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KKM MAPPINGS IN PMT SPACES WITH APPLICATIONS
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In this paper, we study some topological properties of PMT spaces, next
we obtain KKM mapping in these spaces, as an application, we get some fixed point
existence results for set-valued mappings and a new version of Fan’s best approximation

theorem on such spaces.
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1. Introduction

Recently, Khamsi and Hussain [7] introduced the concept of metric type space and
discussed a natural topology defined in any metric type space, which this topology enjoys
most of the metric like properties (see also [2, 5, 6]). In this paper, we introduce probabilistic
metric type space and establish some topological properties of these spaces. We study the
class of KKM type mappings on probabilistic metric type space and apply it for getting
some fixed point existence results for set-valued mappings and a new version of Fan’s best
approximation theorem on such spaces.

2. Basic definitions and results

First, let us start by making some basic definitions.

Definition 2.1 ([4, 9, 10]). mapping F : (−∞,∞) → [0, 1] is called a distribution function
if it is non-decreasing and left-continuous with infx∈R F (x) = 0 and supx∈R F (x) = 1. If in
addition F (0) = 0, then F is called a distance distribution function. The set of all distance
distribution functions (d.d.f) is denoted by ∆+. The maximal element for ∆+ in this order
is the d.d.f , ε0 given by

ε0(t) =

{
0 if t ≤ 0 ,
1 if t > 0 .

Definition 2.2 ([1, 3, 8]). A triangular norm (shorter t-norm) is a binary operation T on
[0, 1], which satisfies the following conditions:

(1) T is associative and commutative;
(2) T (a, 1) = a for all a ∈ [0, 1];
(3) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

The operations TL(a, b) = max(a + b − 1, 0), TM (a, b) = min{a, b} and Tp(a, b) = ab
on [0, 1] are t- norms.
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Definition 2.3. A probabilistic metric type space (PMT space) is a triple (M,F, T ), where
M is a nonempty set, T is a continuous t-norm and F is a mapping from M ×M into ∆+

such that, if Fx,y denote the value of F at the pair (x, y), the following conditions hold:

(PMT1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PMT2) Fx,y(t) = Fy,x(t);
(PMT3) Fx,y(K(s + t)) ≥ T (Fx,z(s), Fz,y(t)) for any x, y, z ∈ M , t, s ≥ 0 for some constant

K > 1.

Observe that if K = 1, then the PMT space is a probabilistic metric space, however
it does not hold true when K > 1. Thus the class of PMT spaces is effectively larger than
that of the ordinary probabilistic metric spaces. That is, every probabilistic metric space is
a PMT space, but the converse need not be true.

Example 2.1. Let (M,D) be a metric type space with constant K ≥ 1. Define

Fx,y(t) =

{
0 if t ≤ 0 ,

t
t+D(x,y) if t > 0 .

Then (M,F, Tp) is a PMT space with constant K. (PMT1) and (PMT2) are obvious and
we show (PMT3).

Tp(Fx,z(t), Fz,y(s)) =
t

t+D(x, z)
.

s

s+D(z, y)

=
1

1 + D(x,z)
t

.
1

1 + D(z,y)
s

≤ 1

1 + D(x,z)
(t+s)

.
1

1 + D(z,y)
(t+s)

≤ 1

1 + (D(x,z)+D(z,y))
(t+s)

≤ 1

1 + D(x,y)
K(t+s)

=
K(t+ s)

K(t+ s) +D(x, y)

= Fx,y(K(t+ s)) .

Remark 2.1. Let Lp (0 < p < 1) be the set of all real functions f(x), x ∈ [0, 1] such that∫ 1

0
|f(x)|pdx < ∞. Define

D(x, y) = (

∫ 1

0

|f(x)− g(x)|pdx)
1
p ,

for each f, g ∈ Lp. Then D is a metric type space with K = 2
1
p .

Example 2.2. Let M be the set of Lebesgue measurable functions on [0, 1] such that∫ 1

0
|f(x)|pdx < ∞, where p > 0 is a real number. Define

Fx,y(t) =

{
0 if t ≤ 0 ,

t

t+(
∫ 1
0
|f(x)−g(x)|pdx)

1
p

if t > 0 .

Then by Example 2.4 and Remark 2.5, (M,F, Tp) is a PMT space with K = 2
1
p .
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Example 2.3. Let (M,D) be a metric type spaces with constant K ≥ 1. Define

Fx,y(t) =

{
0 if t ≤ 0 ,

e
−(D(x,y))

t if t > 0 .

Then (M,F, Tp) is a PMT space with constant K. (PMT1) and (PMT2) are obvious and
we show (PMT3).

Tp(Fx,z(t), Fz,y(s)) =
t

t+D(x, z)
.

s

s+D(z, y)

= e
−(D(x,z))

t .e
−(D(z,y))

s

≤ e−(
D(x,y)
K(t+s)

)

= Fx,y(K(t+ s)) .

