**(2022), Art. No. 71.

- [33] *Y. Yao, H. Li and M. Postolache*, Iterative algorithms for split equilibrium problems of monotone operators and fixed point problems of pseudo-contractions, *Optimization*, **71**(2022), 2451-2469.
- [34] *Y. Yao, N. Shahzad and J. C. Yao*, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, *Carpathian J. Math.*, **37**(2021), 541-550.
- [35] *Y. Yao, Y. Shehu, X. Li and Q. Dong*, A method with inertial extrapolation step for split monotone inclusion problems, *Optimization*, **70**(2021), 741-761.
- [36] *Y. Yao, J. C. Yao and M. Postolache*, An iterate for solving quasi-variational inclusions and nonmonotone equilibrium problems, *J. Nonlinear Convex Anal.*, **24**(2023), No. 2, 463-474.
- [37] *X. Zhao and Y. Yao*, Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems, *Optimization*, **69**(2020), 1987-2002.
- [38] *L. J. Zhu, Y. Yao and M. Postolache*, Projection methods with linesearch technique for pseudomonotone equilibrium problems and fixed point problems, *U. Politeh. Buch. Ser. A*, **83**(2021), No. 1, 3-14.