Remark 2.2. Let (M,d) be a metric space and D(x, y) = (d(x, y))
n
, where n > 1 is a real

number. Then D is a metric type space with K = 2n−1. The triangle inequality follows
easily from the convexity of the function f(x) = xn (x > 0).

Example 2.4. Let M be a nonempty set. Define

Fx,y(t) =

{
0 if t ≤ 0 ,

e−
|x−y|n

t if t > 0 .

Then by Example 2.7 and Remark 2.8 (M,F, Tp) is a PMT space with K = 2n−1.

3. Topology induced by probabilistic metric type

We continue to present some concepts and results from probabilistic metric space
theory, in the context of PMT spaces. Let (M,F, T ) be a PMT space. We define the open
ball Bx(r, t) and the closed ball Bx[r, t] with center x ∈ M and radius 0 < r < 1, t > 0 as
follows:

Bx(r, t) = {y ∈ M : Fx,y(t) > 1− r},
Bx[r, t] = {y ∈ M : Fx,y(t) ≥ 1− r}.

Definition 3.1. Let (M,F, T ) be a PMT space. A subset A ⊂ M is said to be open if and
only if, for any x ∈ A there exists t > 0 and 0 < r < 1 such that Bx(r, t) ⊂ A.

Proposition 3.1. Let (M,F, T ) be a PMT space. Define

τF = {A ⊂ M : x ∈ A if and only if there exists

t > 0 and 0 < r < 1 , such that Bx(r, t) ⊂ A}.
Then τF is a topology on M .

Proof. (i) Clearly ∅ and M belong to τF .
(ii) Let A1, A2, ..., Ai ∈ τF , and put

U = ∪i∈IAi.

We shall show that U ∈ τF . If a ∈ U , then a ∈ ∪i∈IAi which implies that a ∈ Ai for some
i ∈ I. Since Ai ∈ τF , there exists 0 < r < 1, t > 0, such that Ba(r, t) ⊂ Ai. Hence

Ba(r, t) ⊂ Ai ⊂ ∪i∈IAi = U .

This shows that U ∈ τF .
(iii) Let A1, A2, ..., An ∈ τF , and U = ∩n

i=1Ai. We shall show that U ∈ τF . Let a ∈ U . Then
a ∈ Ai for all 1 ≤ i ≤ n. Hence, for each 1 ≤ i ≤ n, there exists 0 < ri < 1, ti > 0 such that
Ba(ri, ti) ⊂ Ai. Let

r = min{ri , 1 ≤ i ≤ n}
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and
t = max{ti , 1 ≤ i ≤ n}.

Thus r ≤ ri for all 1 ≤ i ≤ n, 1− r ≥ 1− ri for all 1 ≤ i ≤ n. Also, t > 0. So, Ba(r, t) ⊆ Ai

for all 1 ≤ i ≤ n. Therefore
Ba(r, t) ⊂ ∩n

i=1Ai = U .

This shows that U ∈ τF . �
Proposition 3.2. Every PMT space with constant K is Hausdorff.

Proof. Let (M,F, T ) be a PMT space. Let x, y be two distinct points of M . Then 0 <
Fx,y(t) < 1. Let Fx,y(t) = r, for some r, 0 < r < 1. For each r0, r < r0 < 1, we can find an
r1 such that T (r1, r1) ≥ r0. Now consider the open balls Bx(1− r1,

t
2K ) and By(1− r1,

t
2K ).

Clearly

Bx(1− r1,
t

2K
) ∩By(1− r1,

t

2K
) = ∅.

Otherwise, if there exists z ∈ Bx(1− r1,
t

2K ) ∩By(1− r1,
t

2K ). Then

r = Fx,y(t)

≥ T (Fx,z(
t

2K
), Fz,y(

t

2K
))

≥ T (r1, r1) ≥ r0

> r ,

which is a contradiction. Therefore (M,F, T ) is Hausdorff. �
Proposition 3.3. Let (M,D) be a metric type space and Fx,y(t) = t

t+D(x,y) be the cor-

responding standard PMT on M . Then the topology τD induced by the metric D and the
topology τF induced by the F are the same. That is, τD = τF .

Proof. Suppose that A ∈ τD. Then there exists ϵ > 0 such that B(x, ϵ) ⊂ A, for every
x ∈ A. For a fixed t > 0, we obtain that

Fx,y(t) =
t

t+D(x, y)
>

t

t+ ϵ
.

Let

1− r =
t

t+ ϵ
.

Then
Fx,y(t) > 1− r .

It follows that, Bx(r, t) ⊂ A. Hence A ∈ τF . This shows that τD ⊆ τF . Conversely, suppose
that A ∈ τF . Then there exists 0 < r < 1 and t > 0 such that Bx(r, t) ⊂ A for every x ∈ A.
We obtain that

Fx,y(t) =
t

t+D(x, y)
> 1− r

t > (1− r)t+ (1− r)D(x, y)

D(x, y) <
rt

1− r
.

Let ϵ = rt
1−r where 0 < ϵ < 1. Then D(x, y) < ϵ, and therefore B(x, ϵ) ⊂ A. Hence A ∈ τD.

This implies that τF ⊆ τD. Therefore τD = τF . �
Definition 3.2. Let (M,F, T ) be a PMT space. A subset X of M is said to be p-bounded
if there exists t > 0 and 0 < r < 1 such that Fx,y(t) > 1− r for all x, y ∈ X.

Remark 3.1. Let (M,F, T ) be a PMT space induced by a metric type D on M . Then
X ⊆ M is p-bounded if an only if it is bounded.
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Definition 3.3. Let (M,F, T ) be a PMT space. We say that {xn} is:

(1) Convergent sequence, if for 0 < r < 1 and t > 0 there exists n0 ∈ N such that
Fxn,x(t) > 1− r for all n ≥ n0 and for some fixed x ∈ M ;

(2) Cauchy sequence, if for every 0 < r < 1 and t > 0 there exists n0 ∈ N such that
Fxn,xm(t) > 1 − r for all n,m ≥ n0. A PMT space is said to be complete if every
Cauchy sequence is convergent in M .

Theorem 3.1. Let (M,F, T ) be a PMT space and τF be the topology induced by the PMT.
Then for a sequence {xn} in M , the sequence {xn} converges to x if and only if Fxn,x(t)
converges to 1 as n → ∞.

Proof. Fix t > 0. Suppose that the sequence {xn} converges to x. Then for 0 < r < 1, there
exists n0 ∈ N such that xn ∈ Bx(r, t) for all n ≥ n0. It follows that Fxn,x(t) > 1 − r and
hence 1− Fxn,x(t) < r. Therefore Fxn,x(t) converges to 1 as n → ∞.
Conversely, if for each t > 0, Fxn,x(t) converges to 1 as n → ∞ then for 0 < r < 1, there
exists n0 ∈ N such that 1− Fxn,x(t) < r for all n ≥ n0. It follows that Fxn,x(t) > 1− r for
all n ≥ n0. Thus xn ∈ Bx(r, t) for all n ≥ n0, and hence the sequence{xn} converges to x.

�

Remark 3.2. Let (M,F, T ) be a PMT space induced by a metric type D on M . Then
{xn} is convergent in τF if and only if {xn} is convergent in (M,D).

Theorem 3.2. Let (X,F, T ) be a PMT space and τF be the topology induced by the PMT.
Then for a sequence {xn} in X, the sequence {xn} is Cauchy if and only if Fxn,xm(t)
converges to 1 as n,m → ∞.

Proof. Fix t > 0. Suppose that the sequence {xn} is Cauchy. Then for 0 < r < 1, there
exists n0 ∈ N such that xn ∈ Bxm(r, t) for all n,m ≥ n0. It follows that Fxn,xm(t) > 1− r
and hence 1− Fxn,xm(t) < r. Therefore Fxn,xm(t) converges to 1 as n,m → ∞.
Conversely, if for each t > 0, Fxn,x(Kt) converges to 1 as n,m → ∞ then for 0 < r < 1, there
exists n0 ∈ N such that 1−Fxn,xm(t) < r for all n,m ≥ n0. It follows that Fxn,xm(t) > 1−r
for all n,m ≥ n0. Thus xn ∈ Bxm(r, t) for all n,m ≥ n0, and hence the sequence{xn} is
Cauchy. �

Remark 3.3. Let (M,F, T ) be a PMT space induced by a metric type D on M . Then
{xn} is Cauchy in τF if and only if {xn} is Cauchy in (M,D).

Proposition 3.4. Let (M,F, T ) be a PMT space and τF be the topology induced by PMT.
Then for any nonempty subset X ⊂ M we have

(1) X is closed if and only if for any sequence {xn} in X which converges to x, we have
x ∈ X;

(2) if we define X̄ to be the intersection of all closed subsets of M which contain X, then
for any x ∈ X̄ and for any 0 < r < 1 and t > 0, we have Bx(r, t) ∩X ̸= ∅.

Proof. Let us prove (1) first. Assume that X is closed and let {xn} be a sequence in X such
that limn→∞ xn = x. Let us prove that x ∈ X. Assume not, i.e. x /∈ X. Since X is closed,
then there exists 0 < r < 1 and t > 0 such that Bx(r, t) ∩ X = ∅. Since {xn} converges
to x, then there exists N ≥ 1 such that for any n ≥ N we have xn ∈ Bx(r, t). Hence
xn ∈ Bx(r, t)∩X, which leads to a contradiction. Conversely assume that for any sequence
{xn} in X which converges to x, we have x ∈ X. Let us prove that X is closed. Let x /∈ X.
We need to prove that there exists 0 < r < 1 and t > 0 such that Bx(r, t)∩X = ∅. Assume
not, i.e. for any 0 < r < 1 and t > 0, we have Bx(r, t) ∩X /∈ ∅. So for any n ≥ 1, choose
xn ∈ Bx(

1
n , t) ∩ A. Clearly we have {xn} converges to x. Our assumption on X implies

x ∈ X, a contradiction.
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Let us prove (2). Clearly X̄ is the smallest closed subset which contains X. Set

X∗ = {x ∈ M ; for any 0 < r < 1, there exists a ∈ X

such that : Fx,a(t) > 1− r}.
We have X ⊂ X∗. Next we prove that X∗ is closed. For this we use property (1). Let {xn}
be a sequence in X∗ such that {xn} converges to x. Let 0 < r < 1 and t > 0. Since {xn}
converges to x, there exists N ≥ 1 such that for any n ≥ N we have

Fx,xn(
t

2K
) > 1− r ,

where K is the constant to the condition (PMT3). Let r0 = Fx,xn(
t

2K ) > 1 − r. Since
r0 > 1 − r, we can find an s, 0 < s < 1, such that r0 > 1− s > 1− r0. Now for a given r0
and s such that r0 > 1− s we can find r1, 0 < r1 < 1, such that

T (r0, (1− r1)) ≥ 1− s .

Now, since xn ∈ X∗, there exists a ∈ X such that

Fxn,a(
t

2K
) > 1− r1 .

Hence

Fx,a(t) ≥ T (Fx,xn(
t

2K
), Fxn,a(

t

2K
)) > T (r0, (1− r1)) ≥ 1− s > 1− r ,

which implies x ∈ X∗. Therefore X∗ is closed and contains X. The definition of X̄ ⊂ X∗,
which implies the conclusion of (2). �

Proposition 3.5. Every compact subset X of a PMT space M is p-bounded.

Proof. Given X a compact subset of M . Fix t > 0 and 0 < r < 1. Consider an open cover
{Bx(r, t) : x ∈ X} of X. Since X is compact, there exists x1, x2, ..., xn ∈ X such that

X ⊆ ∪n
i=1Bxi(r, t) .

Let x, y ∈ X. Then x ∈ Bxi(r, t) and y ∈ Bxj (r, t) for some i, j. Therefore Fx,xi(t) > 1− r
and Fy,xj (t) > 1− r. Now, let α = min{Fxi,xj (t) : 1 ≤ i, j ≤ n}. Then α > 0. Now

Fx,y(K(2Kt+ t)) ≥ T (T (Fx,xi(t), Fxi,xj (t)), Fxj ,y(t) ≥ T (T ((1− r), (1− r)), α) ,

where K is the constant in the condition (PMT3). Taking t
′
= K(2Kt + t) and T (T ((1 −

r), (1 − r)), α) > 1 − s, 0 < s < 1, we have Fx,y(t
′
) > 1 − s for all x, y ∈ X. Hence X is

p-bounded. �

Every compact subset of a Hausdorff topological space is closed. Then:

Remark 3.4. In a PMT space every compact subset is closed and p-bounded.

Proposition 3.6. Let (M,F, T ) be a PMT space and τF the topology defined above. Let X
be a nonempty subset of M . The following properties are equivalent

(1) X is compact.
(2) For any sequence {xn} in X, there exists a subsequence {xnk

} of {xn} which converges,
and if {xnk

} converges to x then x ∈ X.

Proof. Assume that X is a nonempty compact subset of M . It is easy to see that any
decreasing sequence of nonempty closed subsets of X has a nonempty intersection. Let
{xn} be a sequence in X. Set Cn = {xm : m ≥ n}. Then we have

∩
n≥1 Cn ̸= ∅. Let

x ∈
∩

n≥1 Cn. Then for 0 < r < 1, t > 0 and for any n ≥ 1, there exists mn ≥ n such

that Fx,xmn
(t) > 1 − r. This clearly implies the existence of a subsequence of {xn} which

converges to x. Since X is closed, then we must have x ∈ X.
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Conversely, let X be a nonempty subset of M such that the conclusion of (2) is true.
Let us prove that X is compact. First, note that for any 0 < r < 1, t > 0, there exists
x1, x2, ..., xn ∈ A such that

X ⊆
n∪

i=1

Bxi(r, t) .

Assume not, then there exists 0 < r0 < 1, such that for any finite number of points
x1, x2, ..., xn ∈ X, we have

X *
n∪

i=1

Bxi(r0, t) .

Fix x1 ∈ X. Since X * Bx1(r0, t), there exists x2 ∈ X \Bx1(r0, t). By induction we build a
sequence {xn} such that

xn+1 ∈ X \ (Bx1(r0, t) ∪ ... ∪Bxn(r0, t))

for all n ≥ 1. Clearly we have Fxn,xm(t) < 1−r0, for all n,m ≥ 1, with n ̸= m. This condition
implies that no subsequence of {xn} will be Cauchy or convergent. This contradicts our
assumption on X. Next let {Oα}α∈J be an open cover of X. Let us prove that only finitely
many Oα cover X. Fix t > 0, First, note that there exists 0 < r0 < 1 such that for any
x ∈ X, there exists α ∈ J such that Bx(r0, t) ⊂ Oα. Assume not, then for any 0 < r < 1,
there exists xr ∈ X such that for any α ∈ J , we haveBxr (r, t) * Oα. In particular, for
any n ≥ 1, there exists xn ∈ X such that for any α ∈ J , we have Bxn(

1
n , t) * Oα. By our

assumption on X, there exists a subsequence {xnk
} of {xn} which converges to some point

x ∈ X. Since the family {Oα}α∈J covers X, there exists α0 ∈ J such that x ∈ Oα0 . Since
Oα0 is open, there exists 0 < r0 < 1, and t0 > 0 such that Bx(r0, t) ⊂ Oα0 . Fix t > 0 and
let t1 = tK, for any nK ≥ 1 and a ∈ BxnK

( 1
nK

, t) = BxnK
( 1
nK

, t1
K ), we have

Fx,a(t0) ≥ T (Fx,xnk
(
t0 − t1
K

), Fxnk
,a(

t1
K

)) > T (Fx,xnk
(
t0 − t1
K

), 1− 1

nk
)

for nk large enough, we will get Fx,a(t) > 1 − r0 for any a ∈ Bxnk
( 1
nk

, t). In the other

words, we have Bxnk
( 1
nk

, t) ⊂ Bx(r0, t0), which implies Bxnk
( 1
nk

, t) ⊂ Oα0 . This is in clear

contradiction with the way the sequence {xn} was constructed. Therefore, there exists
0 < r0 < 1 such that for any x ∈ X, there exists α ∈ J such that Bx(r0, t) ⊂ Oα. For such
r0, there exist x1, x2, ..., xn ∈ X such that

X ⊂ Bx1
(r0, t) ∪ ... ∪Bxn

(r0, t).

But for any i = 1, ..., n, there exists α ∈ J such that Bxi(r0, t) ⊂ Oαi , i.e., X ⊂ Oα1∪...∪Oαn .
This completes the proof that X is compact. �

Definition 3.4. The subset X is called sequentially compact if and only if for any sequence
{xn} inX, there exists a subsequence {xnk

} of {xn} which converges, and limnk→∞ xnk
∈ X.

Also X is called totally bounded if for any 0 < r < 1 and t > 0, there exist x1, x2, ..., xn ∈ X
such that

X ⊂ Bx1(r, t) ∪ ... ∪Bxn(r, t).

In the above proof we showed the following result.

Theorem 3.3. Let (M,F, T ) be a PMT space and τF the topology defined above. Let X be
a nonempty subset of M .

(1) X is compact if and only if X is sequentially compact.
(2) If X is compact, then X is totally bounded.
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4. KKM maps in PMT spaces

For a set X, we denote the set of all nonempty finite subsets of X by ⟨X⟩. Let A be
a nonempty p-bounded subset of PMT space (M,F, T ). Then

(1) co (A) = ∩{B ⊂ M , B is a closed ball in M such that A ⊂ B}.
(2) A(M) = {A ⊂ M, A = co (A)}, i.e. A ∈ A(M) if and only if A is an intersection of

all closed balls containing A. In this case, we say that A is an admissible set in M .
(3) A is called subadmissible, if for each D ⊂ ⟨A⟩, co(D) ⊂ A. Obviously, if A is an

admissible subset of M , then A must be subadmissible.

Let (M,F, T ) be a PMT space and X a subadmissible subset of M . A set-valued
mapping G : X → 2M is called a KKM mapping, if for each A ∈ ⟨X⟩, we have co (A) ⊂
G(A) = ∪{G(a), a ∈ A}. More generally, if Y is a topological space and G : X → 2Y , S :
X → 2Y are two set-valued mappings such that for any A ∈ ⟨X⟩, we have S(co (A)) ⊂ G(A),
then G is called a generalized KKM mapping with respect to S. If the set-valued mapping
S : X → 2Y satisfies the requirement that for any generalized KKM mapping G : X → 2Y

with respect to S the family {G(x), x ∈ X} has the finite intersection property, then S is
said to have the KKM property. We define

KKM(X,Y ) = {S : X → 2Y , S has the KKM property } .

Let X be a nonempty subset of a PMT space M . Then S : X → 2M is said to have the
approximate fixed point property if for any 0 < r < 1 and t > 0, there exists an x ∈ X
such that S(x) ∩ Bx(r, t) ̸= ∅, i.e. there exists y ∈ S(x) such that Fx,y(t) > 1− r. We now
establish the approximate fixed point property of KKM-type mapping on a subadmissible
subset of a PMT space.

Theorem 4.1. Let (M,F, T ) be a PMT space and X a nonempty subadmissible subset of

M . Let S ∈ KKM(X,X) be such that S(X) is totally bounded. Then S has the approximate
fixed point property.

Proof. Set Y = S(X) ⊂ X. Since Y is totally bounded, fix t > 0 then for any 0 < r < 1 and
t > 0, there exists a finite subset A ⊂ X such that Y ⊆

∪
x∈A Bx(r,

t
2 ). Define G : X → 2X

by

G(x) = Y
∩

Bx(r,Kt)
c

where Zc is the complement of Z in M . Clearly G(x) is closed. Note that for any x ∈ M ,
we have

Bx(r,
t

2
) ⊂ Bx(r,Kt)

cc ⊂ Bx(r,Kt).

Indeed, let y ∈ Bx(r,
t
2 ). Assume that y /∈ Bx(r,Kt)

cc
, i.e., y ∈ Bx(r,Kt)

c
. From the

properties of the closure in PMT spaces, there exists a sequence {yn} ∈ Bx(r,Kt)
c
such

that limn→∞ yn = y. Hence

1− r ≥ Fx,yn(Kt) ≥ T (Fx,y(
t

2
), Fy,yn(

t

2
))

If we let n → ∞, we get 1− r ≥ Fx,y(
t
2 ). This is a contradiction to y ∈ Bx(r,

t
2 ). Hence

Bx(r,
t

2
) ⊂ Bx(r,Kt)

cc
.

Next let y ∈ Bx(r,Kt)
cc
. Let us prove that y ∈ Bx(r,Kt). Assume not, i.e., y /∈ Bx(r,Kt).

Hence y ∈ Bx(r,Kt)
c
, which implies y ∈ Bx(r,Kt)

c
. This is a contradiction with y ∈

Bx(r,Kt)
cc
. Therefore, we have

Bx(r,Kt)
cc ⊂ Bx(r,Kt).
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On the other hand, since Y ⊂
∪

x∈A Bx(r,
t
2 ), then we have

∩
x∈A G(x) = ∅. So G is not a

generalized KKM mapping with respect to S. Since S ∈ KKM(X,X), there exists a finite
nonempty subset B ⊂ X such that

S(co(B)) *
∪
x∈B

G(x).

So there exists x0 ∈ S(co(B)) such that x0 /∈ G(x) for any x ∈ B.

In other words, we have x0 ∈ Bx(r,Kt)
cc
, for any x ∈ B. Hence x0 ∈ Bx(r,Kt) for

any x ∈ B or B ⊂ Bx(r,Kt). By the definition of co(B) we deduce that co(B) ⊂ Bx(r,Kt).
Since x0 ∈ S(co(B)), there exists xr ∈ co(B) such that x0 ∈ S(xr). But xr ∈ co(B) ⊂
Bx0(r,Kt), gives Fx0,xr (Kt) ≥ 1− r. Therefore, we have proved

S(xr)
∩

Bxr (r,Kt) ̸= ∅.

Since 0 < r < 1 and t > 0 were arbitrary, the proof of the theorem is complete. �

As a direct consequence of this result, we get the following fixed point result.

Theorem 4.2. Let (M,F, T ) be a PMT space and X a nonempty subadmissible subset of
M . Let S ∈ KKM(X,X) be closed and compact. Then S has a fixed point, i.e. there exists
x ∈ X such that x ∈ S(x).

Proof. Since S is compact, then S(X) is compact. Hence S(X) is totally bounded. The
previous theorem implies the existence of xr ∈ X such that

S(xr)
∩

Bxr
(r,Kt) ̸= ∅ ,

for any 0 < r < 1 and t > 0. In particular, for any n ≥ 1, there exists xn ∈ X such that

S(xn)
∩

Bxn
(
1

n
,Kt) ̸= ∅ .

Hence there exists yn ∈ S(xn) such that Fxn,yn(Kt) > 1 − 1
n , for any n ≥ 1. Since S is

compact, there exists a subsequence {ynk
} which is convergent to y. Clearly we have {xnk

}
is also convergent to y. Since {(xn, yn)} ∈ Gr(S) and Gr(S) is closed, then (y, y) ∈ Gr(S),
i.e. y ∈ S(y) where Gr(S) denotes the graph of the mapping S. �

Before we obtain on further results, we would like to give an example to support
Theorem 4.2.

Example 4.1. Assume that M := ℜ and (ℜ, F, Tp) be a PMT space similar to Example
2.4. Let X = [0, 1] and define a map S : X → 2X by

S(x) =

 [1− x, 1] if x ∈ [0, 1
2 ),

{1} if x = 1
2 ,

[0, 1− x] ∪ {1} if x ∈ ( 12 , 1].

Clearly, we have X being subadmissible and S being closed and compact. Now, let G : X →
2X be a given generalized KKM map with respect to S. It is clear that S(x) ⊂ G(x) for
all x ∈ X. Since S has the finite intersection property, so does G. Therefore, we have
S ∈ KKM(X,X). In view of Theorem 4.2, S has a fixed point.

The following lemma will be useful to prove Schauder’s type fixed point theorem for
PMT spaces.

Lemma 4.1. Let (M,F, T ) be a PMT space and X a nonempty subadmissible subset of M .
Suppose that Y is a topological space, S ∈ KKM(X,Y ) and f : Y → X is continuous, then
f ◦ S ∈ KKM(X,X).
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Proof. Let G : X → 2X be generalized KKM mappings with respect to f ◦ S such that
G(x) is closed for each x ∈ X. Then, for any finite subset {x1, x2, ..., xn} of X, since G
is a generalized KKM mapping with respect to f ◦ S we have f ◦ S(co{x1, x2, ..., xn}) ⊂∪

1≤i≤n G(xi). Hence

S(co{x1, x2, ..., xn}) ⊂
∪

1≤i≤n

f−1(G(xi)) .

Therefore, f−1(G) is a generalized KKMmapping with respect to S. Since S ∈ KKM(X,Y ),
then the family {f−1(G(x)), x ∈ X} has the finite intersection property since f is contin-
uous. This will imply that the family {G(x), x ∈ X} has the finite intersection property.
This shows that f ◦ S ∈ KKM(X,X). �

Corollary 4.1. Let (M,F, T ) be a PMT space and X a nonempty subadmissible subset
of M . Suppose that the identity mapping I : X → X belongs to KKM(X,X), then any

continuous mapping f : X → X such that f(X) is compact, has a fixed point.

Proof. Since I ∈ KKM(X,X), and f is continuous, then by Lemma 4.4, f ∈ KKM(X,X).

Using that f(X) is compact and every continuous map is closed, we conclude by Theorem
4.2 that f has a fixed point. �

5. Applications

In this section as an application of the PMT-KKM principle, we give the version of
Fan’s best approximation in nonexpansive retraction probabilistic metric type spaces (NR-
PMT spaces).

Definition 5.1. A PMT space (M,F, TM ) is called NR-PMT space if there exists a closed
convex subset (W,µ, TM ) of a completely probabilistic metrizable topological vector space
(V, µ, TM ), in which

µαx1+βx2,αy1+βy2(t) ≥ TM (µx1,y1(t), µx2,y2(t))

for all x1, x2, y1, y2 ∈ W , α+β = 1, α, β ≥ 0, and t > 0 such that (M,F, TM ) is isometrically
embedded into (W,µ, TM ) and there exists a nonexpensive retraction r : W → M .

Lemma 5.1. Let (M,F, TM ) be an NR-PMT space, then r(convA) ⊆ co(A) for any A ∈
⟨M⟩, where convA means the convex hull of A.

Proof. Since each closed ball in (W,µ, TM ) is convex, then convA ⊂ ∩{BW
xα

[rα, t] : A ⊂
BW

xα
[rα, t]} . Therefore,

r(convA) ⊂ r(∩{BW
xα

[rα, t] : A ⊂ BW
xα

[rα, t] , xα ∈ M})
⊆ ∩{BW

xα
[rα, t] : A ⊂ BW

xα
[rα, t] , xα ∈ M} = co(A).

�

The above Lemma tells that in every NR-PMT space (M,F, TM ) and for any subad-
missible subset X of M , the identity mapping belongs to KKM(X,X). This result will be
called Fan’s Lemma.

Theorem 5.1. Let X ∈ A(M) be compact subset of an NR-PMT space (M,F, TM ). Suppose
that S : X → 2M is continuous with admissible values, then there exists an x0 ∈ X, such
that Fx0,S(x0)(t) = supx∈X Fx,S(x0)(t) for t > 0. In particular, if S(x0) is compact and
x0 /∈ S(x0), then x0 must be a boundary point of X.
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Proof. Let r : W → M be a nonexpansive retraction as in Definition 5.1. Define G : X → 2X

by G(y) = {x ∈ X : Fx,S(x)(t) ≥ Fy,S(x)(t)}. Since S is continuous then G(y) is closed. (In
fact, let xn ∈ G(y) such that xn → x, we want to show that x ∈ G(y). Since xn → x and
S is continuous then S(xn) → S(x). Since xn ∈ G(y) then Fxn,S(xn)(t) ≥ Fy,S(xn)(t). Take
limit for both sides, we get Fx,S(x)(t) ≥ Fy,S(x)(t) which implies that x ∈ G(y)). Since X is
compact and G(y) is closed subset of X, then G(y) is compact.

Now we will show that r−1G : X ⊆ W → 2W is a KKM mapping (i.e co(A) ⊂
r−1G(A), ∀A ∈ ⟨X⟩ or r(co(A)) ⊂ G(A) ). Let A = {y1, y2, ..., yn} ∈< X > and y0 /∈
∪n
k=1G(yk). If G(A) = X then co(A) ⊂ X = G(A) and hence, there is nothing to prove. Let

y0 /∈ G(A) = ∪n
k=1G(yk). Then we have by definition of G, Fy0,S(y0)(t) < Fyk,S(y0)(t) , ∀k =

1, 2, ..., n. Let J(y0) = {y ∈ X : Fy0,S(y0)(t) < Fy,S(y0)(t)}. In particular A ⊂ J(y0). Take
zk ∈ S(y0) such that for k = 1, 2, ..., n, Fy0,S(y0)(t) < Fyk,zk(t). This is possible by using the
definition Fyk,S(y0)(t) = supz∈S(x0) Fyk,z(t) and that Fy0,S(y0)(t) < Fyk,S(y0)(t). Let λk > 0

and
∑n

k=1 λk = 1. Then we have

Fr(
∑n

k=1 λkyk),r(
∑n

k=1 λkzk)(t) ≥ µ∑n
k=1 λkyk,

∑n
k=1 λkzk(t)

≥ min
1≤k≤n

Fyn,zk(t) > Fy0,S(y0)(t). (1)

By Lemma 5.2, r(
∑n

k=1 λkyk) ∈ co({z1, ..., zn}) and since S(y0) is subadmissible co({z1, ..., zn}) ⊂
S(y0), we have r(

∑n
k=1 λkyk) ∈ S(y0) and from (1) Fr(

∑n
k=1 λkyk),S(y0)(t) > Fy0,S(y0)(t).

Hence, we deduce that r(
∑n

k=1 λkyk) ∈ J(y0). As y0 /∈ J(y0), we have y0 /∈ r(conv({y1, ..., yn})).
Consequently, r(conv({y1, ..., yn})) ⊂ ∪n

k=1(yk) implies conv({y1, ..., yn}) ⊂ ∪n
k=1r

−1G(yk).
This implies that r−1G is a KKM mapping. By Fan’s Lemma mentioned after Lemma 5.2,
which says that I ∈ KKM(X,X), the family{r−1G(x) : x ∈ X} = {r−1G(x) : x ∈ X}
has the finite intersection property, and therefore the family{G(x) : x ∈ X}. has the
finite intersection property. The compactness of G(x) for each x ∈ X implies that there
exists an x0 ∈ ∩y∈XG(y). Hence, Fx0,S(x0)(t) ≥ Fy,S(x0)(t), for all y ∈ X. Which implies
Fx0,S(x0)(t) = supy∈X Fy,S(x0)(t) for t > 0.

If x0 /∈ S(x0) and S(x0) is compact, then there exists u0 ∈ S(x0) such that Fx0,u0(t) =
Fx0,S(x0)(t). In this case we will show that x0 ∈ ∂X. Suppose that x0 ∈ IntX. Then there
exists 0 < r < 1, such that Bx(r, t) ⊂ IntX ⊂ X and 0 < r < Fy,S(x0)(t) ≤ Fx0,S(x0)(t), for

all y ∈ Bx0
(r, t) for t > 0. Then, it is clear thatBW

x0
(r, t) ∩BW

u0
(Fx0,S(x0)(t)− r, t) ̸= ∅.

∅ ≠ r(BW
x0
(r, t) ∩BW

u0
(Fx0,S(x0)(t)− r, t))

⊆ r(BW
x0
(r, t)) ∩ r(BW

u0
(Fx0,S(x0)(t)− r, t))

⊆ BM
x0
(r, t) ∩BM

u0
(Fx0,S(x0)(t)− r, t).

And hence, BM
x0
(r, t) ∩ BM

u0
(Fx0,S(x0)(t) − r, t) ̸= ∅. If y is any element of this intersection,

then y ∈ X and since u0 ∈ S(x0) implies Fy,S(x0)(t) > Fx0,S(x0)(t) which is a contradiction.
Therefore x0 must be a boundary point of X. �

Theorem 5.2. Let X ∈ A(M) be a compact subset of an NR-PMT space (M,F, TM ).
Suppose that S : X → A(M) is continuous. Then S has a fixed point if one of the following
conditions holds for all x ∈ ∂X such that x /∈ S(x):

(1) There exists a y ∈ X such that Fy,S(x)(t) > Fx,S(x)(t).
(2) There exists an α > 1 such that αFx,S(x)(t) < 1 and X ∩BS(x)(1−αFx,S(x)(t), t) ̸= ∅.
(3) S(x) ∩X ̸= ∅.

Proof. (1) Suppose S has no fixed point. Then by Theorem 5.3, there exist an x0 ∈ ∂X
such that 0 < Fy,S(x0)(t) ≤ Fx0,S(x0)(t) for all y ∈ X which contradicts condition.
(2) For any x ∈ X such that x /∈ S(x), there exists a y ∈ X such that y ∈ X ∩ BS(x)(1 −
αFx,S(x)(t), t) which implies Fy,S(x)(t) ≥ 1 − (1 − αFx,S(x)(t)) > 1 − (1 − Fx,S(x)(t)) =
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Fx,S(x)(t) which (2) implies (1).
(3) (3) ⇒ (2) trivial. �

6. Conclusions

In this paper, we introduced a notion of KKM mapping in probabilistic metric type
spaces. As application, some existence theorems of solutions for fixed point theorem are
obtained. Also, we defined NR-probabilistic metric type spaces and we obtained a version
of Fan’s best approximation theorem on these spaces.

REFERENCES

[1] R.P. Agarwal, Y.J. Cho, R. Saadati, On random topological structures, Abstr. Appl. Anal. 2011, Art.

ID 762361, 41 pp.

[2] I.A. Bakhtin, The contraction mapping principle in almost metric space, (Russian) Functional analysis,

No. 30 (Russian), 26–37, Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk, 1989.

[3] S. Chauhan, B.D. Pant, Fixed point theorems for compatible and subsequentially continuous mappings

in Menger spaces, J. Nonlinear Sci. Appl., 7(2014), 78–89.
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